2.21 On the Development of a Deterministic Three-Dimensional Radiation Transport Code

Health Care Policy Analysis and Decision Support using Agent Based Simulation Techniques

Dan Widdis, CMSP Concurrent Technologies Corporation

Concurrent
Technologies
Corporation
October 15, 2010

- Provide a technical capability to analyze complex interactions in complex systems
- Model human decisions and multi-level interactions
- Address client needs that we can not currently support
- Extend some of our existing, successful work in ontology modeling
- Develop a reusable solution that is easily transported to multiple client needs and extensible within current solution development
- Apply this new capability to chronic disease research problem
- Demonstrate the this solution meets National Institute of Health needs
- Department of Health \& Human Services, National Institute of Health, Office of Behavioral and Social Sciences Research
- Show ability to analyze impacts of policy on human lifestyle decisions

R \& D Approach

MODSIM WORLD

- Research health care policy areas and integrate specific focus area data into usable format
- Based on human decision model
- Initial focus on human smoking decisions across multiple factors
- Develop ontology models
- Human decisions
- Human environmental entities and relationships
- Cross-domain ontology model of interactions between humans, environment, decisions, and policy
- Develop Agent Based Model (ABM) and methods
- Document a Design of Experiment (DOE) method
- Document an approach to analyze ABM output

Health Care Research

- Extensive research has been done on individual social risk factors that lead to disease
- Risk factors do not act independently
- This research allows understanding of interrelationships between environmental influences and social influences on human decisions across many risk factors
- Enable inclusion of many risk factors across many "layers"

- Initial focus on smoking risks

Health Care Policy Focus Area

MODSIM WORLD

- impact on human decisions

Disease

Time?

Disease

- Collection of autonomous decision-making entities (agents)
- NOT intelligent agents or secret agents
- Allows us to model complexity - multiple system layers and complex interactions
- Discovers "emergent phenomena"
- Becomes a data source for advanced research
- Requires sophisticated methods for:
- Efficient experimental design
- Data mining
- Requires computational power

ABS Model Characteristics

- Agent characteristics
- Age, gender, race, smoker? (never, former, current), prob start or quit
- Maintain smoking status after age 30
- Life expectancy based on smoking status
- Population
- Initially 250 agents
- Expanded to 1000 agents
- State-based probability of changes on each tick, modified by Odds Ratios (based on interventions)
- Focus on middle school, high school, and college age
- Based on informed research using a wide range of journal articles
- Used chain of conditional probabilities
- Accounts for peers - social aspect of behavior

MODSIM WORLD
 Individuals and States

- Individuals in the simulation have several attributes that describe their state at any given time
- Smoker or nonsmoker
- Age
- Gender
- Months smoked (total and consecutive)
- Individuals also retain social relationships which affect smoking behavior
- Parent (single parent, smoking status recorded)
- Peers (links to "nearby" individuals close to age)

Time Ticks

- Each month (a "tick" of the simulation clock) an individual's state is updated
- Age and other tracking variables are incremented
- Smoking is commenced or ceased based on probabilities
- In the extended model, an individual may develop disease based on probabilities
- Probabilities of changing states are affected by attributes of the individual and their social relationships
- Parent and peer smoking status affects behavior
- Age, Gender, prior smoking status has impact on risk

State Transitions

- Baseline transition probabilities for the entire population are derived from the literature

		Next Month	
		Nonsmoker	Smoker
This Month	Smoker	1.024%	98.976%
	Nonsmoker	99.513%	0.487%

- Baseline probabilities are then adjusted based on individual risk factors
- Literature expresses additional risk as an Odds Ratio (OR)
- OR > 1 for an attribute means someone with that attribute is more likely to change state, $\mathrm{OR}<1$ means less likely

Odds Ratios

- Simple example
- Odds of quitting in a month is 1 in 99 (1\% chance)
- If peers smoke, OR is 0.27 , which is 3.7 times less likely to quit
- Odds of quitting are now 0.27 in 99
- Equivalently, 1 in 99*3.7
- Combining Odds Ratios
- Can multiply multiple odds ratios together (e.g., female, high school age, peers smoke, exposed to Truth Campaign)
- For computational efficiency, take log(OR) and add
- To combine multiple estimates of the same OR, from different literature sources, use least squares regression on $\log (O R)$
- For any given individual state, add up log(OR) of applicable risk factors

Experimental Design

- Various types of intervention programs (factors)
- ASPIRE: Computerized smoking prevention curriculum: school-based self-study
- ESFA: European Smoking prevention Framework Approach: integrated classroom with teacher, advertising, journalism
- ASSIST: A Stop Smoking in Schools Trial - school based, peer-led
- PPBI: Pediatric Practice-Based intervention - healthcare provider and peer-based
- National Truth Campaign - Advertising campaign and youth advocacy
- SCYP: Smoking Cessation for Youth Project
- Levels (for each intervention)
- Percent coverage from 0 to 100%
- Length of interventions, from 0 years to 128 years (evaluated, but no need to implement)
- Responses (\% of total population)
- \% Smokers
- \% Former Smokers

