
NASA USRP – Internship Final Report

 1 Spring 2011 Session

NDAS Hardware Translation Layer Development

Ryan N. Nazaretian
USRP Intern, Long Beach, MS 39560

I. ABSTRACT

The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software

for NASA’s Rocket Testing Facilities. There must be a software-hardware translation layer so
the software can properly talk to the hardware. Since the hardware from each test stand varies,
drivers for each stand have to be made. These drivers will act more like plugins for the software.
If the software is being used in E3, then the software should point to the E3 driver package. If
the software is being used at B2, then the software should point to the B2 driver package. The
driver packages should also be filled with hardware drivers that are universal to the DAS system.
For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the
driver for those three stands should be the same and updated collectively.

II. INTRODUCTION

The NASA Data Acquisition Project NDAS is a new software suite designed to handle the

low speed data acquisition processes of NASA’s rocket propulsion test facilities. In Phase I,
NDAS is to support A1, A2, and B2 at Stennis Space Center (SSC). Phase 2, to be completed at
a later date, is to support the rocket propulsion test facilities at B2 and the E-Complex (building
4010) at SSC, as well as the rocket propulsion test facilities at White Sands Test Facility in Las
Cruces, New Mexico, and rocket propulsion test facilities at the Marshall Space Flight Center in
Huntsville, Alabama.

This project is designed to eliminate the complications and differences between test stands.
An issue that has existed for many years is the lack of consistency between the DAS systems. At
the E-Complex, all three test stands use a LabVIEW based DAS, but each is run differently.
Even larger changes occur once you compare the E-Complex DAS system with the DAS
system’s running at the A-Complex and B-Complex.

With the changes in computer technology and software over the past few years, NASA
decided to start a project to replace every DAS system for its rocket propulsion test facilities.
NDAS will have the same interface for each test stand, and will communicate with all the
different hardware present at each test stand, which means it has to be adaptable with all the
hardware. The NDAS Hardware Translation Layer (NXLT) and the NDAS Calibration
Hardware Translation Layer (NCXLT) will be responsible for communicating with the hardware
on the test stands. Drivers must be made for each piece of hardware to allow the software to
communicate properly and efficiently. There are two main parts of the DAS hardware system,
the data acquisition equipment, and the calibration equipment.

NASA USRP – Internship Final Report

 2 Spring 2011 Session

III. NXLT & NCXLT INTRODUCTION

The hardware translation layer and calibration hardware translation layer are divided into two

systems. The NXLT consists of only the measurement acquisition devices, in my case, the
Preston Presys 1000 Data Conversion System. The NCXLT or the NDAS Calibration Hardware
Translation Layer consists of all the other devices including signal conditioners/amplifiers,
voltage standards, relay switch boxes, and function generators. The main difference between the
two is that the NCXLT equipment is not written to, or read from during testing. It remains in a
stable set state until calibration.

All of the drivers for the devices had to be made from scratch. I was responsible for making
the Preston 8300AU Signal Conditioner drivers. I was also responsible for designing and testing
some functions of the Presys. I developed a real time application to run on top of the LabVIEW
Real Time OS. This program communicates with the Preston Presys 1000. It configures the
Presys 1000 for an external burst rate, sets up the maximum channel scan list, and places the
Presys 1000 into run mode. It will then begin
reading all the channels and placing the data on the
IEEE 488 GPIB bus to be read by the real time
computer. The real time computer will then push
the data to a shared variable, either locally hosted
on the RT computer, or remotely on a shared
variable server.

Shared Variables are a useful tool included
with LabVIEW. They are based on TCP/IP, but
are configured and maintained in the background
by LabVIEW. Basically, they allow for data to be shared over the network with minimal
configuration, usually just an IP address or computer name. They share the same data type and
work quickly and reliable, perfect for distributing hundreds of measurements at 250 samples per
second over the network.

All of the software talks to the hardware over the IEEE 488 GPIB standard. GPIB, or
General Purpose Interface Bus, or often called the General Purpose Instrument Bus, was
developed originally in the late 1960s by Hewlett Packard, and was originally called the HPIB.
GPIB is an address based parallel communication architecture.
It is commonly used in lab equipment, and can be found on
many lab multimeters, such as the Agilent 34401A.

