

Human Spaceflight Conjunction Operations

History, Lessons Learned, and Future Improvements for ISS Debris Avoidance

SpaceOps 2011 Workshop June 14-16, 2011

Lark Howorth Lead, Space Station Trajectory Operations Group Mission Operations Directorate, Johnson Space Center

Evolution of Conjunction Assessment

Initial Operations: Space Shuttle

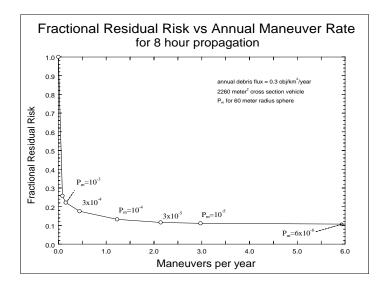
- Before 1986 Challenger accident, no Shuttle mitigation actions were taken for conjunctions based on assumption that predictions were too imprecise
- After Challenger, analysis led to a "box" method for Shuttle protection

Preparation for ISS operations: the Probability Method

- The 24/7/365 nature of ISS operations meant the box method from Shuttle could not be an option
- Work began at NASA/JSC in early 1990's to develop infrastructure for "Pc" method
- NASA provided support to USSPACECOM to develop covariances, computing capability, and "JSpOC" staffing for conjunction detection
- NASA started trial conjunction assessment operations with Russia in 1996 on Mir ("Phase I" program, upon arrival of Americans onboard)
 - Box method always used as trigger to notify Moscow during Mir, and no Russian avoidance maneuver was expected or performed

Evolution of Conjunction Assessment: ISS Operations

Maneuver thresholds determined for ISS


- Balance safety with minimum of operations disruption
- Red threshold of 1-in-10,000: Always maneuver if possible; place crew in Soyuz if maneuver not possible
- Yellow threshold of 1-in-100,000: Maneuver if convenient

Invented Orbital Conjunction Message (OCM) format with USSTRATCOM

Developed "validity criteria" on OCMs to ensure maneuver decisions based on good data

• Requires multiple updates, with prediction variations within expected bounds

Shuttle program and Goddard later adopted probability method for conjunctions

Example of risk evaluations used to determine ISS maneuver thresholds

Developing ISS Operations

International coordination required to establish ISS DAM capability

- ISS has had 6 different vehicles to act as propulsion module, each requiring varying kinds of coordination:
 - FGB (Zarya) until SM arrival
 - Service Module (Zvezda)
 - Progress: aft and nadir
 - ESA's Automated Transfer Vehicle (ATV)
 - Soyuz (contingency; never used)
 - Shuttle
- Each method (except Shuttle) relies on a planning template requiring >28 hours

ISS Debris Avoidance Maneuver History

Date	Debris Object	Vehicle	Notes			
06/03/99	1844 (SL-3 R/B)	FGB	Maneuver Execution FAILED. Two PC violations (1E-2 and 1E-3) early in event based on bad data			
10/26/99	25422 (Pegasus R/B)		First successful ISS DAM and only DAM performed by FGB. Highest PC = 1E-03.			
09/29/00			Maneuver on Yellow threshold violation			
02/10/01		STS-98 (5A)	Shuttle Box method used			
12/15/01	5730 (SL-8 R/B)	STS-108 (UF-1)	Shuttle PC method used			
05/15/02	23279 (SL-8 R/B)	Progress 7P	P _c = 1E-03 (red threshold violation)			
05/30/03	25722 (MEGSAT)	Progress 10P	P = 9E-04 (red threshold violation)			
08/27/08	33246 (COSMOS 2421 Debris)	ATV-1	P _c =2E-02 (red threshold violation) and largest PC calculated to date			
03/22/09	26264 (CZ-4 Debris)	STS-119 (15A)	Red threshold violations on a multi-repeating conjunction. TCAs were during an EVA, so a Retrograde DAM was executed early by having orbiter hold attitude.			
07/18/09	84180 (Unknown Debris)	STS-127 (2 JA)	TCA occurred 15 hours after STS-127 docking (during crew sleep). Due to the docking perturbations, a red threshold violation was computed and a reboost was performed by the Shuttle before the crew went to sleep.			
10/26/10	37195 (UARS Debris)	Progress 39P	P _c = 5E-03 (red threshold violation). Probabilities were yellow & red threshold violations throughout the event.			
4/2/11	34443 (Cosmos 2251 Debris)	ATV-2	Conjunction with dozens of repeating passes, high drag. Prime TCA shifted later during event			

