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I. ABSTRACT 
 
The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software 

for NASA’s Rocket Testing Facilities.  There must be a software-hardware translation layer so 
the software can properly talk to the hardware.  Since the hardware from each test stand varies, 
drivers for each stand have to be made.  These drivers will act more like plugins for the software.  
If the software is being used in E3, then the software should point to the E3 driver package.  If 
the software is being used at B2, then the software should point to the B2 driver package.  The 
driver packages should also be filled with hardware drivers that are universal to the DAS system.  
For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the 
driver for those three stands should be the same and updated collectively.  

 
II. INTRODUCTION  

 
The NASA Data Acquisition Project NDAS is a new software suite designed to handle the 

low speed data acquisition processes of NASA’s rocket propulsion test facilities.  In Phase I, 
NDAS is to support A1, A2, and B2 at Stennis Space Center (SSC).  Phase 2, to be completed at 
a later date, is to support the rocket propulsion test facilities at B2 and the  E-Complex (building 
4010)  at SSC, as well as the rocket propulsion test facilities at White Sands Test Facility in Las 
Cruces, New Mexico, and rocket propulsion test facilities at the Marshall Space Flight Center in 
Huntsville, Alabama. 

This project is designed to eliminate the complications and differences between test stands.  
An issue that has existed for many years is the lack of consistency between the DAS systems.  At 
the E-Complex, all three test stands use a LabVIEW based DAS, but each is run differently.  
Even larger changes occur once you compare the E-Complex DAS system with the DAS 
system’s running at the A-Complex and B-Complex. 

With the changes in computer technology and software over the past few years, NASA 
decided to start a project to replace every DAS system for its rocket propulsion test facilities.  
NDAS will have the same interface for each test stand, and will communicate with all the 
different hardware present at each test stand, which means it has to be adaptable with all the 
hardware.  The NDAS Hardware Translation Layer (NXLT) and the NDAS Calibration 
Hardware Translation Layer (NCXLT) will be responsible for communicating with the hardware 
on the test stands.  Drivers must be made for each piece of hardware to allow the software to 
communicate properly and efficiently.  There are two main parts of the DAS hardware system, 
the data acquisition equipment, and the calibration equipment. 
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III. NXLT & NCXLT INTRODUCTION 

 
The hardware translation layer and calibration hardware translation layer are divided into two 

systems.  The NXLT consists of only the measurement acquisition devices, in my case, the 
Preston Presys 1000 Data Conversion System.  The NCXLT or the NDAS Calibration Hardware 
Translation Layer consists of all the other devices including signal conditioners/amplifiers, 
voltage standards, relay switch boxes, and function generators.  The main difference between the 
two is that the NCXLT equipment is not written to, or read from during testing.  It remains in a 
stable set state until calibration.   

All of the drivers for the devices had to be made from scratch.  I was responsible for making 
the Preston 8300AU Signal Conditioner drivers.  I was also responsible for designing and testing 
some functions of the Presys.  I developed a real time application to run on top of the LabVIEW 
Real Time OS.  This program communicates with the Preston Presys 1000.  It configures the 
Presys 1000 for an external burst rate, sets up the maximum channel scan list, and places the 
Presys 1000 into run mode.  It will then begin 
reading all the channels and placing the data on the 
IEEE 488 GPIB bus to be read by the real time 
computer.  The real time computer will then push 
the data to a shared variable, either locally hosted 
on the RT computer, or remotely on a shared 
variable server.   

Shared Variables are a useful tool included 
with LabVIEW.  They are based on TCP/IP, but 
are configured and maintained in the background 
by LabVIEW.  Basically, they allow for data to be shared over the network with minimal 
configuration, usually just an IP address or computer name.  They share the same data type and 
work quickly and reliable, perfect for distributing hundreds of measurements at 250 samples per 
second over the network.   

All of the software talks to the hardware over the IEEE 488 GPIB standard.  GPIB, or 
General Purpose Interface Bus, or often called the General Purpose Instrument Bus, was 
developed originally in the late 1960s by Hewlett Packard, and was originally called the HPIB.  
GPIB is an address based parallel communication architecture.  
It is commonly used in lab equipment, and can be found on 
many lab multimeters, such as the Agilent 34401A. 

