
Symbolically Modeling Concurrent MCAPI Executions ∗

Topher Fischer
Brigham Young University

javert42@cs.byu.edu

Eric Mercer
Brigham Young University

egm@cs.byu.edu

Neha Rungta
NASA Ames Research Center

neha.s.rungta@nasa.gov

Abstract
Improper use of Inter-Process Communication (IPC) within con-
current systems often creates data races which can lead to bugs that
are challenging to discover. Techniques that use Satisfiability Mod-
ulo Theories (SMT) problems to symbolically model possible exe-
cutions of concurrent software have recently been proposed for use
in the formal verification of software. In this work we describe a
new technique for modeling executions of concurrent software that
use a message passing API called MCAPI. Our technique uses an
execution trace to create an SMT problem that symbolically models
all possible concurrent executions and follows the same sequence
of conditional branch outcomes as the provided execution trace.
We check if there exists a satisfying assignment to the SMT prob-
lem with respect to specific safety properties. If such an assignment
exists, it provides the conditions that lead to the violation of the
property. We show how our method models behaviors of MCAPI
applications that are ignored in previously published techniques.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms Languages, Verification

Keywords MCAPI, Symbolic Analysis, Multicore, SMT

1. Introduction
With the growing availability of multicore processors has come an
increase in the amount and complexity of concurrent software. The
non-deterministic interleaving of threads within a concurrent pro-
gram can lead to bugs that are very difficult to discover. Misuse
of Inter-Process Communication (IPC) within concurrent software
creates data races that can then lead to errors within a system. Be-
cause the manifestations of the data races depend on the whims of
the operating system’s scheduler and delays in message transmis-
sion, error states that are the result of data races can be very difficult
to produce, reproduce, and identify with ad-hoc testing methods.

Message passing is a form of IPC that involves defining message
endpoints that provide different threads the ability to send data to
specific endpoints. The Multicore Communications API (MCAPI)
is a new message passing API that was released by an organization
known as the Multicore Association [4]. MCAPI provides an inter-
face designed for embedded systems that allows communication at

∗ This work is supported by NSF CCF-0903491 and SRC 2009-TJ-1994.

Copyright is held by the author/owner(s).
PPoPP’11, February 12–16, 2011, San Antonio, Texas, USA.
ACM 978-1-4503-0119-0/11/02.

different system levels. For example, MCAPI can be implemented
in both hardware and software so that an application running in a
Linux environment can communicate directly with a graphics pro-
cessing unit (GPU) and a digital signal processor (DSP).

The semantics of message passing applications are difficult to
model. Data non-determinism in message passing applications is
expressed in instances where a single receive operation could re-
ceive a message from any number of send operations. Which mes-
sage is received depends on process scheduling and the length
of delays in message transmission. The two previously proposed
methods for formal MCAPI application verification do not cor-
rectly model all the possible behaviors of MCAPI applications.
This work specifically overcomes those limitations.

MCC (MCAPI Checker) is a model checker specifically writ-
ten to verify MCAPI applications [5]. Although MCC represents
important progress in the verification of MCAPI applications, it ig-
nores certain behaviors of MCAPI applications because it is not
able to consider non-deterministic delays in the communication
network when sending messages from two different threads to a
common endpoint. Ignoring these behaviors prevents MCC from
performing a complete verification of MCAPI applications.

Wang et al. recently described an SMT-based model checking
framework called Fusion [6]. Fusion employs a property-driven
reduction technique for the verification of concurrent applications
that use shared memory. In a series of benchmark tests it was shown
that Fusion had significantly shorter runtimes than a comparable
tool, Inspect, that uses dynamic partial-order reduction (DPOR)
[3, 7]. The impressive results of Fusion were the inspiration for this
work to generate SMT problems to model MCAPI applications.

A very closely related work attempts to model MCAPI applica-
tion executions as SMT problems [2]. To the best of our knowledge
this work ignores potential delays in the MCAPI communication
network. By ignoring these possible delays this work does not prop-
erly model certain MCAPI application behaviors. As with MCC, by
ignoring these possible behaviors the method defined in [2] cannot
perform a complete verification of MCAPI applications.

We have defined a new method for modeling MCAPI applica-
tion executions as SMT problems in a manner that symbolically
models all possible concurrent executions and follow the same se-
quence of conditional branch outcomes as the provided execution
trace. Our method captures all possible behaviors of the system,
and it is much simpler than the method presented in [2]. We briefly
describe our method in the following section.

2. Modeling MCAPI Executions
As an illustration we present an abstraction of a very simple
MCAPI application in Figure 1. The send calls are used to send
messages to specified threads. A thread can obtain the message
by calling recv. When multiple threads send messages to a single
endpoint no order of messages is guaranteed when the receiving
thread calls the recv function. For example, since both send calls

Thread t0 Thread t1 Thread t2
1: recv(A) recv(C) send(Y):t0
2: recv(B) send(X):t0 send(Z):t1

Figure 1: Simplified MCAPI program.

sending to thread t0 can occur before thread t0 is executed, either
message could be received when thread t0 calls recv on line 1.

