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Executive Summary

On August 16th and 17th, 2008, NASA Ames Research Center hosted a two-day weekend work-
shop entitled “Ares V Solar System Science.” The primary goal of the workshop was to begin
the process of bringing the Ares V designers together with senior representatives of the planetary
science community to discuss the feasibility of using the Ares V heavy-lift launch vehicle, a
major element in NASA’s Constellation Program, to launch demanding missions to explore the
solar system. This workshop was a follow-on to a previous very successful workshop looking at
astronomy missions that might be enabled by an Ares V.

It was very clear from the outset that the availability of an Ares V changes the paradigm of
what can be done in planetary science. Preliminary performance estimates indicate that an Ares
V could deliver approximately five times the payload mass to Mars compared with the most
capable existing vehicles such as the Delta IV Heavy. The Ares V is also capable of much larger
C3s (hyperbolic excess speed over escape, squared). This potentially opens up direct missions
to the outer planets that are currently only achievable using indirect flights with gravity assist
trajectories. An Ares V with an upper stage could perform these missions using direct flights with
shorter interplanetary transfer times, which enables extensive in situ investigations and poten-
tially sample return.

A number of innovative mission concepts were presented at the workshop. One key observation
was that the large payload capacity of the Ares V permits the addition of “cheap”, but useful mass.
Examples include extra fuel for propulsive maneuvers, shielding to protect from harsh radiation,
drill strings and casings for drilling, and redundancy. Sample return is a mission type that benefits
from all aspects of the Ares V performance. For example, the Ares V could potentially enable
sample return from Jupiter’s moon Europa, because it would have the payload capacity to provide
shielding for a lander on the surface, and sufficient fuel for propulsive maneuvers out of the gravi-
tational well of Jupiter. At Enceladus, a small active moon of Saturn, the Ares V could carry the
fuel needed to slow down for sample capture from the plumes on Enceladus, or create an artificial
plume on either Europa or Enceladus by firing a copper projectile at the surface.

Human exploration mission concepts were presented that would use other Constellation assets in
addition to the Ares V. One mission concept proposed that humans explore the surface of Venus
through telepresence robots while the humans reside inside the spacecraft in orbit around Venus.
The human mission is two years, while the surface robotic mission is designed to last 17 years.
While this mission concept requires two Ares V launches and technology maturation of Stirling-
cycle power and cooling, only an Ares V would have the launch payload to put multiple rovers
on the surface of Venus.
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The workshop also touched on Earth Science and Heliophysics missions that could benefit from
an Ares V. For Earth science the Ares V would be most useful for placing large observatories
either in geostationary orbit (GEO) or at the Sun-Earth Lagrange points (L1 and L2). For example,
in GEO large aperture (>10 m) microwave sounders could provide useful spatial resolutions of
temperature and rain measurements for severe weather monitoring/prediction, and large synthetic
aperture radars could be used for surface wind predictions.

Heliophysics missions that explore the interaction of the outer heliosphere and local interstellar
medium benefit from the large C3 capability of the Ares V. A combination of an Ares V launch,
with an upper stage powered by ion engines fueled by a high-specific-energy radioisotope source,
and gravity assist at Jupiter, could reach escape speeds from the solar system of ~ 10 Astronomical
Units (AU) per year, a factor of about three larger than the Voyager spacecraft.

Goals of the workshop included identifying payload requirements, technology maturation needs,
and infrastructure considerations for planetary missions. For example, late payload access is
needed both for nuclear powered payloads and for fueling of a Centaur or other upper stage.
Technology maturation needs include drill systems for Mars and Europa, high temperature elec-
tronics and cryo-coolers for Venus, and aerocapture with large aeroshells. Examples of infra-
structure requirements include flight development and integration facilities and containment and
curation facilities.

In summary, the Ares V changes the paradigm of what can be launched, because its launch per-
formance (C 3 versus payload) is far above that of any current vehicle. In addition, its dramatically
larger launch fairing enables launching large, multi-element systems, greater science instrument
mass fraction, larger electrical power supplies, and more mass for shielding and for lower-com-
plexity engineering solutions. This translates into an earlier return on science, a reduction in
mission times, and greater flexibility for extended science missions. It is particularly enabling
for sample return, which takes advantage of all of the Ares V capabilities. We encourage the sci-
ence community to think big, because an Ares V expands the envelope of what can be done in
planetary science.
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Workshop Report On
Ares V Solar System Science

Stephanie Langhoff1 , Tom Spilker2, Gary Martin3 , and Greg Sullivan4

Ames Research Center

I. Introduction

A workshop entitled “Ares V Solar System Science” was held at Ames Research Center on the
weekend of 16-17 August 2008. This workshop is part of a series of informal weekend work-
shops initiated and hosted by the Ames Center Director, S. Pete Worden. The organizing commit-
tee included Stephanie Langhoff (Chair), Gary Martin, and Jennifer Heldmann of Ames Research
Center; Greg Sullivan, Phil Stahl, and Kenneth Morris of Marshall Space Flight Center; Harley
Thronson and Gordon Chin of Goddard Space Flight Center; and Tom Spilker of the Jet Propulsion
Laboratory. The workshop agenda was structured to bring together the Ares V designers and the
science and engineering communities who have a common interest in launching large solar system
science missions. Forty-nine people representing government, industry, and academia attended (see
list of attendees). This workshop directly addresses recommendation 7-1 in the Aldridge report [1],
which recommends that “NASA seek routine input from the scientific community on exploration
architectures to ensure that maximum use is made of existing assets and emerging capabilities.”

The workshop blended three major themes: (1) How can elements of the Constellation program, and
specifically, the planned Ares-V heavy-launch vehicle, benefit the planetary community by enabling
the launch of large planetary payloads that cannot be launched on existing vehicles, and how can the
capabilities of an Ares V allow the planetary community to redesign missions to achieve lower risk,
and perhaps lower cost on these missions? (2) What are some of the planetary missions that either
can be significantly enhanced or enabled by an Ares-V launch vehicle? What constraints do these
mission concepts place on the payload environment of the Ares V? (3) What technology challenges
need to be addressed for launching large planetary payloads? Presentations varied in length from
15-40 minutes. Ample time was provided for discussion.

The final afternoon was devoted to interactive discussions, organized around two specific questions:
(1) How does Ares V enhance or enable planetary sample return? and (2) Payload development and
accommodation: What are the major technological and environmental issues?

The program ended with a discussion of research priorities and follow-on actions.

