2.21 On the Development of a Deterministic Three-Dimensional Radiation Transport Code

October 13–15, 2010 Hampton, Virginia

Health Care Policy Analysis and Decision Support using Agent Based Simulation Techniques

Dan Widdis, CMSP Concurrent Technologies Corporation

Project Objectives

- Provide a technical capability to analyze complex interactions in complex systems
 - Model human decisions and multi-level interactions
 - Address client needs that we can not currently support
 - Extend some of our existing, successful work in ontology modeling
 - Develop a *reusable solution* that is easily transported to multiple client needs and extensible within current solution development
- Apply this new capability to chronic disease research problem
 - Demonstrate the this solution meets National Institute of Health needs
 - Department of Health & Human Services, National Institute of Health, Office of Behavioral and Social Sciences Research
 - Show ability to analyze impacts of policy on human lifestyle decisions

R & D Approach

Conference & Expo

- Research health care policy areas and integrate specific focus area data into usable format
 - Based on human decision model
 - Initial focus on human smoking decisions across multiple factors
- · Develop ontology models
 - Human decisions
 - Human environmental entities and relationships
 - Cross-domain ontology model of interactions between humans, environment, decisions, and policy
- · Develop Agent Based Model (ABM) and methods
 - Document a Design of Experiment (DOE) method
 - Document an approach to analyze ABM output

Health Care Research

- Extensive research has been done on individual social risk factors that lead to disease
- Risk factors do not act independently
- This research allows understanding of interrelationships between environmental influences and social influences on human decisions across many risk factors
- Enable inclusion of many risk factors across many "layers"
- Initial focus on smoking risks

Agent Based Simulation

- Collection of autonomous decision-making entities (agents)
 NOT intelligent agents or secret agents
- Allows us to model complexity multiple system layers and complex interactions
- · Discovers "emergent phenomena"
- · Becomes a data source for advanced research
- · Requires sophisticated methods for:
 - Efficient experimental design
 - Data mining
- Requires computational power

- · Agent characteristics
 - Age, gender, race, smoker? (never, former, current), prob start or quit
 - Maintain smoking status after age 30
 - Life expectancy based on smoking status
- Population
 - Initially 250 agents
 - Expanded to 1000 agents
- State-based probability of changes on each tick, modified by Odds Ratios (based on interventions)
 - Focus on middle school, high school, and college age
 - Based on informed research using a wide range of journal articles
 - Used chain of conditional probabilities
- Accounts for peers social aspect of behavior

Individuals and States

- Individuals in the simulation have several attributes that describe their state at any given time
 - Smoker or nonsmoker
 - Age
 - Gender
 - Months smoked (total and consecutive)
- Individuals also retain social relationships which affect smoking behavior
 - Parent (single parent, smoking status recorded)
 - Peers (links to "nearby" individuals close to age)

Time Ticks

- Each month (a "tick" of the simulation clock) an individual's state is updated
 - Age and other tracking variables are incremented
 - Smoking is commenced or ceased based on probabilities
 - In the extended model, an individual may develop disease based on probabilities
- Probabilities of changing states are affected by attributes of the individual and their social relationships
 - Parent and peer smoking status affects behavior
 - Age, Gender, prior smoking status has impact on risk

State Transitions

 Baseline transition probabilities for the entire population are derived from the literature

		Next Month	
		Nonsmoker	Smoker
This Month	Smoker	1.024%	98.976%
	Nonsmoker	99.513%	0.487%

- Baseline probabilities are then adjusted based on individual risk factors
 - Literature expresses additional risk as an Odds Ratio (OR)
 - OR > 1 for an attribute means someone with that attribute is more likely to change state, OR < 1 means less likely

Odds Ratios

· Simple example

- Odds of quitting in a month is 1 in 99 (1% chance)
- If peers smoke, OR is 0.27, which is 3.7 times less likely to quit
- Odds of quitting are now 0.27 in 99
 - Equivalently, 1 in 99*3.7