12 ISS debris avoidance maneuvers attempted

7 performed by ISS

1 attempted by ISS, but failed (ISS's first attempt)

4 performed by Shuttle during mated operations

Visiting Vehicle Protection

The Trajectory Operations group (TOPO) at MCC-Houston integrates the trajectories of ISS and all vehicles coming to ISS

In recent years, the TOPO office began implementing debris avoidance support for the operators of these visiting vehicles

- ESA's ATV (1 mission per year)
- JAXA's HTV (1 mission per year)
- Russia's Soyuz and Progress (approximately 7 missions per year)
- Commercial vehicles (SpaceX Dragon and Orbital Cygnus) (1-2 missions per year each)
- This protects not only the vehicles in rendezvous, but keeps the ISS environment safe as well.

TOPOs use close relationship with JSpOC to help provide the highest-quality data for use in protecting these vehicles

- Maintain single human spaceflight point of contact with JSpOC to provide data for partners to assess risk
- As with ISS, all visiting vehicles screen their planned maneuvers against debris catalog
- In development of conjunction operations, TOPO has provided expertise in
 - Negotiating ephemeris formats and notification thresholds with JSpOC on behalf of partners
 - Providing primary or backup collision probability calculations during mission
 - Currently, operational responses are still the responsibility of the operating partner and vary for each vehicle
- With high levels of vehicle traffic expected for many years, ops standardization might become more important

✓ Russian pre-maneuver command verification improved

✓ Developed "validity criteria" to ensure good Pc calculations so unnecessary actions aren't taken

✓ Improvements in notification criteria to reduce false alarms

✓ Implementation of capability to cancel a DAM almost up to the time of ignition

✓Crew Soyuz "shelter in place" capability for late notifications where DAM not possible

 ✓ Ongoing improvements in orbit determination capabilities at USSTRATCOM/JSpOC

•"1844 Incident" (1999) proved the need for a very well-defined process, well-trained people, and software adequate to the task

- A sequence of errors occurred among all parties, from conjunction identification, to "debris clearing" of the DAM, to failed execution of the maneuver. Actions taken:
 - Ground processes between Houston and Moscow made clearer
 - Russian maneuver command testing implemented
 - NASA and USSTRATCOM began routine familiarization cross-training

•Constant improvements to balance safety and mission viability are beneficial

- Excessive conjunction notifications from Houston to Moscow early in ISS program caused personnel overwork
- In response, partners implemented smarter conjunction notification criteria

•Flexibility in planning avoidance maneuvers is key in reducing the likelihood of needing to execute them

ISS vs. Cosmos 2251 Debris

- April 2011 conjunctions with Cosmos 2251 had over 40 registered close passes
- Highest concern TCA changed over time
- 0.5 m/s DAM was executed to protect highest Pc cases
- Scenario shows value of flexible maneuvering capability
- There may be better ways to assess risk for repeaters in the future