The process of creating an SMT problem to model an MCAPI
application execution is started by generating an arbitrary execution
trace through the program and then analyzing the trace to generate a
set of possible matching send operations for each receive operation
in the trace. A pair of send and receive operations match when the
receive operation receives the message that was sent by the send
operation. We call this pair of operations a “match pair”.

1: PMatchPairs = true
2: for each recv ∈ MatchPairs do
3: tmp := false
4: for each send ∈ getSends(recv) do
5: tmp := tmp ∨match(recv , send)
6: PMatchPairs := PMatchPairs ∧ (tmp)

Figure 2: Match pair encoding algorithm.

Our trace analysis generates a set MatchPairs that contains
every receive operation in the trace, and it also provides a function
getSends that maps each receive operation to the set of all the send
operations that it could match with. This set and function are used
in the simple algorithm shown in Figure 2 that encodes all possible
match pairs in the execution trace being modeled. The inner loop
of this algorithm constructs a disjunction, in the variable tmp,
of all the send operations that a specific receive operation could
pair with. The outer loop forms a conjunction of the disjunctions
created for each of the receive operations in the trace. The result is
a boolean representation of every possible match pair discovered
in the trace analysis. The trace analysis also assigns each send
operation a unique identifier for use in the SMT problem. Each
receive operation is associated with an unbound identifier variable
that an SMT solver will attempt to assign with the value of a single
send operation’s identifier. If such an assignment can occur, given
the constraints of the problem, it signifies a match between the send
and receive operations.

1: PUnique = true
2: for each recv i ∈ {0 . . . |Recvs|} do
3: for each recv j ∈ {i + 1 . . . |Recvs|} do
4: PUnique := PUnique ∧ isDiffSend(recv i, recv j)

Figure 3: Uniqueness assertion algorithm.

The match function on line 5 of Figure 2 is a simple function
for use in the SMT model. Given a receive and a send operation
the match function asserts that the call to send occurs before the
call to receive, the message sent is the same message that is being
received, and that the identifiers of the two operations are equal.
MCAPI also provides a non-blocking receive operation along with
a wait operation that blocks until the associated non-blocking call
has completed. In the case of a non-blocking receive, the match
function asserts that the call to send occurs before the call to the
wait operation that is associated with the receive. Checking the
identifiers assures that a specific receive operation is matched with

t2 : send(Y) → t0 : recv(A)
t2 : send(Z) → t1 : recv(C)
t1 : send(X) → t0 : recv(B)

(a) Possible send/recv Pairings.

t2 : send(Z) → t1 : recv(C)
t1 : send(X) → t0 : recv(A)
t2 : send(Y) → t0 : recv(B)

(b) Possible send/recv Pairings.

Figure 4: Possible Pairings of send/recv calls from Figure 1.

a specific send operation, and that each receive operation is paired
with a different send operation. To assert this we use the algorithm
in Figure 3. The results from the two algorithms are conjuncted
with assertions on program order (POrder), negated properties that
define a correct system (¬PProp), and other events in the execu-
tion (PEvents). The result is an SMT problem that models possible
executions of an MCAPI application.

P = POrder ∧ PMatchPairs ∧ PUnique ∧ ¬PProp ∧ PEvents

The SMT problem can be solved by a constraint solver such as
Yices [1]. As the system properties are negated, if the SMT problem
is found to be satisfiable then a property violation is possible in the
application under test. A simple analysis of the set of satisfying
assignments provides a description of the path to the error state.

As stated previously, the technique used in MCC does not con-
sider non-deterministic delays that can occur when two messages
are sent from different threads to a common endpoint. If applied
to the scenario in Figure 1, MCC would only explore the behavior
shown in Figure 4a. It would not consider that the message from
send(Y) in thread t2 could delay so long that the recv(A) operation
would receive its message from send(X) in thread t1. Besides pre-
senting an unnecessarily complicated encoding method, the method
presented in [2] also ignores the behavior represented in Figure 4b.

3. Results and Future Work
We have formally defined the semantics of a relevant subset of
the MCAPI API in the Redex rewrite language. Based on these
semantics we have created a tool that takes as input a trace, a set
of match pairs, and a set of correctness properties. The output is
an SMT problem that accurately models all possible executions of
the trace. A precise set of match pairs can be generated through
a depth-first abstract execution of the trace. Though precise, this
method can be prohibitively expensive in computation time. As
future work we plan to define a method for generating a reasonable
over-approximation of the match-pair set, and to define a method
for using the over-approximated set of match pairs to generate an
SMT problem that models all possible behaviors of the trace.

References
[1] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for

DPLL(T). In CAV, volume 4144 of LNCS, pages 81–94, 2006.
[2] M. Elwakil and Z. Yang. Debugging support tool for mcapi applica-

tions. In PADTAD, 2010.
[3] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for

model checking software. In POPL, pages 110–121. ACM, 2005.
[4] http://www.multicore association.org/workgroup/mcapi.php.
[5] S. Sharma, G. Gopalakrishanan, E. Mercer, and J. Holt. Mcc - a runtime

verification tool for mcapi user applications. In FMCAD, 2009.
[6] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang. Symbolic pruning of

concurrent program executions. In ESEC/FSE, pages 23–32, New York,
NY, USA, 2009. ACM.

[7] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A runtime model
checker for multithreaded c programs. Technical report, 2008.