IV. NXLT DEVELOPMENT

The NXLT is responsible for communicating with the

device responsible for taking the signals and sending them to
the computer. We often call them digitizers, due to the fact
that they convert the signal data into a digital signal for the
computer. The two types of digitizers at Stennis are the
Preston Presys 1000 and the Tustin 410 family of data
acquisition equipment. The digitizer typically takes in
hundreds of signals (analog and discrete), and adds them to the

Figure 1, GPIB Connector

Figure 2, Presys 1000 Data
Acquisition System

NASA USRP – Internship Final Report

 3 Spring 2011 Session

GPIB buffer. The computer reads the buffer and translates the data.
For the Presys, all analog inputs are 16bit Signed Integers, meaning they have a range from -

32768 to 32767. We call these numbers counts, as they do not represent voltage, pressure,
temperature, etc… they are just a number. To convert counts to an engineering unit, it usually
needs to be converted to voltage first. The Presys 1000 has a voltage range of -10.24V to
10.24V. This is the equation to convert the Presys 1000 counts to voltage.

݁݃ܽݐ݈݋ܸ ൌ
ݏݐ݊ݑ݋ܥ
32767

ൈ 10.24

Or simply…

݁݃ܽݐ݈݋ܸ ൌ 0.003125095370342112 ൈ ݏݐ݊ݑ݋ܥ

After getting the signal to a voltage, most conversions are a simple liner equation following

the ܻ ൌ ܯ · ܺ ൅ .equation with slope and Y-intercept ܤ

The discrete inputs are fairly basic. The Presys will send you the signed 16-bit integer, but
then you have to convert it to binary to give you 16 digital channels. The time word from the
Inter-range instrumentation group time code (IRIG Time Code) is given in binary coded decimal
format (BCD) using discrete inputs. The conversion for this is quite complex, but is given in the
following LabVIEW programming. Also shown is the table on how to decode BCD for IRIG B.

Word0
Seconds Milliseconds
(0-9) x 1 (0-9) x 100 (0-9) x 10 (0-9) x 1

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Word1
Hours Minutes Seconds

(0-3)
x 10

(0-9) x 1 (0-7) x 10 (0-9) x 1
(0-7) x
10

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Word2

Unused
Day of Year

(0-3) x
100

(0-9) x 10 (0-9) x 1

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

Figure 3, NASA's IRIG BCD Format

NASA USRP – Internship Final Report

 4 Spring 2011 Session

What this program does is take three
array elements from the data array and
separates them into 3 individual elements
signed 16-bit integers (I16s). The I16s
are then converted to binary arrays.
These arrays then stripped even further to
make the individual parts of the BCD
format. BCD works with binary (0, 1, 2,
4, 8, etc…) then uses a known multiplier
to build each digit. So If I want the
number 24, I would need the x10
multiplier to be 2, and the x1 multiplier
to be 4, so the final output would be
0b0010, 0b0100. The only issue with
this format of IRIG is that it does not
include the year information. To convert
this to a LabVIEW compatible time
stamp, you must include the year. I
developed a way to do this. LabVIEW
time stamps are two 64-bit numbers
based on the number of seconds since
Friday, January 1st, 1904 and the
fractional part of a second. January 1st,
1904 was picked as the epoch because it
was the first leap year of the 20th century
(2). I have to solve how many seconds
there have been since January 1, 1904
and January 1, 2011. I then found a
mean for how many days there are in a
year (as it is not exactly 365.25), and
made can now multiply by what year the
computer says it is, and append that with
the IRIG data to get the LabVIEW Time
Code.

Another design challenge was making the system reliable and self-debugging. It goes
through a quick check process during boot up, checking Presys communication, among other
things. When it starts the main process, it has five independent ‘while’ loops running. What this
allows me to do is to keep most things running if one part of the program encounters an error.
The five independent loops are Performance and Memory Monitor, System Events, Data
Acquisition (from Presys), processing and pushing out the data to the network, and recording the

Figure 4, IRIG Decoding Program

NASA USRP – Internship Final Report

 5 Spring 2011 Session

data locally. This system is designed to run at all times, recording a temporary file at 250
samples per second. It will record in a circular loop, of a defined length, as to never require user
interaction, and to always record data in case unforeseen events. This is also a way to keep a
redundant recording system. If the network link between the test control center (TCC) and the
test stand is lost, then the computer in the signal conditioning room will continue recording all
the data. On top of this redundancy, there is also a secondary DAS system running, so there is
almost complete redundancy in the whole system.