1 NASA Ames Research Center, Moffett Field, California
2Jet Propulsion Laboratory, Pasadena, California
3NASA Ames Research Center, Moffett Field, California
4GPS Solutions, Reno, Nevada



II. Ares V Capability and Constellation Overview

James Green, Director of NASA’s Planetary Science Division, began the workshop with an over-
view of the planetary division’s objectives. NASA’s planetary science program mission is to
advance scientific knowledge of the origin and history of the solar system, the potential for life
elsewhere, and the hazards and resources present as humans explore space. He began by showing
the timeline for planetary missions out to 2020. He first focused on the Discovery Program, which
is designed to promote lower cost (<$425 million), highly focused planetary science investiga-
tions. This program has achieved a number of firsts, such as first surface rover to explore another
planet (Mars Pathfinder), first to orbit and land on an asteroid (NEAR), first to collect particles
from a comet and return them to Earth (Stardust), and the first purely science mission powered
by ion propulsion (Dawn to the main belt asteroids Vesta and Ceres). Green also briefly discussed
the Discovery and Scout Mission Capabilities Expansion (DSMCE) program that solicits mission
concepts for low-cost planetary missions that require a nuclear power source such as the Advanced
Stirling Radioisotope Generator (ASRG).

The planetary division’s approach to Mars exploration has three aspects: (1) an orbital and air-
borne reconnaissance effort; (2) in-situ (surface) experiments and reconnaissance for ground truth-
ing and subsurface access; and (3) sample return of rock and soil samples. Building on the success
of the Mars rovers Spirit and Opportunity and the Mars Reconnaissance Orbiter (MRO), follow
on NASA missions include the Mars Science Lab and Mars Atmosphere and Volatile Evolution
mission with sample return estimated for about 2020.

Dr. Green next discussed the New Frontiers Program, which was initiated in 2004 to support
medium-sized planetary missions. The first New Frontiers mission was New Horizons that was
launched in 2006 to study Pluto and the Kuiper Belt. The second mission in this class is the Juno
mission that is being built for launch in 2011. The call for proposals is expected this fall for the 3rd
New Frontiers Mission opportunity.

He ended by discussing a few of the missions that were being considered for the future. These
include a NASA Jupiter Europa Orbiter concept that could be a standalone spacecraft or be
designed to operate synergistically with the European Space Agency’s (ESA) Jupiter Ganymede
Orbiter. Another mission concept is the Titan Core mission that is being designed to study Titan,
Enceladus, and Saturn. This would be an international mission with ESA providing a Montgolfiere
balloon and a lander. The balloon would circumnavigate Titan at about 10 km altitude. The lander
(or buoy) is currently targeted for Kraken Mare, a sea in the north polar region. Taking advantage
of coordinated multi-agency missions and the development and use of in-space propulsion and
radioisotope power systems are seen as emerging trends for the planetary division. In addition,
heavy lift systems, such as the Ares V, will help enable carrying out missions such as sample return
more effectively and with less risk.
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III. NASA’s Constellation Program

III.1 Constellation Overview

John Horack presented an overview of the Constellation Program. The discussion here attempts to
capture some of the key points made in his presentation, and to set the stage for the science presen-
tations that follow. More in depth and authoritative accounts of the rapidly unfolding Constellation
and Ares programs exist on the internet [2] .

As of May 2008, NASA’s mission contains six major elements: (1) Safely fly the Space Shut-
tle until 2010; (2) Complete the International Space Station; (3) Develop a balanced program of
science, exploration, and aeronautics; (4) Develop and fly the Orion Crew Exploration Vehicle;
(5) Land on the Moon no later than 2020; and (6) Promote international and commercial partici-
pation in exploration. A key reason for making the Moon a key focus of the exploration initiative
is that it can be reached with existing or evolved launch systems. At the same time, it has been
increasingly recognized that such transport systems can straightforwardly access other interesting
destinations such as Geosynchronous Earth Orbit (GEO), the Sun-Earth and Earth-Moon Lagrange
(libration) points, and some asteroids. Lunar missions also help retire risk for future planetary
missions by re-acquiring human exploration experience and testing of the Constellation architec-
ture. Unlike the Apollo program that was constrained to the equatorial regions, the Constellation
architecture will enable landing anywhere on the moon.

One of the cornerstones in the Ares program is to build on a foundation of proven technologies to
reduce risk. The Ares vehicles are compared with the Space Shuttle and the Saturn V in figure 1.
The Ares I, which is under development now, will have a payload capacity of 25.5 metric tons to
Low Earth Orbit (LEO), comparable to that of the Shuttle. For comparison, the Ares V is estimated
to have a payload capacity of approximately 187.7 metric tons to LEO, considerably larger than
the Saturn V (118.8 MT). The Ares V will, therefore, provide lift capability that exceeds all previ-
ous vehicles and will clearly open up new opportunities for science and human exploration.

Briefly, the Ares I is being designed to carry the astronauts in the Orion Crew Exploration Vehicle
(CEV) that sits just behind the crew escape module atop the stack. The upper stage uses an expend-
able engine derived from the Saturn J-2 that uses LOX/LH 2 propellant, and is mostly based on
proven technologies. The first stage engine on the Ares I is derived from the current Shuttle Reus-
able Solid Rocket Motor Booster (RSRM/B). It uses the same propellant, cases and joints, booster
deceleration motors, aft skirt and thrust vector control, and tumble motors as the Shuttle. The use
of heritage parts when feasible combined with the use of modern electronics and composite mate-
rials should produce a highly dependable solid rocket booster, while reducing complexity, risk, and
cost. The Ares I is currently undergoing testing and vehicle integration. The Ares I-X test flight
scheduled for next year will collect key data to further refine the Ares I design.
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Figure 1. Building on a foundation of proven technologies - Launch vehicle comparisons.

Horack also discussed the status of the Orion Crew Exploration Vehicle and the Altair lunar lander.
The Orion Crew Module has about 80% more volume than Apollo. It also has a sophisticated
launch abort system that could be activated in case of a launch failure. The Altair lunar lander is
being designed to transport a crew of four to and from the lunar surface. Flown in a robotic mode
without a crew, it can deliver approximately 16 metric tons of cargo there.