 
IV. NXLT DEVELOPMENT 

 
The NXLT is responsible for communicating with the 

device responsible for taking the signals and sending them to 
the computer.  We often call them digitizers, due to the fact 
that they convert the signal data into a digital signal for the 
computer.  The two types of digitizers at Stennis are the 
Preston Presys 1000 and the Tustin 410 family of data 
acquisition equipment.  The digitizer typically takes in 
hundreds of signals (analog and discrete), and adds them to the 

Figure 1, GPIB Connector 

Figure 2, Presys 1000 Data 
Acquisition System 
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GPIB buffer.  The computer reads the buffer and translates the data. 
For the Presys, all analog inputs are 16bit Signed Integers, meaning they have a range from -

32768 to 32767.   We call these numbers counts, as they do not represent voltage, pressure, 
temperature, etc… they are just a number.  To convert counts to an engineering unit, it usually 
needs to be converted to voltage first.  The Presys 1000 has a voltage range of -10.24V to 
10.24V.  This is the equation to convert the Presys 1000 counts to voltage. 

 

݁݃ܽݐ݈݋ܸ ൌ
ݏݐ݊ݑ݋ܥ
32767

ൈ 10.24 

 
Or simply… 

 
݁݃ܽݐ݈݋ܸ ൌ  0.003125095370342112 ൈ  ݏݐ݊ݑ݋ܥ

 
After getting the signal to a voltage, most conversions are a simple liner equation following 

the ܻ ൌ ܯ · ܺ ൅  .equation with slope and Y-intercept ܤ

The discrete inputs are fairly basic.  The Presys will send you the signed 16-bit integer, but 
then you have to convert it to binary to give you 16 digital channels.  The time word from the 
Inter-range instrumentation group time code (IRIG Time Code) is given in binary coded decimal 
format (BCD) using discrete inputs.  The conversion for this is quite complex, but is given in the 
following LabVIEW programming.  Also shown is the table on how to decode BCD for IRIG B. 

Word0 
Seconds Milliseconds 
(0-9) x 1 (0-9) x 100 (0-9) x 10 (0-9) x 1 

Bit 
15 

Bit 
14 

Bit 
13 

Bit 
12 

Bit 
11 

Bit
10 

Bit 
9 

Bit 
8 

Bit
7 

Bit
6 

Bit
5 

Bit
4 

Bit 
3 

Bit 
2 

Bit
1 

Bit
0 

Word1 
Hours Minutes Seconds 

(0-3) 
x 10 

(0-9) x 1 (0-7) x 10 (0-9) x 1 
(0-7) x 
10 

Bit 
15 

Bit 
14 

Bit 
13 

Bit 
12 

Bit 
11 

Bit
10 

Bit 
9 

Bit 
8 

Bit
7 

Bit
6 

Bit
5 

Bit
4 

Bit 
3 

Bit 
2 
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1 
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0 

Word2 

Unused 
Day of Year 

(0-3) x 
100 

(0-9) x 10 (0-9) x 1 

Bit 
15 

Bit 
14 

Bit 
13 

Bit 
12 

Bit 
11 

Bit
10 

Bit 
9 

Bit 
8 

Bit
7 

Bit
6 

Bit
5 

Bit
4 

Bit 
3 

Bit 
2 

Bit
1 

Bit
0 

Figure 3, NASA's IRIG BCD Format 
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What this program does is take three 
array elements from the data array and 
separates them into 3 individual elements 
signed 16-bit integers (I16s).  The I16s 
are then converted to binary arrays.  
These arrays then stripped even further to 
make the individual parts of the BCD 
format.  BCD works with binary (0, 1, 2, 
4, 8, etc…) then uses a known multiplier 
to build each digit.  So If I want the 
number 24, I would need the x10 
multiplier to be 2, and the x1 multiplier 
to be 4, so the final output would be 
0b0010, 0b0100.  The only issue with 
this format of IRIG is that it does not 
include the year information.  To convert 
this to a LabVIEW compatible time 
stamp, you must include the year.  I 
developed a way to do this.  LabVIEW 
time stamps are two 64-bit numbers 
based on the number of seconds since 
Friday, January 1st, 1904 and the 
fractional part of a second.  January 1st, 
1904 was picked as the epoch because it 
was the first leap year of the 20th century 
(2).  I have to solve how many seconds 
there have been since January 1, 1904 
and January 1, 2011.  I then found a 
mean for how many days there are in a 
year (as it is not exactly 365.25), and 
made can now multiply by what year the 
computer says it is, and append that with 
the IRIG data to get the LabVIEW Time 
Code. 