Most of this redundancy was put in place before the NDAS project, but the NDAS project
group went through a fault tree analysis (FTA) for the project, brainstorming all the possible
failures that could occur with the NDAS system. After the FTA, we designed ways to prevent,
or mitigate, the loss of mission for the NDAS project, which is data acquisition. We have to
make sure that if one part of the system fails, such as the network stream between the actual data
acquisition computer and the data logging machine, that no data is lost. We mitigate this by
including a circular buffer at the data acquisition level that will record a pre-determined length of
data at the full sample rate, for example, a week’s worth of data at 250 samples per second. This
functionality will run all the time, so if there was an unexpected event on the test stand, even on
the weekend or during the middle of the night, then the data system will capture it at the full
sample rate, plus the data system will be recording data permanently at a lower sample rate. This
will allow engineers to solve what caused the event. The test stand itself has many redundant
systems engineered in as well.

As mentioned before, B2 has Primary and Secondary DAS systems as well as Primary and
Secondary Event systems. This will hopefully prevent data loss if one of the systems fails.
Another engineered in redundancy are the IRIG time generators. There are, however, some
systems in place that are not redundant. If one of the signal conditioners fails, then there will be
complete data loss, or loss of data integrity on that particular channel. Another aspect to look at
is how the power is run to all of the equipment. Each rack of equipment is fed by one power
outlet, which is also fed from a dedicated breaker for that one outlet for that one rack. If the
breaker trips, all the equipment in that rack will stop be powered off and cease to work. Most of
the equipment has been installed in a way to minimize the impact of a power loss, such as the
Primary and Secondary DAS’s, but the Event’s master units runs off of the same power line, so a
loss of power for that rack will end up with complete data loss of the Event’s Primary and
Secondary system. Another note to make is that a power loss for a rack of the 8300AU signal
conditioners in B2 will result in a significant amount of data loss (6 chassis at 16 channels per
chassis would result in 96 channels of complete data loss).

An unusual setup for redundancy we found involves the previously mentioned IRIG time
generators. One IRIG generator feeds the Primary DAS System, and the Secondary Event’s
System, while the second IRIG generator feeds the Secondary DAS System and the Primary
Event’s System. While this is still redundant, it does not make sense to take out one part of each
DAS system. As a note though, the B2 DAS system was never verified after it was installed

NASA USRP – Internship Final Report

 6 Spring 2011 Session

because the program it was renovated for was canceled
before it ever started. This also may have caused some of
the problems we were having with the translation layer.

During development, we moved some hardware from
the B2 test stand to the B2 test control center, where we are
doing all of our development. Some of the hardware has
been troublesome for us. The Preston Presys 1000 Data

Acquisition System sometimes does not start up correctly.
We also have been having issues with the Preston 8300AU
Signal Conditioners locking up while communicating with them. On top of this, all of the
electronics inside of the Preston equipment is even older. The Presys 1000s were purchased in
1996, 15 years ago. They are running on an Intel 8085 microprocessor, which was designed in
1977, so the actual hardware is over 30 years old. All of this hardware is expected to be able
record over 600 channels of data at 250 samples per second with high accuracy and precision.
At this point of development, we are able to get the required data rate and data integrity, so we
are confident we can develop the new software to meet all the requirements.

The actual computers we’re
using for the translation layers
are rack mountable commercial-
off-the-shelf (COTS) computers
with an ordinary Intel Core 2
Duo CPU running at 2.66GHz,
2GB of DDR2 RAM, and dual

160GB 7200RPM hard drives. These machines are
capable of acquiring the 600+ channels of data at 250
samples per second, converting the data into voltage,
converting the voltages into engineering units,
converting the time stamp information, recording the
data locally to the hard drive, reporting CPU and RAM
usage, and pushing the data out onto the network at the
250 samples per second with around 10% CPU usage,
85MB of RAM, and using about 1% of the network
utilization. This is the computer that runs the
LabVIEW Real Time Operating System mentioned
earlier. It is also using the Datalight Reliance file
system. Both the Real Time OS and the Datalight
Reliance file system will provide a robust data system