The elements in the Ares-V heavy-lift vehicle are shown in figure 2. The payload fairing is being
designed to carry the Altair lunar lander. One of the primary focuses of the workshop was to deter-
mine what demands launching large planetary payloads might place on the design of the fairing.
There may be some design flexibility in the fairing as long as it carries out its principal mission of
transporting Altair to the lunar surface. Other elements of the Ares V shown in figure 2 include the
Earth Departure Stage (EDS), a loiter skirt, an interstage, and then the core stage that is powered
by six Delta IV derived RS-68 LOX/LH 2 engines and two solid rocket boosters that have been
lengthened to 5.5 segments. In summary, the Ares program is using previous lessons learned and
proven technologies to minimize cost, technical and schedule risks. First test flights of the Ares I
are scheduled to occur in April 2009, and the first test flight of Ares V is planned for 2017.
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Figure 2. Ares V elements.

III.2 Overview and Performance of the Ares V

Phil Sumrall, the Advanced Planning Manager for the Ares Projects Office, gave a two-part pre-
sentation on Ares V, providing first a mission and vehicle overview, and then a description of
performance. The Ares V, which is primarily being designed as a heavy-launch vehicle to place
cargo on the Moon, is intended to have greater payload capacity to Low Earth Orbit (LEO) than all
previous vehicles including the Saturn V. Sumrall discussed in detail the design concepts for all
of the key elements of the Ares V including the EDS, the core stage, the notional instrument unit,
the EDS J-2X engine, the SRBs, and the core stage upgraded RS-68 engines. Since this informa-
tion is available on the internet [2], and not critical to how an Ares V could be used to launch large
planetary payloads, we omit the details here.

One element of the Ares V design that is important for planetary missions is the shape and interior
dimensions of the upper stage shroud. Sumrall presented a shroud shape trade study that they had
done within the restriction of a 9.7-m barrel height. This barrel height is required to accommodate
the current Altair lander configuration. They considered many shapes such as hemispheres, tangent
ogives, blunt cones, etc., but selected the biconic shroud shown in figure 3 as their baseline. Howev-
er, a leading alternative is the tangent ogive shroud, which would provide greater internal volume.
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Figure 3. Current Ares V Shroud Concept.

Figure 4. Notional Ares V Shroud for Other Missions.
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A critical dimension is the 8.8-m diameter interior of the barrel. Shown in figure 4 is a notional
Ares-V shroud for other missions. The maximum length of the barrel is constrained to 12.4 m by
the height of the Vehicle Assembly Building (VAB) at Kennedy Space Center. Note that the maxi-
mum length of the barrel is decreased by 6.3 m compared with that presented in the “Astronomy
Enabled by Ares V” workshop report [3] . The decrease results from the recent redesign of the Ares
V to six RS-68 engines and to 5.5 segment SRBs. The addition in length to the SRBs results in
a longer rocket and therefore a greater constraint on the maximum length of the shroud. These
changes to the vehicle were required for the Ares V to perform its primary lunar mission with suf-
ficient margin. This highlights the fact that the design of the Ares V is still changing with time. It is
important to point out, however, that the Ares V design draws heavily from the Ares I and Delta IV
rockets to minimize development costs and reduce risk (see figure 5).

Sumrall also discussed the impressive Ares-V escape velocity performance, which will be very
important in reducing the travel time for planetary missions. The performance of the vehicle is
illustrated in figure 6 where payload mass is plotted versus C3 , the launch velocity in excess of
escape squared in km2/s2 , using the extended shroud and vehicle performance prior to the redesign.
What this performance translates to for planetary missions is discussed in the following sections.

Figure 5. Ares V element heritage.
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Figure 6. Ares V escape performance.

III.3 Science Operational Capabilities Enabled by Ares V Performance

To help translate the performance capabilities of the Ares V into operational capabilities relevant to
planetary missions, Tom Spilker presented a paper entitled “The Value of the Ares V Launch Vehicle
for Planetary Science Missions”. This was, in part, a synopsis of the analysis presented in reference
4. What makes the Ares V unique is that its launch performance is far above that of any other heavy
launch vehicle. In figure 7 we have plotted payload capacity in kg (1 metric ton= 1000 kg) versus C 3 .
Note that these are the performance curves prior to the redesign of the Ares V to 6 RS-68 engines
and 5.5 segment solid rockets. The performance of the redesigned vehicle should be slightly better
than shown in figure 7. The performance of the Delta IV Heavy (represented by the magenta curve)
is the current state-of-the art. The blue curve represents the predicted performance of the Ares V
and the yellow curve the performance of the Ares V with a Centaur upper stage. The stack mass
limit is taken to be 54 MT (metric tons) based on the mission mass on top of the Earth Departure
Stage (EDS). The inclusion of the upper stage substantially improves the C 3 performance for a
given payload, but reduces the maximum payload capacity to 31 MT. The increased launch perfor-
mance benefits planetary science by enabling much larger payloads for a given C 3 , or for a given
payload, much higher C 3 s, which reduces trip times especially to the outer planets or to Mercury.
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Figure 7. Ares V performance curves.

The greater launch mass of the Ares V benefits planetary science in a number of ways. For example
by allowing:

• the launch of large, complex systems such as multiple probes, orbiters, landers, etc.
• greater science instrument mass and mass fraction
• larger electric power supplies for instruments and telecom transmitters
• greater post-launch delta-V for expanded access and access to multiple destinations
• greater mass for shielding against environmental hazards
• greater mass for lower-complexity engineering solutions, such as propulsive orbital insertion

This would benefit planetary science by providing an earlier return of science, reducing mission
duration, and providing greater flexibility for single-element missions to multiple destinations.
The large interior diameter of the fairing (8.8-m interior diameter) enables using large apertures for
optical instruments or for aeroshells, simplifies packaging of large, complex systems, and simpli-
fies the launch configuration of multi-element missions.

Large, complex, and/or multi-element planetary missions would all benefit from an Ares V.
Examples would include long-lived surface elements at Venus or Mercury, science constellations
such as multi-element missions to Saturn (see later discussion), planetary networks emplaced



with a single launch, ice giant orbiters, and single flight elements orbiting multiple destinations.
However, sample return missions would benefit the most from an Ares V, since they would use all
aspects of the Ares V increased launch performance. Spilker illustrated the utility of Ares V for
sample return by describing example benefits for missions to Mars, Venus, Mercury, and destina-
tions in the outer solar system.

