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Abstract. Berth ~hed.ulin9 is a critical functi?" at marine container terminals and determining the best berth schedule depends on 
several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual 
~greement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed· 
Integer problem with the objective to ma)(lmlZe customer satisfaction and reliability of the berth schedule under the assumption that 
vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact 
a~or~hm, a Genetic Algorithms based heuristic and a simulation post·Pareto analysis is proposed as the solution approach to the 
resulting problem. Based on a number of experiments ~ is concluded that the proposed berth scheduling policy outperforms the 
berth scheduling policy where reliability is not considered . 

1.0 INTRODUCTION 
In this paper, we deal with the discrete 
space and dynamic vessel arrival berth 
scheduling problem (DDBSP), which can be 
formulated as the machine scheduling 
problem (1, 2]. The DDBSP received and 
continues to receive increased attention 
from the research community as it is a 
problem that marine container terminal 
operators deal with on a daily basis [3]. In 
this paper we formulate the DDBSP as a bi
objective mixed-integer problem with the 
objective to maximize berth throughput and 
maximize the reliability of the berth 
schedule, under the assumption that the 
vessel handling times are stochastic 
parameters with a known discrete 
probability distributions. Berth throughput is 
taken under consideration by the 
minimization of the total service time for all 
the vessels. In order to maximize the 
reliability of the berth schedule, a risk 
measure is proposed that is dependent on 
the vessel-to-berth assignment and the 
distributions of the vessels' handling times. 

The remainder of this paper is organized as 
follows: The next section describes the 
problem and motivation for considering 
stochasticity in the vessel handling times, 
and presents the model formulation. The 
third section presents the solution algorithm 

and the fourth section a small number of 
numerical examples to evaluate the 
proposed approach. The final section 
summarizes findings and suggest future 
research directions. 

2.0 MODEL FORMULATION 
As has been supported by the literature [4) 
the competitiveness of a container terminal 
depends on various factors. It has also been 
well established by researchers and 
practitioners that decisions in container 
terminals are interrelated [5]. More 
specifically , decisions regarding the SSP 
are closely related and affect(ed) by the 
decisions regarding the scheduling and 
productivity of the quay cranes and the 
internal transport movers [3, 5]. Combining 
these problems into one single problem 
cannot be handled efficiently and the 
number of assumptions adopted (when 
researchers tried to partially combine them) 
portrays an approximation of reality (5]. For 
that reason the majority of research, to our 
knowledge, has focused in isolating each 
problem and assumed deterministic inputs 
from its related counterpart problems (for 
example in the berth scheduling problem 
the assignment of the quay cranes on each 
vessel is assumed as an input). To that end, 
the majority of SSP models have not 
accounted for the stochastic nature of the 
vessel handling times; a stochasticity that 
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stems from the fact that quay cranes and 
internal transport vehicles serving the 
vessels do not have a deterministic 
productivity (e.g. random down time of quay 
cranes, unpredicted congestion in the yard, 
etc) . The only exceptions have been three 
separate studies by Moorthy and Teo [6] , 
Golias et al. [7], and Zhou and Kang [8). 
Unlike the model presented herein though, 
Zhou and Kang (8) proposed a non-linear 
model formulation minimizing only the total 
waiting time, Golias et al . [7] focused on 
online conceptual formulations, and Moorthy 
and Teo (6] proposed an approach focusing 
in the randomness of the vessels arrival 
times and which is relevant only when a 
substantial number of vessels arrive 
periodically (as stated by the authors). 

In this paper we propose a linear mixed 
integer bi-objective formulation where we 
account for the stochasticity in the vessel 
handling times and assume they are 
stochastic variables following different 
discrete probability distributions. The vessel 
handling time distributions at each berth can 
be obtained from historical data (i.e. berth 
assignment, number of QCs and ITVs, 
breakdown rates of QCs, utilization of yard , 
vessel handling volumes etc) using data 
mining algorithms but in this paper we 
assume that they are known for all the 
vessels at all the berths. Based on these 
distributions a risk measure for the berth 
schedule is proposed and minimized at the 
same time with the total service time for all 
the vessels. We choose to introduce the risk 
measure in contrast to formulating a 
stochastic optimization problem as the 
inherent combinatorial complexity of such a 
model would make it impossible to construct 
a meaningful heuristic that would efficiently 
search through the extremely large set of 
vessel handling time scenarios. 