Figure 5, Motherboard of the Preston
8300AU Signal Conditioner

Figure 7, DAS NXLT Front Panel Test

Figure 6, NDAS Computer

NASA USRP – Internship Final Report

 7 Spring 2011 Session

that will need very little maintenance,
and will prevent issues from occurring.
The old DAS system ran on Windows
XP, which was optimized for real-time
use. Windows, by default, includes
many ‘behind-the-scenes’ optimizations
to keep itself running well. Those
optimizations can impact the data
integrity, causing lags in the data
processing, and reduces overall
reliability of the system as a whole.
Windows is simply not needed, and the

LabVIEW Real Time Operating System
is a much better choice for NDAS. One
big feature is that it is command line based, with no user input. This provides a denial of service
security policy for the machine, where no user can alter settings or run additional software on the
machine, providing a more reliable system onto which to run the DAS software.

V. NCXLT DEVELOPMENT

Like the NXLT Development, the
NASA Calibration Hardware
Translation Layer Development
involves much of the same hardware,
including the same COTS rack
mounted computer and same GPIB
connections. The big difference
between NCXLT and NXLT is that
NCXLT does not take any data in.
NCXLT sets parameters in order to
perform calibration. Even the data
taken in needed for calibration is read
from the NXLT. NCXLT does have
the task of communicating to multiple
pieces of equipment though. The
NXLT only has to communicate to the
data acquisition hardware, in our test
cases, the Presys 1000. The NCXLT
has to communicate with the Preston
8300AU Signal Conditioners, Agilent
Multimeter, Agilent Multifunction Switch,

Figure 9, Preston 8300AU Signal Conditioners

Figure 8, DAS NXLT Command Line Interface

NASA USRP – Internship Final Report

 8 Spring 2011 Session

Krohn-Hite Voltage Source, and Stanford Research System’s Function Generator with the GPIB
interface for the B2 test stand (other test stands may have other equipment). At this time, I only
have drivers made for the Preston 8300AU Signal Conditioners. The driver development took
much longer than expected as the hardware I was trying to test them on was defective. Rather
than blaming the hardware, I decided to blame my software until I was absolutely convinced that
the hardware was faulty when the old calibration software, made by Dan Goad at SSC also
would crash while communicating with the signal conditioners. Now that I’m finished with the
Preston 8300AU drivers, I was given more documentation that could speed up programming the
signal conditioners significantly and provide for a way to backup the signal conditioner setup by
creating a memory map for the amplifiers and dumping that memory map to the signal
conditioner’s controller. Luckily, the multimeters used at the test stands are widely used, and
there are already drivers pre-built in LabVIEW to use. All the other equipment must have
drivers written.

VI. CONCLUSION

The NDAS Hardware Translation Layer development has been a mixed experience. The age

of equipment, lack of documentation, or just the differences in documentation from different
time periods made designing the drivers for the hardware difficult for Jon Morris and I. The
Presys 1000 uses binary programming and the documentation has scattered information
throughout the user manual, all of which is very important for the programming sequence. For
the Preston 8300AU Signal Conditioners, there are about three different versions of the manual
available, and then there were undocumented commands that were implemented for NASA’s use
back in 1997. A month after beginning driver development for the signal conditioners, I was
given the official documentation for those additional commands.

The lack of boarding the equipment also caused quite a few problems. We were never sure if
the equipment worked, and if it was not working at all, what to even do. We kept finding tidbits
of information that, in the end, helped us write our software. Our goal was to get a fast and
reliable data acquisition system working for NASA. So far, we’re meeting our goal. Nothing
ever works as expected the first time it is tried. Work is still needed on all parts of the NXLT
and NCXLT, but with some time, all the problems will be ironed out.

NASA USRP – Internship Final Report

 9 Spring 2011 Session

REFERENCES

1. Wikipedia – IEEE-488, http://en.wikipedia.org/wiki/IEEE-488, Accessed April 20, 2011.
2. Wikipedia – Epoch (reference date),

http://en.wikipedia.org/wiki/Epoch_%28reference_date%29, Accessed April 21, 2011.