Another design challenge was making the system reliable and self-debugging.  It goes 
through a quick check process during boot up, checking Presys communication, among other 
things.  When it starts the main process, it has five independent ‘while’ loops running.  What this 
allows me to do is to keep most things running if one part of the program encounters an error.  
The five independent loops are Performance and Memory Monitor, System Events, Data 
Acquisition (from Presys), processing and pushing out the data to the network, and recording the 

Figure 4, IRIG Decoding Program 
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data locally.  This system is designed to run at all times, recording a temporary file at 250 
samples per second.  It will record in a circular loop, of a defined length, as to never require user 
interaction, and to always record data in case unforeseen events.  This is also a way to keep a 
redundant recording system.  If the network link between the test control center (TCC) and the 
test stand is lost, then the computer in the signal conditioning room will continue recording all 
the data.  On top of this redundancy, there is also a secondary DAS system running, so there is 
almost complete redundancy in the whole system.    

Most of this redundancy was put in place before the NDAS project, but the NDAS project 
group went through a fault tree analysis (FTA) for the project, brainstorming all the possible 
failures that could occur with the NDAS system.  After the FTA, we designed ways to prevent, 
or mitigate, the loss of mission for the NDAS project, which is data acquisition.  We have to 
make sure that if one part of the system fails, such as the network stream between the actual data 
acquisition computer and the data logging machine, that no data is lost.  We mitigate this by 
including a circular buffer at the data acquisition level that will record a pre-determined length of 
data at the full sample rate, for example, a week’s worth of data at 250 samples per second.  This 
functionality will run all the time, so if there was an unexpected event on the test stand, even on 
the weekend or during the middle of the night, then the data system will capture it at the full 
sample rate, plus the data system will be recording data permanently at a lower sample rate.  This 
will allow engineers to solve what caused the event.  The test stand itself has many redundant 
systems engineered in as well.   

As mentioned before, B2 has Primary and Secondary DAS systems as well as Primary and 
Secondary Event systems.  This will hopefully prevent data loss if one of the systems fails.  
Another engineered in redundancy are the IRIG time generators.  There are, however, some 
systems in place that are not redundant.  If one of the signal conditioners fails, then there will be 
complete data loss, or loss of data integrity on that particular channel.  Another aspect to look at 
is how the power is run to all of the equipment.  Each rack of equipment is fed by one power 
outlet, which is also fed from a dedicated breaker for that one outlet for that one rack.  If the 
breaker trips, all the equipment in that rack will stop be powered off and cease to work.  Most of 
the equipment has been installed in a way to minimize the impact of a power loss, such as the 
Primary and Secondary DAS’s, but the Event’s master units runs off of the same power line, so a 
loss of power for that rack will end up with complete data loss of the Event’s Primary and 
Secondary system.  Another note to make is that a power loss for a rack of the 8300AU signal 
conditioners in B2 will result in a significant amount of data loss (6 chassis at 16 channels per 
chassis would result in 96 channels of complete data loss).   

An unusual setup for redundancy we found involves the previously mentioned IRIG time 
generators.  One IRIG generator feeds the Primary DAS System, and the Secondary Event’s 
System, while the second IRIG generator feeds the Secondary DAS System and the Primary 
Event’s System.  While this is still redundant, it does not make sense to take out one part of each 
DAS system.  As a note though, the B2 DAS system was never verified after it was installed 
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because the program it was renovated for was canceled 
before it ever started.  This also may have caused some of 
the problems we were having with the translation layer. 

During development, we moved some hardware from 
the B2 test stand to the B2 test control center, where we are 
doing all of our development.  Some of the hardware has 
been troublesome for us.  The Preston Presys 1000 Data 

Acquisition System sometimes does not start up correctly.  
We also have been having issues with the Preston 8300AU 
Signal Conditioners locking up while communicating with them.  On top of this, all of the 
electronics inside of the Preston equipment is even older.  The Presys 1000s were purchased in 
1996, 15 years ago.  They are running on an Intel 8085 microprocessor, which was designed in 
1977, so the actual hardware is over 30 years old. All of this hardware is expected to be able 
record over 600 channels of data at 250 samples per second with high accuracy and precision.    
At this point of development, we are able to get the required data rate and data integrity, so we 
are confident we can develop the new software to meet all the requirements. 