One of the purposes of the workshop was to identify key Ares V design criteria that need to be
considered to avoid precluding planetary mission launches. Planetary payloads often require pre-
launch flight system cleanliness (e.g. to facilitate planetary protection) and control of the vibra-
tional, acoustical, and thermal environment before and during launch. The handling of payloads
includes radioisotope power sources and heaters, and a fueled upper stage. This often requires
easy and late access (while on the pad) to locations within the shroud. These issues are discussed
in more detail later in the report.
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IV. Planetary Mission Concepts

IV.1 Brief Overview of Potential Planetary Exploration Enabled by Ares V

Gordon Chin gave an overview of potential planetary missions that might be enabled by an Ares
V. He contended that several of the flagship missions that are currently under formulation could
benefit from an Ares V due to its capability of lifting more complete and larger payloads and reduc-
ing travel times. Specific examples include an international Titan-Saturn mission containing three
mission elements, namely an orbiter (NASA), Montgolfiere (balloon, ESA), and a probe or lander
(ESA). The science goals include understanding Titan’s complex chemistry, the source of the gey-
sers on Enceladus, and characterizing the magnetospheres of Enceladus and Saturn. A second
flagship mission possibility is a Europa-Jupiter system mission that could include Io, Jupiter and
Ganymede campaigns. The science goals at Europa include characterizing the extent of its sub-
surface ocean, determining its global surface composition and chemistry, and understanding the
formation of its surface features. Other more ambitious missions include a Neptune orbiter, probe,
and Triton lander, a Uranus orbiter with probe, and a Mercury sample return mission. These mis-
sions may be feasible with an Ares V, but probably not with the current heavy launch systems.

Dr. Chin concluded his talk by discussing heterodyne techniques as a means of performing high-
resolution spectroscopy on planetary atmospheres. The technique is particularly applicable to the
sub-millimeter spectral region, because of the numerous molecular transitions that occur at these
wavelengths in planetary atmospheres. This technique has been widely used in Earth science,
and has wide application in planetary science as well. For example, it could be a valuable tool
for studying the runaway greenhouse effect on Venus and in studying the super-rotating cloud
layers on Venus and Titan. He discussed briefly the Vesper mission that is designed to probe the
chemistry and dynamics in the Venus atmosphere using high-sensitivity heterodyne spectroscopy.
A submillimeter spectrometer is also being proposed for the MARS Volcano Emission and Life
Scout (MARVEL Scout) mission. MARVEL would orbit Mars in a near-polar orbit to search for
near-surface water and signs of life.

IV.2 Sample Return from Europa and Enceladus using the Ares V

Chris McKay discussed sample return missions to Europa and Enceladus. A key point in his pre-
sentation was that an Ares V allows adding mass, but not dollars to planetary missions. Examples
of “cheap mass” include fuel for propulsive maneuvers, shielding for protection against harsh
radiation environments, drill strings and casings for penetrating regolith and/or ice, and redun-
dancy, e.g. many duplicates of a small lander.

A key driver for planetary exploration is the possibility of finding life on other worlds. The pos-
sibility of finding a second genesis of life (i.e. life not on the tree of life of Earth) would be par-
ticularly significant, because it would suggest that at least primitive life is common in the universe.
The astrobiology drivers for planetary exploration are also relevant to understanding the early
planetary environment and the origin of life on Earth. Finding a second genesis of life in our solar
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system may require looking at potentially habitable worlds such as Europa and Enceladus that are
distant from the Earth to avoid the likelihood of random panspermia between Earth and Mars.

There is evidence that Europa and also probably Enceladus have regions of liquid water, in some
cases oceans, beneath the ice. Given liquid water on Europa and Enceledus, is there a plausible
origin of life and a plausible ecology? Theories for the origin of life indicate that life could have
developed on Europa and Enceladus from an extraterrestrial source, that is, by random pansper-
mia. In addition, there could be a terrestrial genesis based on either heterotrophic or chemosyn-
thetic organisms. There are examples of ecologically isolated microbial ecosystems (no oxygen,
light or organic input) on Earth. If Europa’s ocean contains life, then the prominent red features on
the surface may contain biogenic organic material.

An Ares V potentially enables sample return from Europa, because it has the payload capacity to
provide shielding from the harsh radiation environment and mass for delta-V that is needed either
for landing or sample capture. At Enceladus, it could enable sampling from either a natural plume
or an artificial plume created by an impact from a projectile. One could envision, for example, an
Europa sample return mission based on a Stardust-like spacecraft (e.g. the proposed Europa Ice
Clipper) flying through an impact cloud produced by a copper impactor.

IV.3 A Multi-Spacecraft Mission to Saturn Enabled by Ares V:
Atmospheric Probes, Ring Observer, and “Beyond Cassini” Orbiters

This paper was presented by Tom Spilker and was co-authored by S. K. Atreya, L. J. Spilker.
T. Balint, E. Venkatapathy, and J. O. Arnold [5-7]. The high-level science goals of the mission
are to determine the composition of Saturn’s atmosphere, particularly heavy element and water
abundances, the atmosphere’s dynamics and metrology, and Saturn’s ring dynamics. The mission
scenario consists of two high-speed direct entry probes, microwave radiometry for deep atmo-
sphere sounding, aerocapture of the Saturn Ring Observer (SRO) to study the ring dynamics, and
a “Beyond Cassini” orbiter. The shallow probes penetrate to ~10 bars, the deep probes to ~100 bar,
and the microwave radiometry down to 100 bars as well. The deep probes, which are dropped
from the slower descending shallow probes, provide “ground truth” validation of the microwave
radiometry. Multiple probes help ensure a representative sampling of the atmosphere. Total flight
system mass is estimated to be 15,000 kg.

The SRO, which is aerocaptured to within a few km of the Saturn ring plane and then co-orbits
with the ring particles, will observe the A and B rings for complex ring dynamics such as waves
and time varying “clumping” of matter. The multi-spacecraft mission to Saturn should provide a
huge advancement in our understanding of outer planet formation and discrimination among giant
planet accretion models.

There are a number of technology challenges that need to be addressed in the performance of this
mission. These include thermal protection materials for probes and aerocapture, communication
from the deep probes, payload performance at high temperatures and pressures, power, and pres-
sure vessels that can operate at 100 bars.
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IV.4 Science with Large Planetary Probes Enabled by Ares V:
Exploration of the Kuiper Belt

Dale Cruikshank presented a paper that looked at the science that could be enabled at Kuiper
Belt Objects (KBOs) with large planetary probes launched on an Ares V. The largest known
trans-Neptunian objects are shown in figure 8 compared to the Earth. He began by discussing
the science objectives of the New Horizons mission to Pluto and Charon. Missions to large AU
require radioisotopes for power. The radioisotope thermal generator on New Horizons provides
about 220 W at Pluto. The key science objectives of New Horizons are to characterize the global
geology of Pluto and Charon, map their surface composition, and characterize the atmosphere of
Pluto. A dedicated mission to explore other objects in the Kuiper belt would have similar objec-
tives and instrument requirements. We want to know the origin, composition, and geological
processes on the surface and interior of KBOs, as well as their relationship to comets and to the
volatile and organic inventory on terrestrial planets. We want to measure the surface composi-
tion of KBOs with high spatial resolution, determine the isotopic composition of C, H, O, and N
using mass spectroscopy, and characterize their magnetic fields and any satellite objects. To do
this properly requires substantial power and payload for scientific instruments.