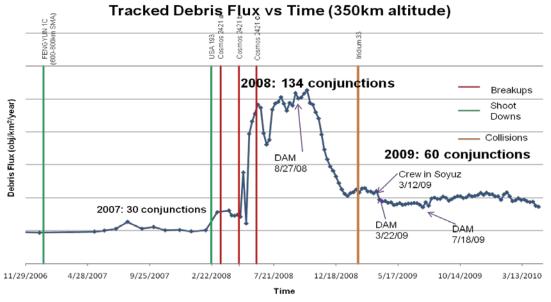
TCA (GMT)	TCA-30 (CDT)	U	v	w	R	Time to TCA	Pc
2011 091 (Fri, 01 Apr) 03:41:59.541	2011 089 (Wed, 30 Mar) 04:42 PM CDT	2.6	29.5	-7.7	30.6	44.7	3.54E-13
2011 091 (Fri, 01 Apr) 04:27:40.973	2011 089 (Wed, 30 Mar) 05:27 PM CDT	-2.1	133.1	34.2	137.4	25.9	0.00E+00
2011 091 (Fri, 01 Apr) 05:13:39.612	2011 089 (Wed, 30 Mar) 06:13 PM CDT	2.5	-64.4	16.6	66.5	15.7	0.00E+00
2011 091 (Fri, 01 Apr) 05:59:18.063	2011 089 (Wed, 30 Mar) 06:59 PM CDT	-1.5	106.0	27.1	109.4	27.4	1.90E-10
2011 091 (Fri, 01 Apr) 06:45:16.485	2011 089 (Wed, 30 Mar) 07:45 PM CDT	1.7	-87.4	22.4	90.2	17.2	1.23E-19
2011 091 (Fri, 01 Apr) 07:30:52.375	2011 089 (Wed, 30 Mar) 08:30 PM CDT	-2.7	121.0	30.8	124.9	22	9.61E-06
2011 091 (Fri, 01 Apr) 08:16:51.811	2011 089 (Wed, 30 Mar) 09:16 PM CDT	1.1	-90.9	23.3	93.9	24.2	5.77E-15
2011 091 (Fri, 01 Apr) 09:02:30.236	2011 089 (Wed, 30 Mar) 10:02 PM CDT	-2.1	85.9	21.8	88.6	19.5	2.16E-06
2011 091 (Fri, 01 Apr) 09:48:28.154	2011 089 (Wed, 30 Mar) 10:48 PM CDT	0.4	-107.5	27.4	110.9	25.7	9.66E-08
2011 091 (Fri, 01 Apr) 10:34:06.606	2011 089 (Wed, 30 Mar) 11:34 PM CDT	-1.9	68.5	17.3	70.7	21	1.85E-12
2011 091 (Fri, 01 Apr) 11:20:05.111	2011 090 (Thu, 31 Mar) 12:20 AM CDT	-0.5	-135.5	34.4	139.8	30	0.00E+00
2011 091 (Fri, 01 Apr) 12:05:42.765	2011 090 (Thu, 31 Mar) 01:05 AM CDT	-1.6	53.1	13.4	54.8	22.6	4.96E-17
2011 091 (Fri, 01 Apr) 12:51:41.170	2011 090 (Thu, 31 Mar) 01:51 AM CDT	-1.3	-149.8	37.9	154.5	31.5	0.00E+00
2011 091 (Fri, 01 Apr) 13:37:18.883	2011 090 (Thu, 31 Mar) 02:37 AM CDT	-1.4	39.3	9.9	40.5	24.1	0.00E+00
2011 091 (Fri, 01 Apr) 15:08:54.994	2011 090 (Thu, 31 Mar) 04:08 AM CDT	-1.3	27.0	6.8	27.9	25.6	0.00E+00
2011 091 (Fri, 01 Apr) 16:40:30.795	2011 090 (Thu, 31 Mar) 05:40 AM CDT	-1.3	17.3	4.3	17.9	27.2	0.00E+00
2011 091 (Fri, 01 Apr) 18:12:06.496	2011 090 (Thu, 31 Mar) 07:12 AM CDT	-1.3	8.4	2.1	8.7	28.7	0.00E+00
2011 091 (Fri, 01 Apr) 19:43:42.272	2011 090 (Thu, 31 Mar) 08:43 AM CDT	-1.3	2.0	0.5	2.5	30.2	0.00E+00
2011 091 (Fri, 01 Apr) 21:15:17.857	2011 090 (Thu, 31 Mar) 10: 15 AM CDT	-1.2	-1.8	-0.4	2.2	31.7	0.00E+00
2011 091 (Fri, 01 Apr) 22:46:53.255	2011 090 (Thu, 31 Mar) 11:46 AM CDT	-1.1	-3.7	-0.9	4.0	33.3	0.00E+00
2011 092 (Sat, 02 Apr) 00:18:28.483	2011 090 (Thu, 31 Mar) 01:18 PM CDT	-1.0	-3.3	-0.8	3.5	34.8	0.00E+00
2011 092 (Sat, 02 Apr) 01:50:03.495	2011 090 (Thu, 31 Mar) 02:50 PM CDT	-0.8	-1.1	-0.3	1.4	36.3	8.96E-20
2011 092 (Sat, 02 Apr) 03:21:38.420	2011 090 (Thu, 31 Mar) 04:21 PM CDT	-0.5	2.5	0.6	2.6	37.8	4.28E-09
2011 092 (Sat, 02 Apr) 04:53:13.332	2011 090 (Thu, 31 Mar) 05:53 PM CDT	-0.2	7.5	1.8	7.7	39.4	8.58E-05
2011 092 (Sat, 02 Apr) 06:24:48.222	2011 090 (Thu, 31 Mar) 07:24 PM CDT	-0.2	15.2	3.7	15.7	40.9	1.31E-04
2011 092 (Sat, 02 Apr) 07:56:22.833	2011 090 (Thu, 31 Mar) 08:56 PM CDT	-0.3	25.9	6.3	26.7	42.4	7.54E-05
2011 092 (Sat, 02 Apr) 09:27:57.249	2011 090 (Thu, 31 Mar) 10:27 PM CDT	-0.3	38.5	9.3	39.6	43.9	1.44E-04
2011 092 (Sat, 02 Apr) 10:59:31.460	2011 090 (Thu, 31 Mar) 11:59 PM CDT	-0.2	53.6	12.9	55.1	45.5	2.25E-06
2011 092 (Sat, 02 Apr) 11:45:25.418	2011 091 (Fri, 01 Apr) 12:45 AM CDT	-8.6	-19.7	4.8	22.0	76.7	3.54E-13
2011 092 (Sat, 02 Apr) 12:31:05.538	2011 091 (Fri, 01 Apr) 01:31 AM CDT	-0.1	70.4	16.9	72.4	47	7.01E-14
2011 092 (Sat, 02 Apr) 14:02:39.616	2011 091 (Fri, 01 Apr) 03:02 AM CDT	-0.2	88.9	21.2	91.4	48.5	0.00E+00