The actual computers we’re 
using for the translation layers 
are rack mountable commercial-
off-the-shelf (COTS) computers 
with an ordinary Intel Core 2 
Duo CPU running at 2.66GHz, 
2GB of DDR2 RAM, and dual 

160GB 7200RPM hard drives.  These machines are 
capable of acquiring the 600+ channels of data at 250 
samples per second, converting the data into voltage, 
converting the voltages into engineering units, 
converting the time stamp information, recording the 
data locally to the hard drive, reporting CPU and RAM 
usage, and pushing the data out onto the network at the 
250 samples per second with around 10% CPU usage, 
85MB of RAM, and using about 1% of the network 
utilization.  This is the computer that runs the 
LabVIEW Real Time Operating System mentioned 
earlier.  It is also using the Datalight Reliance file 
system.  Both the Real Time OS and the Datalight 
Reliance file system will provide a robust data system 

Figure 5, Motherboard of the Preston 
8300AU Signal Conditioner 

Figure 7, DAS NXLT Front Panel Test 

Figure 6, NDAS Computer 
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that will need very little maintenance, 
and will prevent issues from occurring.  
The old DAS system ran on Windows 
XP, which was optimized for real-time 
use.  Windows, by default, includes 
many ‘behind-the-scenes’ optimizations 
to keep itself running well.  Those 
optimizations can impact the data 
integrity, causing lags in the data 
processing, and reduces overall 
reliability of the system as a whole.  
Windows is simply not needed, and the 

LabVIEW Real Time Operating System 
is a much better choice for NDAS.  One 
big feature is that it is command line based, with no user input.  This provides a denial of service 
security policy for the machine, where no user can alter settings or run additional software on the 
machine, providing a more reliable system onto which to run the DAS software. 

V. NCXLT DEVELOPMENT 

Like the NXLT Development, the 
NASA Calibration Hardware 
Translation Layer Development 
involves much of the same hardware, 
including the same COTS rack 
mounted computer and same GPIB 
connections.  The big difference 
between NCXLT and NXLT is that 
NCXLT does not take any data in.  
NCXLT sets parameters in order to 
perform calibration.  Even the data 
taken in needed for calibration is read 
from the NXLT.  NCXLT does have 
the task of communicating to multiple 
pieces of equipment though.  The 
NXLT only has to communicate to the 
data acquisition hardware, in our test 
cases, the Presys 1000.  The NCXLT 
has to communicate with the Preston 
8300AU Signal Conditioners, Agilent 
Multimeter, Agilent Multifunction Switch, 

Figure 9, Preston 8300AU Signal Conditioners 

Figure 8, DAS NXLT Command Line Interface
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Krohn-Hite Voltage Source, and Stanford Research System’s Function Generator with the GPIB 
interface for the B2 test stand (other test stands may have other equipment).  At this time, I only 
have drivers made for the Preston 8300AU Signal Conditioners.  The driver development took 
much longer than expected as the hardware I was trying to test them on was defective.  Rather 
than blaming the hardware, I decided to blame my software until I was absolutely convinced that 
the hardware was faulty when the old calibration software, made by Dan Goad at SSC also 
would crash while communicating with the signal conditioners.  Now that I’m finished with the 
Preston 8300AU drivers, I was given more documentation that could speed up programming the 
signal conditioners significantly and provide for a way to backup the signal conditioner setup by 
creating a memory map for the amplifiers and dumping that memory map to the signal 
conditioner’s controller.  Luckily, the multimeters used at the test stands are widely used, and 
there are already drivers pre-built in LabVIEW to use.  All the other equipment must have 
drivers written. 

VI. CONCLUSION 
 
The NDAS Hardware Translation Layer development has been a mixed experience.  The age 

of equipment, lack of documentation, or just the differences in documentation from different 
time periods made designing the drivers for the hardware difficult for Jon Morris and I.  The 
Presys 1000 uses binary programming and the documentation has scattered information 
throughout the user manual, all of which is very important for the programming sequence.  For 
the Preston 8300AU Signal Conditioners, there are about three different versions of the manual 
available, and then there were undocumented commands that were implemented for NASA’s use 
back in 1997.  A month after beginning driver development for the signal conditioners, I was 
given the official documentation for those additional commands.  

The lack of boarding the equipment also caused quite a few problems.  We were never sure if 
the equipment worked, and if it was not working at all, what to even do.  We kept finding tidbits 
of information that, in the end, helped us write our software.  Our goal was to get a fast and 
reliable data acquisition system working for NASA.  So far, we’re meeting our goal.  Nothing 
ever works as expected the first time it is tried.  Work is still needed on all parts of the NXLT 
and NCXLT, but with some time, all the problems will be ironed out. 
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