Figure 8. Largest known trans-Neptunian objects (TNOs).
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The Ares V allows a larger capacity for much larger instruments, for example, larger apertures and
more capable detectors with larger wavelength range and sensitivity, and more robust mass spec-
trometers. Furthermore, it enables greater power (>few kW), higher data volume and rate, mass
for surface probes, and autonomy for other operational innovations such as laser communications.
The Ares V would enable larger science payloads to Pluto and other KBOs.

IV.5 Constellation-Enabled Mars Mission Exhibiting New Technology
(CEMMENT) Mars Sample Return Mission

Richard Mattingly presented an overview of the CEMMENT study. Since the details are available
on the internet [8], we present only the highlights in this report. The CEMMENT study objectives
included looking at what Mars sample return missions can be done using the Constellation flight
elements including the Ares V. The study’s driving requirements included aerocapturing and land-
ing a large mass on Mars utilizing aeroshells, and using vehicle parameters and trajectories similar
to follow-on human missions. The goal is to return three 500 gm samples from two separate Mar-
tian locations with an excursion mobility of >1 km. This requires aerocapture of 40 metric tons
(MT) and landing of 8 MT.

The mission is designed to be a precursor mission to combined robotic and human missions. Some
of the more specific goals of the mission are highlighted below:

• Explore the subsurface to 10 m depth in several places at each single-landed location and
evaluate the prospects for water

• Perform pinpoint landing at two Mars surface locations
• Conduct Mars ascent and automated rendezvouses as part of the sample returns
• Demonstrate robust Ka band Earth-Mars telecom
• Demonstrate round-trip autonomous navigation
• Perform an In-situ Resource Utilization (ISRU) experiment at one location

There are a number of technologies that require further maturation before the mission can be
flown, for example, aerocapture of a large aeroshell, precision landing on the surface, and thermal
protection materials for the estimated 13 km/sec atmosphere entry speed of the return capsule.

IV.6 Alternative Approaches to Outer Solar System Exploration

Amy Barr presented a paper that discussed some mission approaches to outer planet exploration.
The icy satellites, such as Europa and Enceladus, are scientifically important because the oceans
that may lie beneath the ice are potentially habitable, and considering their remoteness from Earth,
life in the oceans likely would represent a “second genesis” of life. Studying the interior structures
of the geologically inactive and unprocessed regular satellites of Jupiter and Saturn, can shed light
on the timing and duration of satellite formation, and by extension, gas giant planet formation.
Callisto is an interesting target in this regard, since it is thought to be undifferentiated. She sug-
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gested the possibility of putting a small spacecraft like the Gravity Recovery and Interior Labora-
tory (GRAIL) [9] on a Jupiter or Europa flagship mission to perform gravity science at Callisto. In
the far reaches of the solar system, science questions center around the composition of KBOs, and
what this tells us about the solar nebulae from which the planets arose.

Europa is a challenging object for exploration. Although the depth of the ice is still controversial, it
is likely that to reach the ocean would require drilling through more than 10 km of ice. The Jovian
magnetosphere produces a severe radiation environment that chemically processes the surface
making it necessary to penetrate more than a meter to get a pristine ice sample. The challenges of
reaching and surviving on the surface make concepts like the proposed Discovery mission “Europa
Ice Clipper” attractive. In this mission scenario, a copper impactor creates an artificial plume,
and the Europa Ice Clipper intercepts the ejecta at 50 km altitude using an aerogel collector. With
an Ares V, there may be sufficient payload to permit a companion orbiter that would be able to
analyze the plume in situ using spectrometers and gas chromatography-mass spectrometers. The
Ares V could also enable radiation-hardened electronics or shielding for a long duration orbiter. A
similar mission could be attempted for Enceladus, a small active moon of Saturn, where there are
natural plumes originating from the moon’s south polar region.

Another mission that was discussed was an ice giant orbiter to study the Neptune-Triton system.
Since Triton is potentially a captured tidally heated KBO, this could enable comparative planetol-
ogy for the outer solar system and KBOs. The mission would also have the primary objectives of
studying the composition and weather of Neptune, as well as trying to determine whether Neptune
has a rocky core with an overlying mantle of ice. The increased performance of the Ares V opens
up new mission scenarios using propulsive capture, significantly diminished mission times, and
greater scientific payloads.

IV.7 Constellation Enabled Missions to NEOs

Paul Abell presented a phase one technical feasibility study to determine how Constellation ele-
ments might enable a human mission to study a Near Earth Object (NEO). They considered a
number of mission concepts, but this discussion will focus on the more robust mission concept of
a dual launch that uses Ares I to loft Orion and the Ares V to loft the Earth Departure Stage (EDS)
and the NEO Surface Access Module. The mission scenario is shown in figure 9. Depending on
target, the outbound segment is ~20-75 days, with a 7-14 day visit at the NEO, and a ~45+ day
return trip to Earth. The best targets for the mission are NEOs that have Earth-like orbits with
low eccentricity and inclination that will have Earth close approaches during the time frame of
2020-2035. In the current database of existing NEOs, there are nine potential targets that can be
reached with the available delta-V and mission length. Other targets are expected to be identified
in on-going NEO surveys.

There is considerable value in the human exploration of NEOs. For example, to expand human
capability to operate beyond Earth orbit, to assess the resource potential of NEOs for exploration
and commercial use, to gain operational experience beyond low-Earth orbit, to assess crew psy-
chology for long duration missions, and to help identify more efficient/cost-effective deep space
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Figure 9. “Upper Bookend” Near-Earth Object (NEO) crewed mission.

exploration architectures. The science drivers are also strong. Sample return from NEOs will pro-
vide ground truth data for terrestrial meterorites, provide insight into solar system formation and
evolution, and help us understand the internal structure of NEOs to refine impact physics models
that might be useful for mitigating a possible impact threat in the future. This mission would also
be a good stepping stone to a human Mars mission and would likely engage the interest of the pub-
lic. More and better NEO targets of opportunity are needed, as is a more in depth mission analysis,
including human factors issues such as radiation shielding and countermeasures for long duration
spaceflight. However, initial studies indicate that the Constellation architecture is enabling for a
human mission to an NEO.

