
8 NASA Tech Briefs, August 2006

Developing Signal-Pattern-Recognition Programs
Software system aids development of application programs that analyze signals.
Lyndon B. Johnson Space Center, Houston, Texas

Pattern Interpretation and Recognition
Application Toolkit Environment (PI-
RATE) is a block-oriented software system
that aids the development of application
programs that analyze signals in real time
in order to recognize signal patterns that
are indicative of conditions or events of in-
terest. PIRATE was originally intended for
use in writing application programs to rec-
ognize patterns in space-shuttle telemetry
signals received at Johnson Space Center’s
Mission Control Center: application pro-
grams were sought to (1) monitor electric
currents on shuttle ac power busses to rec-
ognize activations of specific power-con-
suming devices, (2) monitor various pres-
sures and infer the states of affected
systems by applying a Kalman filter to the
pressure signals, (3) determine fuel-leak
rates from sensor data, (4) detect faults in
gyroscopes through analysis of system
measurements in the frequency domain,
and (5) determine drift rates in inertial
measurement units by regressing measure-
ments against time. PIRATE can also be
used to develop signal-pattern-recognition
software for different purposes — for ex-
ample, to monitor and control manufac-
turing processes.

PIRATE was preceded by a custom
stripchart-analysis program that took a
long time to develop and offered little
opportunity for reuse. Also available
prior to the development of PIRATE
were commercial block-oriented devel-
opment software systems that were useful
for prototyping but exhibited significant
limitations: for example, they could not
be used to produce real-time application
programs, could not be used to develop
software compatible with the hardware
and the other software of the Mission
Control Center, could not be used to de-
velop application programs that could
function in the face of the communica-
tion difficulties (especially, intermittency
and errors) inherent in monitoring re-
mote equipment, and could not provide
pattern-recognition capabilities. PIRATE
overcomes these deficiencies to a large
extent, and goes beyond that by includ-
ing a C-language interface that provides
unprecedented flexibility.

PIRATE includes the following com-
ponents:
• The PIRATE data-flow language. An ap-

plication program is specified by use of
the PIRATE data-flow language. An

application-program specification de-
fines which data processing modules
will be used in the program and estab-
lishes the data flowing among the
modules. Similarly, for building a
module, one specifies the flow of data
into and out of a module by use of the
PIRATE language.

• The PIRATE predefined modules. PIRATE
contains several predefined modules,
including ones for data communication,
signal processing, and data filtering.
Among these are software tools to filter
out the highly non-Gaussian errors that
are typical of the communication
process while leaving the nonerroneous
data intact. (Most other signal-process-
ing software filters that can remove non-
Gaussian errors also undesirably modify
the underlying signals.) Also among the
predefined modules are a Bayesian clas-
sifier and other software tools for inter-
preting the contents of signals.

• The PIRATE code generator. The PIRATE
code generator translates an applica-
tion-program-specification file and the
associated module-configuration files
into a standard C-language file. This
file contains the main routine for the
application program. A C compiler can
then compile and link this file to pro-
duce an efficient real-time pattern-
recognition application program.

• The PIRATE object library. The gener-
ated code makes calls to several PI-
RATE infrastructure routines. The PI-
RATE object library contains the
object code for these infrastructure
routines and for the predefined mod-
ule routines.

• The PIRATE “imake” facility. The imake
is a programming software tool that
was developed to address issues of
portability pertaining to the X Win-
dow System and to provide a high-
level view of the software-building
process. However, the standard imake
suite explicitly targets the construc-
tion of X Window System software.
The PIRATE imake facility takes ad-
vantage of the standard imake suite
where practical, but targets the con-
struction of PIRATE and PIRATE ap-
plication programs rather than X Win-
dow System software.

• An architecture for the development of mod-
ules by the user. PIRATE is intentionally
an open-ended software tool. While

simple application programs can be
constructed by use of the predefined
modules, it is likely that a useful pat-
tern-recognition application programs
could not. Instead, domain-specific
logic can be expected to be necessary.
PIRATE enables the implementation
of domain-specific knowledge in the
widely used C programming language.
The architecture for user-developed
modules specifies how such domain
knowledge can be used in a PIRATE
application program.
PIRATE is used both in building a pat-

tern-recognition application program
and in the real-time execution of that
program. To build an application pro-
gram, one constructs an application-
specification file, application-specific
modules, and application imake file.
The imake file identifies the compo-
nents that form the executable applica-
tion program and directs construction
of these components from the source
files developed by the user.

During execution of the pattern-
recognition application program, the
source module of the program acquires
the incoming data and uses the PIRATE
infrastructure to feed the data to down-
stream modules. The infrastructure
sends the appropriate data to the appro-
priate modules, which operate on the
data. Each module uses the PIRATE in-
frastructure to send its output to mod-
ules downstream of it.

In PIRATE, transmission of data be-
tween data-processing modules is always
performed by calls to C functions that
are parts of an executable module. In
other software systems, data are often
transmitted between modules via operat-
ing systems; the computational overhead
of doing so is often several orders of
magnitude greater than that of PIRATE.
In PIRATE, the processing of data within
a module is performed by compiled
functions. In other systems, the process-
ing of data may be performed by inter-
preters, which, again entail computa-
tional overhead much greater than that
of PIRATE.

This program was written by Robert O.
Shelton of Johnson Space Center and
David Hammen of LinCom. For further in-
formation, contact the Johnson Technology
Transfer Office at (281) 483-3809.
MSC-22944