Evolution of Design

Roughly twice as many points as 3^{6} factorial with huge design space coverage

MODSIM WORLD
Conterence \& Expo

Initial Analysis Results

- Multivariate Regression analysis
- All 6 interventions as dependent variables, with all 2-way interactions
- Decrease in \% smokers as independent variable (positive is good)
- Expected results:
- positive coefficients for each intervention
- Negative coefficients for interactions due to diminishing returns
- Actual results:
- SCYP * PPDI positive interaction
- Using both together better than each one separately

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob>\| ${ }_{\text {\| }}$
Intercept	-5.192125	0.062685	-82.83	0.0000*
SCYP	0.4832354	0.049809	9.70	<,0001*
ESFA	1.4631586	0.049813	29.37	<.0001*
Truth Campaign	6.3315738	0.04981	127.12	0.0000*
Assist	0.4912404	0.049809	9.86	<.0001*
ASPIRE	5.1580737	0.049809	103.56	0.0000^{+}
PPDI	1.3071909	0.049809	26.24	<,0001*
(SCYP-0.50006)*(ASPIRE-0.50001)	20602499	0.179475	-3.08	0.0021*
(SCYP-0.50006)* ${ }^{\text {(PPDI-0.49999) }}$	0.3496265	0.178338	1.96	0.0499*
(ESFA-0.50009)*(ASPIRE-0.50001)	-1.674977	0.158925	-10.16	<.0001*
(ESFA.0.50009)**PPD-0.49999)	-0.406185	0.178849	-2.27	0.0231*
(Truth Campaign-0.4995)*(ASPIRE-0.50001)	-1.115554	0.179431	-6.22	<.0001*
(ASSIST-0.49997)*(ASPIRE-0.50001)	-0.469038	0.178315	-2.63	0.0085*
(ASPIRE-0.50001)* ${ }^{\text {(PPDI-0.49999) }}$	-1.179963	0.178747	-6.60	<,0001*

MODSIM WORLD Conference \& ExpO

 Sampling of Model Response\% Smokers
(pre-interventions) (post interventions)
\% Smokers

- Quantiles
100.0% maximum

100.0%	maximum	44.800
99.5%		41.201
97.5%		38.843
90.0%		36.170
75.0%	quartile	33.871
50.0%	median	31.174
25.0%	quartile	28.571
10.0%		26.210
2.5%		23.770
0.5%		21.338
0.0%	minimum	15.789

- Quantiles 100.0% maximum 46.748 $99.5 \% \quad 41.55$ $97.5 \% \quad 37.60$ $90.0 \% \quad 32.77$ $\begin{array}{lll}75.0 \% & \text { quartile } & 27.823 \\ 50.0 \% & \text { median } & 21.656\end{array}$ 25.0% quartile 15.702

10.0%	11.489
2.5%	8.434
0.5%	6.024

0.0\% minimum | 3.252 |
| :--- |

Effects of Interventions

(Zooming in on timeframe when interventions took effect)

Effect of Interventions Over Time

MODSIM WORLD Conterence \& Eppo
 Impact of interactions on predictions

- Tested up to 6-way interactions
- Statistically significant interactions up to $5^{\text {th }}$ level

Predicted

- You can't just predict response from the OR
coefficients
- Actual response impacted by interactions
- Risk factors matter!

Actual coefficients

A closer look at SCYP

- SCYP shows a clear "threshold effect"
- PPDI Interaction highlighted this sensitivity to other interventions
- Minimum and maximum effective level
- Dependent on which other interventions are employed

Potential next steps - just for smoking

- Simulation results used to populate "response surface"
- Lots of threshold effects for other interventions at various combinations
- 7-dimensional, so we can't show you here
- Given costs of each intervention, along with cost constraints, can use optimization methods to find best mix at each investment level
- Pareto frontier of optimal intervention mixes can inform decisions on overall investment level
- Additional simulation exploration of "non-overlapping" multiple interventions
- Each individual might only experience one intervention, but peers may experience others
- Potential to mitigate negative interactions due to "over-intervening"

Potential next steps - bigger picture

- More complex behavior and physical interactions
- Exercise and food choices impacted by peers
- All these choices add to risk factors for various diseases
- Explore impact of "wellness programs"
- Particularly relevant to analysis of health insurance costs
- Insurance provider may invest (with potential government subsidy) in wellness programs to lower costs (healthier customers)

Questions?