IV.8 The Human Exploration of Venus

Mark Bullock presented a mission concept where humans would explore the surface of Venus
through telepresence robots while in orbit around the planet. This would enable real-time field
geology on Venus. The human aspect of the mission is designed to last two years, while the sur-
face robotic mission would last 17 years. Exploration of Venus will help us understand its climate,
which is the result of interconnected atmospheric and geological cycles. It will help us understand
how terrestrial planets evolve, and help us to interpret spectra from exosolar planets.
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Figure 10. Being on Venus.

Robotic field geologists are needed at multiple locations on Venus to understand its varied geo-
logic history. To survive on the surface, the vehicles must incorporate some combination of high-
temperature electronic and mechanical systems, and Stirling-cycle power and cooling. The Ares V
will be needed to emplace these large and heavy rovers on the surface. A second Ares V could
place humans in orbit around Venus, to enable real-time field geologic exploration that billions of
people on Earth could participate in remotely.

What it would be like to be on Venus is depicted in figure 10. The very high surface temperatures
and pressures require a concerted effort to keep key electronic components below 50° C. The
preferred approach uses Stirling cycle power generation and two stages of Stirling cycle coolers.
Heat is converted to power with approximately 7.6% efficiency. The mission requires twenty 250 W
general-purpose heat source modules to provide 80 W of power and 300 W of cooling capacity.
Some of the enabling technologies for this mission include high-temperature power electronics,
sensors, digital processing, motors, etc. The technology either exists or can be developed to keep
the rovers alive on the surface for an extended period of time. The Ares V provides the needed
payload capacity (approximately 40 MT to Venus) to enable the mission. The Constellation assets
and a second Ares V launch permit a human mission to Venus to carry out real-time field geology
on the surface.

Even at night, it is not dark. The
Plains and foot of the mountains
glow dull red.

During the day, the diffuse
lighting is modulated by cloud
variations overhead. Nearby
rocks shimmer in the hot, dense
atmosphere, almost as if the
observer is at the bottom of an
impossibly hot ocean.
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V. Earth Science and Heliophysics

V.1 Earth Observation Targets: 2020 and beyond

Although the Earth Science community has not given a lot of thought to the mission opportunities
that an Ares V might enable, we wanted to at least begin this discussion at the workshop. Stewart
Moses presented a paper for Ron Birk looking at how the Earth Science community might ben-
efit from an Ares V. To put the Earth Science enterprise in perspective, it should be noted that an
armada of current and planned missions exist that will unfold according to recently developed
decadal plan recommendations. The Earth Science mission has received impetus from the growing
concern over human-induced climate change, which has a potentially large impact on the environ-
ment, economy, and national security. A global change monitoring system is needed to provide
data to inform decision makers for adaptation and mitigation at local through global levels. Earth
is a complex system requiring a full complement of observations of key climate, weather and solid
Earth hazards parameters.

Looking towards the future, we require global change information from integrated and layered
platforms that can address real time weather, forecasts of climate change, ocean monitoring, etc.
These would consist of surface, air borne (100 km), low-Earth orbiting (850 km), and geostationary
(35,800 km) platforms. An Ares V could potentially enable new capability in large GEO platforms.
For example, large apertures (>10 m) microwave sounders to provide useful spatial resolutions
(<4 km) measurements of temperature and moisture soundings, rain measurements, and severe
weather monitoring and prediction. Another possibility is synthetic aperture radars for surface wind
measurements. An Ares V could also enable large aperture telescopes at the Sun-Earth Lagrange
points (L1 and L2). These vantage points provide a synoptic view, high time resolution, sunrise to
sunset coverage, and long integration times (to extract small changes over years). One example of
a distant vantage point Earth science mission is the L2 Earth Atmosphere Solar-occulation Imager
(EASI) [ 10] designed to measure greenhouse gases using a 10 m infra-red telescope.

V.2 Interstellar Probe Mission

The Ares V performance is also capable of enhancing heliophysics-focused missions. Ralph
McNutt presented an Interstellar Probe concept [11] that is designed to study the nature of the
nearby interstellar medium, the structure of the heliosphere, and how the Sun and galaxy affects
the heliosphere’s dynamics. To reach the heliopause in a reasonable length of time requires the
large C3 capability of the Ares V and its ability to launch an upper stage. Even so, the payload
mass is very constrained. The goal is to constrain payload to ~45 kg mass and 40 W power,
including ~30% margin for 10 instruments. The low-mass payloads will focus on measuring
fields and particles.
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All approaches to the Interstellar Probe mission need propulsion development. Under consider-
ation are ballistic, nuclear electric and solar sail propulsion approaches. The highest flyout speed
possible is obtained with a synergistic combination of high launch energy (C 3), gravity assist
at Jupiter, and ion engines powered by a high-specific-energy radioisotope power source. This
assumes improvements can be achieved in the specific power of current radioisotope sources.
The best-case scenario has the Interstellar Probe reaching 200 AU in a little over 20 years with a
final velocity in excess of 10 AU/yr. Thus, the probe would reach 1000 AU within 100 years with
sufficient power to still power the spacecraft. It is estimated that an Ares V would speed up arrival
to 1000 AU by about 31 years over existing launch vehicles.
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VI. Technology Focused Talks on Industry Capabilities

VI.1 Lockheed Martin Sensing & Exploration Systems
Planetary Capabilities

Beau Bierhaus presented a paper describing Lockheed Martin’s (LM) sensing and exploration sys-
tems planetary capabilities. This includes a heritage in meteorology and Earth science, astronomy
and physics, and solar system exploration. LM flight experience spans flagship, Mars, and PI-led
missions, and it includes expertise in developing spacecraft, major subsystems and instruments.
LM has been an important part of planetary atmospheric entry missions beginning with Viking
(1976) and continuing through to the Mars Science Lab (MSL) in 2009. Their core spacecraft
capabilities include multiple generations of composite structures, proven flight software, mission
operations, and engineering, assembly and testing facilities. Recent missions where they have had
a mission operations role include the Spitzer Space Telescope, the Mars Reconnaissance Orbiter,
and Phoenix. They have built a wide range of instruments including visible imagers, multi-spectral
infra-red imagers, radar, magnetometers, etc. Thus their capability to design, build, test, and oper-
ate a wide range of spacecraft architectures and the ability to support multiple spacecraft will have
direct relevance to missions involving the Ares V.