The two objectives introduced, when 
conflicting, will cause the improvement of 
one objective to degrade the performance of 
the other; thus the terminal operator needs 
to select a schedule that balances between 
the two objectives. Berth schedules with a 

high berth throughput have a greater degree 
of risk (i.e. risk of matching the total service 
time when the stochastic vessel handling 
times are realized). On the other hand berth 
schedules with a lesser degree of risk 
(decreased berth throughputs) , provide 
more confidence to the terminal operator 
that the resulting assignment will be stable 
in terms of the handling times for each 
vessel and thus deviations from the initial 
schedule will be minimized in case 
rescheduling is needed. The proposed 
model formulation and solution algorithm 
will provide the terminal operator with the 
berth schedule that optimally balances 
between the two objectives. In the following 
subsection we introduce the risk function 
and the full model formulation, followed by 
the solution algorithm in section 3. 

2.1 Estimation of berth schedule risk 
Let M i) = {c~, c:, ... c; } be the set of the m 

possible handling times of vessel j at berth i. 
Also let P(c; ) be the probability that: 

cjo. = CI~ E M Ii> "" . P(c: ) . Then the 
" , " ~CV EMv " 

expected handling time at berth i for vessel j 
is equal to: E(c .. ) = " c~P(c~ ) . ln this 

!I ~c~ EA{"' , 

paper we define as the measure of risk of a 
vessel j served at berth i as: 

II, = :L." {ma,(o,(c; - E(C,»P(c;)} We 
" " 

demonstrate this notion by a simple 
example with one vessel and two berths. 
Table 1 summarizes the data and results for 
this example. If the vessel is served at berth 
1 then there is a 10% probability that the 
handling time will be 25 hours, an 80% 
probability that the handling time will be 31 
hours and so on. On the other hand if the 
vessel is served at berth 2 then there is a 
70% probability that the handling time wi ll 
be 22 hours, a 10% that the handling time 
will be 25 hours and so on. Although serving 
the vessel at berth 2 has the lowest 
expected handling time, it also has the 
highest risk of exceeding the expected 
handling time. 
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Table 1. Example of berth schedule risk 
estimation for one vessel and two berths 

Berth 1 (i=1j=1) Berth 2 (i=2j=1) 

m 
m 

cif P(c;7 Ry 
m 

cif P(c; ) Rif 
1 25 10% - 22 70% -
2 31 80% 0.0 25 10% -
3 35 5% 0.19 38 9% 1.07 
4 43 5% 0.59 43 11% 1.86 

£ (c, )=3 0.78 £(c, )=26 2.94 

In order to formulate our problem we further 
define the following: 
Nomenclature 
Sets 
I,J set of berths and 

Decision Variables 
XgE {O, I} ,iE I , je J 

Y"",e {O,I},a,be J 

.t; e {O,I} ,} e J 

ti E It , jE J 

Parameters 
C; E M " iE J , jE J 

vessels 

1 if vessel j is served 
at berth i and zero 
otherwise 
1 if vessel b is served 
at the same berth as 
vessel a as its 
immediate successor 
and zero otherwise 
1 if vessel j is the first 
vessel to be served at 
its assigned berth 
1 if vessel j is the last 
vessel to be served at 
its assigned berth 
start time of service 
for vessel j 

handling time of 
vessel j at berth i with 
probability P(c; ) 

arrival time of vesselj 

time berth i becomes 
available for the first 
time in the planning 
horizon 

The bi-objective model formulation 
minimizing the vessel total service time and 
risk (from now on referred to as RSBM) is 
formulated as follows: 

/,. m;n[Z>l + LL(E(C,)X,)] (1) 
)€J iel )€J 

Subject to: 
L X, = 1, II}e J 

1. + LY" = I, IIhe J 

f Q + fb :5: 3-xld - x/b, "die I ,a,be J ,a*-b 

l a + Ib :5: 3 - Xid - Xib' "di e I ,a,be J ,a *- b 

Yoo - 1:5: xjQ - xii> :5: 1- Yoo' "fie I ,a,be J.a"# b 

Ii ? Ai, "djeJ 

Ii ?,S;xij,Viel , jeJ 

'. ~," + L£(c. )x. -M(l- y,, ), 

Va,bEJ,a#-b 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
(9) 

(10) 

(1 1) 

