FDR doesn’t tell the whole story: Joint influence of effect size and covariance structure on the distribution of the false discovery proportions.
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n=20,n, =4,n, =20, 40, 80, 160, 320; FDR controlled to g = 0.10 . When effect sizes and the proportion of nulls are both small, the actual
12 FDR can be a lot smaller than its nominal value (q).

p,0,c ~[U(0,1)]/*or U(0,1); w’s random weights 2. Even when the FDR is close to its nominal value, the FDP distribution can
have extreme skewness opening up the possibility of realizing occasional
large FDPs in a real experiments

3. For fixed g, depending on € and m,/m, skewness and other
characteristics of the FDP distribution can be strongly associated with the
degree of dependence between test statistics.

As part of a 2009 Annals of Statistics paper, Gavrilov, Benjamini, and
Sarkar report results of simulations that estimated the false discovery rate
(FDR) for equally correlated test statistics using a well-known multiple-test
procedure. In our study we estimate the distribution of the false discovery
proportion (FDP) for the same procedure under a variety of correlation
structures among multiple dependent variables in a MANOVA context.
Specifically, we study the mean (the FDR), skewness, kurtosis, and

FDP Distributions and Effect Size, m,/m, and Dependence Skewness of FDP Distribution

0<my/m<0.25

S = 2-stage sample correlation matrix 0.25 < mo/m < 0.50

Matrix of mean vectors
u = 1y luzlpuslis] where p;isng X 1
Each row of u has one of the following forms (at random)

When the effect size and m,/m are small, the FDP distribution can have
extreme positive skewness, with a high probability of no rejections. In this
case the FDR is also below its nominal value (larger FDR deficit). Skewness 20
appears to increase under dependence.
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percentiles of the FDP distribution in the case of multiple comparisons 1:[0 A A =+A] 10- - | |

that give rise to correlated non-central t-statistics when results at several 2:[0 0 A =+A] When the effect size is large and m,/m is small, skewness of the FDP 4. In explaining the effect of correlated dependent variables on functions of
time periods are being compared to baseline. Even if the FDR achieves its H=3.10 0 0 +A distribution is relatively close to zero, but is largest in Dependence Scenario y test stat!st!cs, one cann.ot.assume that the correlation structure O_f the
nominal value, other aspects of the distribution of the FDP depend on the 210 0 0 0]- D. Imposition of multiple comparisons in the independent variables case N test statistics always mimics that of the correlated dependent variables.

5. Consider controlling the k-FWER (probability of kK or more rejections

interaction between signed effect sizes and correlations among variables, - _
when H, is true) in the presence of moderate to extreme dependence,

proportion of true nulls, and number of dependent variables. We show
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(DS = PI) tends to produce negatively skewed FDP distributions. Under

where p. = m,/m, the expected proportion of nulls in the last three columns, , . .
P; 4 P brop complete independence (DS = |), FDP skewness is small and can be positive

examples where the mean FDP (the FDR) is 10% as designed, yet there is a IS diStr”?}‘ted as U(0, 0.90) and the sign of A in the last column is+ 1 with or hegative. 8- o | 8- especially when one suspects a large proportion of non-null cases, but
surprising probability of having 30% or more false discoveries. Thus, in a probability 0.5. (1= pW2 N ’ 1° . with relat-ively small -effect si.zes.

real experiment, the proportion of false discoveries could be quite The effect size e~U(0,4) and A= e p) When m,/m is large ( > 0.5), FDP skewness is largest when DS = D (small or . 6 O . 6. Please enjoy our onllng version located at:

different from the stipulated FDR. vn large effect size), but there is not much between Dependence Scenarios for . Jo %o, % ° http://66.43.220.232/james/JSMposter.html|
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Background and Significance