Based on their experience, they provided the following considerations for the Ares team. First,
provide multiple spacecraft payload capability- both a small number of large vehicles, and a large
number of small vehicles. Also the shroud should be able to accommodate different geometric
positioning, e.g., vertical stacking versus segmented. There should be access to the payload late
in the launch process, for example, the ability to put nuclear components in as late as possible.
Finally, there should be thought to providing cleanliness, purges, and thermal accommodation.
These points are again emphasized in the breakout session that discussed payload development
and accommodation issues (see later discussion).

VI.2 Planetary Exploration Possibilities Enabled by the Ares V
Launch Vehicle

Stewart Moses gave a paper describing Northrop Grumman’s view of planetary exploration pos-
sibilities enabled by the Ares V. They looked both at enhancements of previous missions and new
missions that would be enabled by an Ares V. New mission opportunities considered by Northrop
Grumman include an Europa lander/penetrator to characterize Europa’s ice shell and underlying
ocean, a Mercury polar lander/rover to confirm the presence of water ice, a Titan sample return
mission, a Triton orbiter/lander to understand Triton’s atmosphere, a Neptune orbiter to character-
ize Neptune’s composition, gravity field, and magnetosphere, an Io orbiter to characterize the tidal
heating and internal processes of Io, a Pluto/Charon orbiter, and a number of asteroid and comet
missions. They proposed an Ares V launch of twin operational atmospheric observing satellites
at Venus to achieve both high-resolution radar terrain mapping and sub-surface mapping. Also
discussed was the feasibility of a Titan observing system to study the atmosphere and global dis-
tribution of organic compounds.
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The Mercury polar lander concept was described in some detail. It would involve launch of a
Mercury rover on an Ares V, transfer to Mercury via two Venus gravity assists, propulsive cap-
ture at Mercury, orbit circularization, lander and rover deployment, and finally surface operations
with direct communication back to Earth. The rover would enable the in-situ study of water ice
and geological composition. An ambitious Titan sample return mission was also discussed that
involved launching both an orbiter and lander on an Ares V. Both the lander and the orbiter would
use aerocapture at Titan after a Venus-Venus-Earth-Jupiter-Saturn gravity assist. The lander would
parachute to the surface to carry out surface operations and sample collection. The lander would
return for rendezvous with the orbiter using a two-stage propulsion system. Finally, the orbiter
would return to Earth with the Titan sample. Collecting samples from the surface would be key to
understanding the complex chemistry occurring there. This mission would likely confirm the Cas-
sini radar images that suggest the existence of hydrocarbon lakes on the surface.

VI.3 Payload Processing Capabilities in Support of Ares V
Planetary Missions

Shelley LeRoy presented a paper describing the payload processing capabilities that Boeing has
that could support Ares V planetary missions. It was stressed that spacecraft processing is funda-
mentally different from launch vehicle processing, but understanding both ensures optimal inter-
facing, servicing and operation. Current experience at the Space Station Processing Facility (SSPF)
at Kennedy Space Center (KSC) is for payloads less than 4.5 m in diameter, which is far less than
the expected 8.8 m diameter of future Ares V payloads. These larger diameters pose a number of
shroud encapsulation issues for the Ares V at the SSPF.

The payload processing capabilities in the vicinity of KSC include spacecraft lifting and han-
dling, assembly and checkout, and engineering support. A strong argument was made for includ-
ing launch processing features early in the design cycle of the Ares V to reduce life cycle cost and
schedule risk. Payload processing issues include how to transport 8.8 m payloads to KSC, access
to payloads on the pad, umbilicals to “active” payloads, and the acoustical, thermal and cleanliness
environment inside the fairing. Payload processing requirements are large life cycle cost drivers
if they are developed too late in the design process. Ares V class payload processing requirements
need to be defined soon to support future planning, such as the need for new infrastructure. Boeing
is developing the production and flight analysis and simulation software to enhance understanding
of payload processing issues. LeRoy ended his presentation with a demonstration of a simula-
tion of flight operations called ICON (Interactive Concept of Operations). One of the impressive
aspects of the simulation is that it is interactive, which gives the user an opportunity to explore
various off-nominal scenarios.
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VII. Breakout Sessions

In the afternoon, the workshop participants broke into two groups to discuss specific questions in
more detail. The first group chaired by Chris McKay looked at sample return missions that could
be enabled by an Ares V. The second group chaired by Gary Martin addressed both technological
and environmental payload development issues. The key results of these two breakout groups are
discussed in this section.

VII.1 Sample return using an Ares V

The first breakout group chaired by Chris McKay considered how an Ares V could either enhance
or enable sample return. The group considered sample return missions to have high science value,
but to be somewhat beyond the capability of current launch systems. However, that is fundamen-
tally changed by the much higher payload mass capability that Ares V can deliver throughout
the solar system. The extra mass provides flexibility to solve mission problems, such as the need
for simultaneous orbiters and landers, and shielding against radiation, micrometerorites, or other
environmental hazards. It can enable multiple site selection, help deal with planetary protection
issues on both the outgoing and return flights, and provide for shorter flight times and longer data
acquisition times. It results in a mission with lower risk and greater science return per dollar.

Mars sample return

As discussed previously in the CEMMENT presentation (see section IV.5), the Ares V enables
landing at multiple sites that are widely separated geographically. This allows geological questions
related to regional transport, relative age dating, and global features (hemispheric dichotomy) to be
addressed. Multiple site selection also improves the chance of finding life, considering the obvious
planetary diversity of Mars. As stated previously, the Ares V has the extra mass needed to address
planetary protection issues that are particularly acute on Mars. By allowing mass for propellant, it
eases the requirement of in-situ propellant production. It also has the mass to carry better sample
acquisition tools, such as deep drills, and sample analysis tools like X-ray fluorescence.