· Combining Odds Ratios

- Can multiply multiple odds ratios together (e.g., female, high school age, peers smoke, exposed to Truth Campaign)
- For computational efficiency, take log(OR) and add
- To combine multiple estimates of the same OR, from different literature sources, use least squares regression on log(OR)
- For any given individual state, add up log(OR) of applicable risk factors

Conference & Expo

Experimental Design

- Various types of intervention programs (factors)
 - ASPIRE: Computerized smoking prevention curriculum: school-based self-study
 - ESFA: European Smoking prevention Framework Approach: integrated classroom with teacher, advertising, journalism
 - ASSIST: A Stop Smoking in Schools Trial school based, peer-led
 - PPBI: Pediatric Practice-Based intervention healthcare provider and peer-based
 - National Truth Campaign Advertising campaign and youth advocacy
 - SCYP: Smoking Cessation for Youth Project
- Levels (for each intervention)
 - Percent coverage from 0 to 100%
 - Length of interventions, from 0 years to 128 years (evaluated, but no need to implement)
- Responses (% of total population)
 - % Smokers
 - % Former Smokers

Evolution of Design

Roughly twice as many points as 3⁶ factorial with huge design space coverage

- Multivariate Regression analysis ٠
 - All 6 interventions as dependent variables, with all 2-way interactions
 - Decrease in % smokers as independent variable (positive is good)
 - Expected results:
 - · positive coefficients for each intervention
 - · Negative coefficients for interactions due to diminishing returns
 - Actual results:
 - SCYP * PPDI positive interaction
 - · Using both together better than each one separately

% Smokers

Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	-5.192125	0.062685	-82.83	0.0000*		
SCYP	0.4832354	0.049809	9.70	<.0001*		
ESFA	1.4631586	0.049813	29.37	<.0001*		
Truth Campaign	6.3315738	0.04981	127.12	0.0000*		
ASSIST	0.4912404	0.049809	9.86	<.0001*		
ASPIRE	5.1580737	0.049809	103.56	0.0000*		
PPDI	1.3071909	0.049809	26.24	<.0001*		
(SCYP-0.50006)*(ASPIRE-0.50001)	0.552469	0.179475	-3.08	0.0021*		
(SCYP-0.50006)*(PPDI-0.49999)	0.3496265	0.178338	1.96	0.0499*		
(ESFA-0.50009)*(ASPIRE-0.50001)	-1.0149/7	0.158925	-10.16	<.0001*		
(ESFA-0.50009)*(PPDI-0.49999)	-0.406185	0.178849	-2.27	0.0231*		
(Truth Campaign-0.4995)*(ASPIRE-0.50001)	-1.115554	0.179431	-6.22	<.0001*		
(ASSIST-0.49997)*(ASPIRE-0.50001)	-0.469038	0.178315	-2.63	0.0085*		
(ASPIRE-0.50001)*(PPDI-0.49999)	-1.179963	0.178747	-6.60	<.0001*		

MODSIM WORLD

Sampling of Model Response

% Smokers (pre-interventions) (post interventions)

Effects of Interventions

(Zooming in on timeframe when interventions took effect)

Potential next steps – just for smoking

- · Simulation results used to populate "response surface"
 - Lots of threshold effects for other interventions at various combinations
 - 7-dimensional, so we can't show you here
 - Given costs of each intervention, along with cost constraints, can use optimization methods to find best mix at each investment level
 - Pareto frontier of optimal intervention mixes can inform decisions on overall investment level
- Additional simulation exploration of "non-overlapping" multiple interventions
 - Each individual might only experience one intervention, but peers may experience others
 - Potential to mitigate negative interactions due to "over-intervening"

Potential next steps – bigger picture

- More complex behavior and physical interactions
 - Exercise and food choices impacted by peers
 - All these choices add to risk factors for various diseases
 - Explore impact of "wellness programs"
 - · Particularly relevant to analysis of health insurance costs
 - Insurance provider may invest (with potential government subsidy) in wellness programs to lower costs (healthier customers)

Questions?