The first objective function (1) minimizes the 
expected total service time for all the 
vessels (from now on referred to as the 
expected cost or EC). The second objective 
function (2) minimizes the total risk of 
exceeding the expected value of handling 
time for the vessels. Constraint set (3) 
ensures that each vessel will be served 
once, while constraint set (4) ensures that 
each vessel will either be served first or be 
preceded by another vessel. In a similar 
manner constraint set (5) ensures that each 
vessel will either be last or it will be served 
before another vessel . Constraint sets (6) 
and (7) ensure that only one vessel can be 
served first and last at each berth. 
Constraint set (8) ensures that a vessel can 
be served after another vessel only if both 
are served at the same berth. Constraint 
sets (9) and (10) ensure that the vessel 
service start time wi ll be greater than the 
vessel arrival or the time that the berth 
where the vessel is served becomes 
available for the first time in the planning 
horizon. Constraint set (11) estimates the 
start time of service for each vessel. 

3.0 SOLUTION ALGORITHM 
The RSBM is a bi-objective optimization 
problem and for both single objective 
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problems (derived once we eliminate one of 
the tv.Jo objectives) no exact solution 
algorithm exist that can be applied and 
solve them in polynomial time. In order to 
tackle this issue a new heuristic approach is 
presented. The proposed heuristic is an 
improvement of the exact algorithm 2-PPM 
proposed by Lemerse et al., [9]. The 
concept of the 2-PPM algorithm was to split 
the search space into equal and 
predetermined partitions and then for each 
partition use the t:-constraint method to find 
a solution. The algorithm proposed herein 
follows the same concept of partitioning the 
search space, but does so in an adaptive 
manner without having to predefine the size 
or the number of partitions. Furthermore, 
instead of the t:-constraint method the 
weighted approach is used to produce a 
solution within each partition, resulting in a 
faster estimation of the PF (PF). Before we 
present the proposed heuristic we define 
the following: 

Definition 1: Let X is the feasible space of 
the RSBM and X E X be a feasible solution. 
Solution QE X dominates solution bE X if: 
{J, (0) ~ J, (b),;; (0) < /, (b)} or 

{J, (0) < J, (b),f,(o) ~ /, (b) } . Any dominated 
solutions do not belong in the PF (the set of 
PF solutions is denoted from now on as Q). 

Definition 3: Let x:f E Q c X be the nth PF 

solution of the RSBM. 

The proposed heuristic that can provide Q 
(from now on called the Bi-objective Berth 
Scheduling Heuristic or BBSH), can be 
described using the pseudo-code in figure 
1. As the single objective problems (solved 
at step 2 of the BBSH) are NP-Hard, a 
Genetic Algorithms (GAs) based heuristic, 
proposed for the DDBSP by Golias et al. , 
[10] is employed as the solution algorithm. 
The GAs heuristic is briefly described in the 
following subsection for consistency 
purposes. 

~tep1 :setZ =0 -
Q = Z = (x;J : arg min 1;(x) ,xfl arg min 1; (x» 

~X ~x 

n 1 = .t; (xjl ), n 2 = f 2 (x? ) 
~tep 2, 
or ;=2: 121 

end for 

if J; (x!/ ) - !; (x~ ) > 0.01 and 
J, (x, ) 

f2 (X,~ ) - :2 (X,Ii ) > 0 .0 1 

/, (xe, ) 

p .Xj~+ l = arg min(.t; (X) + f ?(X) ] 
",x n 1 n 2 

S1. 

J, (x,'!, ) < J, (x ) < J, (x!' ) 

/, (xI' ) < /, (x ) < /, (x,'!, ) 

if P is infeasible: Z = Z \ .,11-1 

else 
z -z PI Q - Q " "'" - ....... U .'1zl. 1> - U x1Z1• 1 

end if 
end if 

Z = Z u Z , Z =0 
p rder and r;;umb: solutions in Z based on tuple 

{J, (x),f,(X)},XE Z 
Ist~D 3: ItIZI~ 1 ao 10 step 2 else end 

Figure 1. BBSH Pseudo-code 

3.1 GAs heuristic 
The GAs heuristic consists of four parts: a) 
the chromosomal representation , b) the 
chromosomal mutation, c) the fitness 
evaluation and d) the selection process. For 
scheduling problems integer chromosomal 
representation is more adequate, since the 
classical binary representation can obscure 
the nature of the search [11]. In this paper, 
we use an integer chromosomal 
representation , in order to exploit in full the 
characteristics of the problem. An illustration 
of the chromosome structure is given in 
figure 2 for a small instance of the problem 
with 6 vessels and 2 berths. As seen in 
figure 2 the chromosome has twelve cells . 
The first 6 cells represent the 6 possible 
service orders at berth1 and the last 6 cells 
the 6 possible service orders at berth 2. In 
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the assignment illustrated in figure 2, 
vessels 2, 4, and 5 are served at berth 1 as 
the first, second and third vessel 
respectively, while vessels 1, 3, and 6 are 
served at berth 2 as the first, second, and 
third vessel respectively. 