Europa/Enceladus sample return

The Ares V enables putting a lander on the surface that has the mass and shielding (at Europa)
necessary to remain on the surface to carry out subsurface sampling. Ideally the lander would have
the mobility to search for a young or active site. Also, to return the sample to Earth would argue
for simultaneous orbiter and lander missions. Since it would be necessary to keep the sample cold,
mass for refrigeration would be needed for the return flight. Another mission scenario is to perform
impact sampling using just an orbiter by firing a copper projectile at the surface. Again the capa-
bilities of the Ares V would be needed to slow the vehicle for sample collection, and then again for
reacceleration out of Jupiter’s gravity well. This second scenario would be particularly appropri-
ate for Enceladus due to the natural plumes emanating from the south polar region. Sampling of
Saturn’s diffuse E ring would also be useful to determine its association with Enceladus.
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Venus sample return

A vehicle of Ares V capability is probably necessary to enable sample return from Venus for a
variety of reasons. Most importantly the high surface temperature, acidity and pressures impose
complex sample acquisition problems that need robust landers and ascent vehicles. Multiple rov-
ers are also warranted due to the geological diversity of Venus. As discussed previously in section
IV.8, a robust cooling system is required for survival on the surface. Finally, a large delta-V capa-
bility is needed to get out of the gravitational well of Venus. This all translates to large payload
mass requirements.

Titan sample return

Due to the surface processing that occurs on the surface of Titan, sample return should include
both atmospheric and surface samples. The extremely cold surface temperatures (~-180° C) may
complicate sample acquisition. The geological diversity also warrants sample collection at mul-
tiple sites, for example, from surface liquid and a possible cryovolcanism site. Preservation of
samples requires a refrigeration system under O 2 free conditions. One scenario for a Titan mission
was described earlier- see section VI.2. Clearly, the complexity of a Titan sample mission would
greatly benefit from the large payload mass that an Ares V could deliver.

Sample missions to asteroids and comets

The Ares V would allow access to more Near Earth Objects (NEOs), because of its larger delta-V
capabilities. It could enable visiting several asteroids on the same mission. As discussed previ-
ously, it could enable human exploration of a NEO by using other Constellation assets (see section
IV.7). Comets also require large delta-V for rendezvous as well as propulsion to remain near the
comet for extended sampling. Preservation of the sample requires refrigeration under O 2 free con-
ditions similar to that for Titan.

Implications for sample return missions

The fact that an Ares V can enable sample return suggests that we should start thinking of the
infrastructure to prepare for sample return. For example, flight development, containment and
curation facilities. Other technologies need to be matured as well, such as aerocapture and thermal
protection systems and facilities.

VII.2 Payload Development and Accommodation Issues

The second breakout session considered payload development and accommodation issues for
planetary missions. Since current and next generation radioactive power sources are important for
planetary missions, especially to the outer solar system, the design of the Ares V should not pre-
vent their use. In addition there should be late access on the pad to the shroud for installing nuclear
powered payloads, for fueling an upper stage vehicle (e.g. a Centaur), and for late integration and
maintenance. There should be provision for multi-spacecraft payload capability. The group sug-
gested considering a standard Altair adapter, a generic interface definition, an Evolved Secondary
Payload Adapter (ESPA) [ 12] , and shroud load-sharing capability.
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Accommodation issues included dealing with planetary protection issues by maintaining a high
degree of cleanliness. In addition, a provision is needed for handling hazardous propellants and
oxidizers, such as nitrogen tetraoxide (NTO) and hydrazine, for long duration missions. Consid-
eration should be given to hazardous material monitoring, handling, and venting. On the pad, the
group recommended a continuous N 2 purge, umbilicals for active payloads, and adequate data and
power accommodation.

The group recommended that acoustical, vibrational, and thermal loads not exceed those on current
heavy lift vehicles such as Delta IV Heavy. There was concern as to whether the current Ares design
that puts a 500-second limit on engine burns would negatively impact planetary missions requiring
a high C3 . This remains an open question, but was not thought to be a serious limitation.

With the lengthening of the SRBs to 5.5 segments, the issue of volume constraints on the payload
was raised when a Centaur upper stage was employed. The length of the shroud is currently limited
by the height of the VAB at KSC. However, most planetary missions achieve sufficient C 3 without
an upper stage; notable exceptions are direct-transfer missions to the outer solar system. Further-
more, missions like the Interstellar Probe mission (section V.2), which would definitely employ an
upper stage, would still have room to accommodate the payload on top of the Centaur. Replacing
the current baseline biconic shape with the alternative ogive-shaped shroud would also provide
additional shroud volume, and thus would be more favorable for planetary missions. Finally, by
the early 2020’s when the Ares V will be available for planetary missions, these height constraints
may no longer be an issue.

Future Directions- How to get the message out?

The general consensus at the workshop was that the Ares V and other Constellation assets, have the
potential to have a large impact on planetary science. In the final session we primarily discussed
how we bring this message to the planetary community. Preparations have already begun for the
next planetary decadal survey, which is expected to start sometime in the first half of 2009. If the
potential of Ares V is to be considered by future decadal panels, we must engage these science
communities in the near future. The first attempt to do so was at the International Astronautical
Congress (IAC) meeting in Scotland in October 2008. The opportunity to present here was espe-
cially important, as it allowed us to address the international community. International partnerships
will be particularly important for the large flagship missions that the Ares V will enable.

The previous workshop on astronomy and this one on solar system science are a first step. The
results of both workshops are published as NASA Conference Proceedings (this report and refer-
ence 3). Further impetus for bringing the message to the science community should come from the
National Research Council (NRC) report that is due out in November of 2008. Hopefully these
reports will help catalyze the astronomy and planetary science communities to consider the new
missions that will be enabled by the Constellation architecture.
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Concluding Thoughts

This workshop and the previous one looking at astronomy missions [3], has shown that the Ares V
vehicle changes the paradigm of what science payloads can be launched, because the vehicle’s
launch performance (C3 versus payload) and larger fairing diameter represent a dramatic improve-
ment over existing vehicles. It is particularly enabling for sample return, which takes advantage of
all of the Ares V capabilities.

One concept that arose from both workshops is whether the large mass and volume capabilities
of the Ares V can be used to trade off complexity and thereby reduce technology development
and integration costs. For example, they are many ways to use “cheap” mass to augment mis-
sion capability, such as inert mass (e.g. combinations of tungsten, copper, and hydrocarbons)
for shielding, fuel for propulsive maneuvers, and redundancy. The large fairing makes feasible
launching large monolithic mirrors that may be less costly to build and less risky to deploy. The
Ares V vehicle not only changes what missions are possible, but also has the potential to alter
the way we historically manage and design spacecraft and missions. These ideas deserve further
study and possibly the investment of funds to perform trade studies that would take this analysis
to a higher level of fidelity.
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