Limitations & Future Directions
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Gavrilov, Benjamini, and Sarkar (GBS) [1] discuss the pros and cons of , | i §Kr . M AP Lo S . . . o . .
ceveral methcj>ds for controlling th(e FDI)R i[n]a muItipIe—tes’fing situation with Average Power vs Stipulated FDR level While there is little effect of DS on the FDR (previous figure), regardless of i '1 .G." ; ; h 1 | d 3 " 1. Our simulations have inherent limitations because it is not possible to
a large number of variables which may be correlated. In particular, they e<1 1<g<?2 my/m or effect size. However increased skewness increases the probability e e 05081 o D52 e investigate all plausible covariance structures.
orove that a simplified version of a family of mul.tistage proce’dures of realizing a large FDP in any given experiment. 2. In cases where H, was not true, means were set to either a constant or
suggested by Benjamini, Krieger, and Yekutieli (BKY) [2] does indeed ke th th ok " o has [itt]e off 3 f/\e;rof. q tiple testi thod (BKY), and pri '
control the FDR to a desired level g, when the test statistics are mutually Unlike the case wit .s e.wne?ss, the dependence scenario has little effect on Inter-quartile Range (IQR) . We focused on or.we multiple testing metho , and primarily one
independent. GBS then provide results of some simulations with equi- the IQR of the FDP distribution, regardless of € or my/m. value of the nominal test level (0.10).
correlated and normally distributed test statistics to show that the FDR of A B
this simplified BKY procedure is fairly robust under this dependence , | | | | | | | | | | | Continuous Effect of Dependence N9 Relating Correlation of Variables to Correlation of t-Statistics
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V'=# of true null hypotheses rejected 2718° 2% For certain combinations of € and m,/m, many properties of the FDP S . - R
Rejected,R ulls 0- 04 o ) ] ] . obtain an m x 1 vector T of t-statistics T,, T,, ..,T,, L
false df , FDP I I I I I I I I I I n n distribution are strongly associated with A;. ‘1 1
alse discovery proportion ( ) 0 1 s’.cizpulated F.;R 4 5 0 1 S.tizpmated F'SR 4 5 Question: How do n, V, and p affect var(T)? inap? o 05<imimal<z + minaios
V/R (R >0) Example: Skewness vs. 4] for large £ and m,/m Answer: n doesn’t matter. p and V do matter.
_ . o/\. o Case: vijmimj < 0 i
FDP = {0 (R = 0)} proportion of nulls (%): ® 0to25 ® 25t050 ® 50t0o75 @ 75to 100 . llustration: Simulation results: 1 20: m < 2 1 ——
. . I | —jy ¢ I I 2000 realizations of (T, T,) f h value of 2 and p. ! R
FDR = E(FDP) As expected, power increases with stipulated FDR and the increase is . - . T v : = Coa B ! realizations of (T, T) for each value of jt and p °1 ! by oy ! ? —
sharper for larger effect size and a greater percentage of non-nulls. B A L m0/m V= (1 ij) p =—0.9(0.2)0.9 G
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* 1000 simulated experiments per simulation run i} When < 0, (Ty, T, ) can be quite different from cor(Y;,Y,) depending on p, u,
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dependence scenarios (DS): 1104 = 010 | oy T Ramifications:
| - variables and tests are completely independent; ' ‘l‘ o ' .."0".‘- ; The effect of dependence on the FDP distribution, whether induced by innate correlation between
. . . . 0.08 7 el T 0.08 1 rs e Bee . variables or by multiple comparisons in a repeated measures design, is manifested by the correlation
Pl - variables are independent, but with dependent multiple o TR, - X o L . . ’
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comparisons as a result of repeated measures design; Son. | oy el Son. % “...:;,: Example of FDP Distributions by Dependence Association of Dependence with FDP Characteristics that of the original variables. In particular, the correlation structure of the t-statistics that we studied
D - general covariance structure between variables (weighted sum of ' “‘",’ ’:": 5‘" ' A ...e’ ¥ here depends on the interaction between the intra-class correlation over the repeated measures, the
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