I ~::: , 1'14 lS jOlo lol' IJioIOlo lo l 
Figure 2. Illustration of chromosome 
representation 

Four different types of mutation are applied 
as part of the genetic operations to all the 
chromosomes at each generation: insert, 
swap, inversion, and scramble mutations. 
Since the RSBM is a minimization problem 
the smaller the values of each objective 
function are, the higher the fitness value will 
be. We define the fitness function of a 
chromosome as' f pl (x) = Fn;;" - Z pt(X) . . 

F P' 
where m3.~ is the maximum value of the 

objective function Zit, and fit is the value of 
the fitness function of objective function i at 
iteration t of the GA. However, this value is 
not know in advance and is replaced by the 
largest value z pI of each objective function 
at each iteration. Chromosomes whose 
objective function values do not satisfy the 
constraints of problem P are replaced by 
their parents. 

3.2 Post Pareto simulation 
The algorithm described in the previous 
subsections will produce a number of non
dominated solutions (i.e. berth schedules of 
the PF). The next step wi ll be to select one 
of these solutions as the schedule to be 
implemented. This follow up step is known 
as post-Pareto analysis and can be quite a 
challenging task since, in the absence of 
subjective or judgmental information, none 
of the corresponding trade-ofts can be said 
to be better than the others [13] . In the 
problem studied herein we employ 
simulation as means to select one schedule 
from the PF that will be implemented. The 
simulation entails the use of a simple Monte 
Carlo procedure that generates random 

instances of the vessels handling times and 
estimates an average of the total service 
time over all the instances. The procedure 
can be described as follows . Let K be the 
total number of different handling time 
instances (i.e. realizations of the vessels 
handling time) we wish to produce and 
cp~Othe cumulative distribution function of 

vessels' j handling time at berth i. This 
procedure is shown in figure 3. 

for k=1 :K. ;=1 :1/1. j=1 :IJI 

end 

Generate a number from the 
Uniform Distribution (0 ,1]: u=U(O,1) 

Set cs: = CP/~(u) , where: cs;~ : is 

the If' realization of vessels' j 
handling time at berth i 

Figure 3. Monte Carlo Procedure (MCP) 

For each one of the solutions in the PF we 
estimate the mean value of the total service 
time (from now on referred to as the mean 
simulated cost or MSC) over all the K 
realizations of the vessel handling times 
(obtained from the MCP) as: 

±.t;(e,:. X:f ) / 

MSC(x;/ ) = , ~, k . The 

solutions with the minimum MSC over all 
the schedules in the PF (from now on 
referred to as the Pruned PF Solution or 
PPFS and denoted by xppjS

) is selected as 

the schedule to be implemented. 

4.0 COMPUTATIONAL EXAMPLES 
Problems used in the experiments were 
generated randomly, but systematically . We 
developed twenty base problem instances, 
where vessels are served with various 
handling volumes at a multi-user container 
terminal (MUT) with five berths, with a 
planning horizon of one week, and various 
handling volumes. The range of variables 
and parameters considered herein were 
chosen according to [10, 13]. As previously 
discussed in subsection 2.1 of this paper we 
assume that vessel handling times are 
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stochastic parameters following a discrete 
probability distribution. Without loss of 
generality for the computational examples 
presented herein we assumed that each 
vessel at each berth will have a maximum of 
five possible handling times (i.e. m=5). We 
assumed that the handling time at each 
berth for each vessel increases randomly 
(from the minimum handling time) based on 
a uniform probability distribution with a 
minimum of 5% and a maximum of 15% 
(i.e. : if c~ is the minimum handling time of 

vessel j at berth i then the second through 
the fifth other possible handling times are 
estimated as: c; =c~ XU(J . 05 , 1.l 5), 

c: =e; xU(I .05,1.15) , c; = c~. xU(J .05,1.15), 

c~ = c; x U (J .05,1.15» . In total 5 datasets 

where created for each of the two different 
vessel inter-arrival times with different 
handling volumes. 