Summary of ISS conjunctions with object 34443

Lesson: Conjunction Frequency vs. Debris Flux

□ Frequency of notifications varies substantially depending on debris population at vehicle altitude. Number of ISS conjunctions:

✤ 390 from ISS first element launch through July 2008 (~0.8 conjunctions per week)


200 from August 2008 through April 2009 (~5 per week)

COSMOS 2421 – Three breakup events in 2008: 14-March, 28-April, 9-June

COSMOS 2251 / Iridium 33 collision 10-February-2009

191 from May 2009 through present (~2 conjunctions/week)

□As ISS raises permanent altitude from 350 km to 410 km this year, conjunction frequency may increase

•Maximum consequences if we fail

•Size of vehicle: 140 meters between farthest points of solar arrays

•Low altitude, high-drag environment means making assessments for "correct" operations difficult

- Late-notifications ("false negatives")
- Unnecessary concern for some objects
- Highly erratic predictions for small debris
- High Pc for objects very far away (>100 km)
- •Many requirements on ISS orbit to satisfy visiting vehicle success
 - Space Shuttle rendezvous on flight day 3
 - Space Shuttle maximum rendezvous altitude
 - Soyuz/Progress rendezvous on FD3; daylight landing in Russian zone
 - HTV perigee limits
 - ATV mission design limits
 - Future vehicle requirements?
 - All of these must be considered when designing a DAM for safety

•Improving covariance realism

•Implementing late-notification DAM capabilities

- Allows critical decisions to be made when uncertainties are small
- •Solving the repeating conjunction problem
- •Developing covariances for perturbing events on ISS
 - Docking/undocking
 - Reboost
 - Propulsive attitude maneuver
- •Adapting operations/resources to an increasing debris population
 - Future collisions, satellite breakups
 - Improved tracking capability may find more, and smaller, objects
- •Overhaul criteria to determine if a Pc is valid

•Investigate using covariance-based debris screening (instead of fixed volumes)