For each dataset, and out of these five 
possible handling times at each berth, we 
randomly assigned the handling time that 
will receive the highest probability (from now 
on referred to as the dominant handling time 
are: and dominant probability or P(c:' ) 

respectively) . For each dataset we 
developed four different cases where we 
allowed P(c: ) to vary based on the values 

shown in table 2. The probabilities for the 
four remaining handling times were 
estimated using the procedure shown in 
figure 4. 

60%- 70%-
70% 80% 

In total 50 problem instances were created. 
Concerning the GAs based heuristic the 
population size was set to 50 chromosomes 
and the GA-based heuristic is stopped if no 
improvement is observed for 100 iterations 
(i.e. new or improved schedules found). 
Finall y, the algorithm was implemented in 
MaUab and the experiments were performed 

on an ASUS desktop personal computer 
(E5300@2.60GHz) with 6GB memory. 

Step _ I: Pee; ) = U(P(e: ),I), Ve; ;t. e: E M ij 

1- P(e~ ) 
Step 2: P(e

m
) = I ' P(e

m
) 

-. P( m) • 
?: _.t.EM eli 
" " " 

Figure 4. Handling Time Probabilities Estimation 
Procedure 

4.1 Evaluation of berth scheduling 
policy 

In this subsection we evaluate the payoff of 
introducing the second objective function . 
For each one of the 50 problem instances, 
previously described , we obtained the PF 
using the heuristic algorithm presented in 
section 3. For each schedule in the PF we 
calculated the MSC over a sample size of 
K=10 000. As discussed in section 3.2 the 
schedule to be implemented will be the one 
with the minimum MSC. To evaluate the 
effectiveness of the proposed policy we 
compared the MSC(x PPfo ) value to the MSC 

value of the solution in the PF with the 
minimum EC. The latter is the solution: 
xtf : ! r-l?min.t; (x) (i .e. the solution we would 

obtain if we did not consider the risk 
function as the problem would be single 
objective) and from now on will be referred 
to as the Nadir PF Schedule or NPFS and 
denoted by x nnf' . Table 3 reports the results 

from the comparison between MSC(x pp
/

S
) 

and MSC(xnp
/

s
) values for all the 200 

problem instances. The percentages 
reported in table 3 are estimated as: 
MSC( x·,ft ) - MSC(x"" ) 
'--'---'-'-,;-;;;;,;'-;;;;;:'-'---'-, and answer the 
- MSC(x·,ft ) 

following question: "On average should we 
expect a gain in berth throughput if we 
choose the PPFS over the NPFS and by 
how mUch?' . From the results in table 3 we 
observe that the PPFS always produces a 
smaller MSC. For example for the first 
dataset and the first dominant probability 
(i.e. 50%-60%) the MSC of the NPFS 
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solution is 12% and 3% larger than the MSC 
of the PPFS solution for the 3 and 5 hours 
vessel inter-arrival times respectively. 

Table 3. MSC values difference (in %) between 
the NPFSs and the PPFSs (3 and 5 hours of 
vessel inter-arrival 
Datase fSO%-60% 0%-70% 0%-80% ~0%-90% 

1 12 / 3 19 /27 911 3 12 /3 1 
2 15 / 31 10 / 49 30 / 57 4 / 34 
3 10 / 44 2 I 41 34 11 8 9112 
4 44 / 32 7 / 33 12 ' 20 8 / 9 
5 24 / 14 37 I 0 42 / 29 7 / 63 

5.0 CONCLUSIONS 
In this paper, we formulated the discrete 
space and dynamic vessel arrival berth 
scheduling problem as a bi-objective mixed
integer problem with the objective to 
maximize the berth throughput and the 
reliabil ity of the berth schedule, under the 
assumption that vessel handling times are 
stochastic parameters with known discrete 
probability distributions. In order to 
maximize the reliability of the berth 
schedule, a measure of risk was proposed 
dependent on the vessel-to-berth 
assignment. In order to solve the resulting 
problem, a combination of an exact and a 
GAs based heuristic were proposed and a 
number of simulation experiments were 
performed. Based on results from these 
experiments it was concluded that 
considering risk (from the inherent 
stochasticity of the vessel handling times) in 
berth scheduling can provide schedules with 
improved berth throughput when the vessel 
handling times are realized. Future research 
is focusing in: a) in a model formulation 
where the mutual impact of the vessels' 
stochastic handling times are considered, 
and b) evaluation of the proposed 
framework in terms of the robustness , 
dominance, and expected loss of the final 
schedule over all the Pareto points. 
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