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Variable resolution methods have become frontline CFD tools, but in order to take

full advantage of this promising new technology, more formal theoretical development is

desirable. Two general classes of variable resolution methods can be identified: hybrid or

zonal methods in which RANS and LES models are solved in different flow regions, and

bridging or seamless models which interpolate smoothly between RANS and LES. This

paper considers the formulation of bridging methods using methods of two-point closure

theory. The fundamental problem is to derive a subgrid two-equation model. We compare

and reconcile two different approaches to this goal: the Partially Integrated Transport

Model, and the Partially Averaged Navier-Stokes method.

Nomenclature

k turbulent kinetic energy
kr resolved turbulent kinetic energy
kc unresolved turbulent kinetic energy
ℓ integral length scale
E energy spectrum
T energy transfer rate
F energy flux
Fc modified energy flux defined in Eq. (29)
P total energy production rate
Pr energy production rate due to resolved scales
Pc energy production rate due to unresolved scales
Sij mean strain rate tensor
Ui mean velocity
S2 second invariant of strain rate tensor
C a constant
ǫ dissipation rate
ǫr resolved dissipation rate
ǫc unresolved dissipation rate
ν kinematic viscosity
Π energy production spectrum
θ time scale of turbulence
η turbulent frequency
κ wavenumber
κi partition wavenumber
κc filter wavenumber in LES
κd Kolmogorov scale
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I. Introduction

In the context of turbulence modeling, a variable resolution method is one that resolves more or less of
the turbulent fluctuations in different flow regions. This can be accomplished most simply by a zonal or
hybrid method, in which RANS equations, which model all fluctuations, are solved in some flow regions,
and LES, which models only small-scale fluctuations, are solved elsewhere. An alternative is a bridging (or
seamless, or continuous) model, which interpolates smoothly between RANS and LES. Variable resolution
methods for turbulent flows attempt to fill the gap between industrial RANS methods, which may sometimes
be too coarsely resolved to be useful, and LES, which might resolve unnecessary details, thereby incurring
excessive computational cost. At present, however, variable resolution methods cannot be said to have
attained the level of theoretical rigor of either RANS or LES. To contribute to a more sound understanding
of these methods, this paper outlines the introduction of spectral closure theories as a foundation for variable
resolution methods.

It may be helpful to begin by considering what an ideal RANS/LES hybrid model would be. Suppose that
we knew that some hypothetical RANS model was a limit of LES under well-defined analytical conditions.
This would entail the possibility of statistical comparisons at the level at least of two-point correlations, so
that we could state with confidence when RANS can replace LES; we would also know a priori conditions
under which the RANS solution will become unrealistic and must be replaced by LES. Suppose further that
the transition between RANS and LES can be gradual enough that overlap regions exist in which both
models are valid, so that a smooth transition is possible, rather than a transition through a fixed sharp
interface. Then it would be possible, at least in principle, to solve the RANS model wherever it is valid and
the LES model elsewhere. This would be a zonal method in which LES and RANS are smoothly connected
though an overlap region, the location of which is determined as part of the numerical solution.

Since these requirements might seem somewhat unrealistic, we describe a deterministic analog, in which
a RANS model is connected, not to LES or DNS, but to a spectral closure.1 Like the hybrid described
above, this hybrid connects a statistically complex, more realistic description (the spectral closure) to a
simpler abridged one (the RANS model). In this case, a multiple-scale perturbation analysis demonstrates
that when

ǫ̇ ≪ ǫ2/k and ℓ̇ ≪ k1/2 (1)

where ǫ is the dissipation rate, k is the turbulent kinetic energy, and ℓ is a length characteristic of the large
scales, there is an approximate solution of the spectral closure of the form E(κ, t) = E(κ; ǫ(t), ℓ(t)) where
E(κ, t) is the time-dependent energy spectrum, and where ǫ and ℓ satisfy a RANS-type two-equation model
obtained as part of the perturbation scheme. This model is, however, not applicable if the inequalities in
Eq. (1) are not satisfied; in this case, the complete spectral closure must be solved. Since the conditions
for an ideal hybrid are satisfied, a (temporal) hybrid model could be constructed that combines the spectral
closure and the two-equation model, so that the complex spectral closure is solved only when required by
the dynamics.

This description of a hypothetical hybrid is intended only to motivate the theoretical possibility of such a
model. Of course, in practice, or at least in current practice, the requirements of the ideal hybrid model are
far from being satisfied: we do not know precise conditions under which LES can be replaced by RANS, nor
are there known a priori conditions under which the RANS description must become inadequate. Instead,
the adequacy of RANS is assessed after the fact, by comparison with numerical or experimental data. There
is no connection between RANS and even partial statistical information like two-point correlations; thus,
the more complete agreement at a refined statistical level needed for a meaningful hybrid method is not
available. Interface conditions are typically prescribed according to various empirical heuristics: there is
neither theorical guidance, nor even any general concensus, on how to switch between RANS and LES, or
on how to treat the buffer region between them. All of these limitations mean that the validity of hybrid
models cannot be insured in advance and problems must be fixed as they arise.

Bridging models offer a practical way to overcome at least some of these limitations. In the simplest terms,
the idea is that RANS can be connected to LES or DNS by reducing the RANS eddy viscosity according to
grid size or some other numerical consideration.2 The expectation is that reducing the eddy viscosity can
“free up” fluctuations since in the limit of zero eddy viscosity and, of course, sufficient numerical resolution,
DNS is certainly recovered.

Although this idea is attractive, later work3 showed that better control over the consistency of the RANS
and LES models is necessary: for example, it should be possible to demonstrate that the total energy is
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independent of the resolution. Such requirements impose much tighter connection between the RANS and
subgrid model formulation than is possible by a simple damping of the eddy viscosity. Yet this requirement
poses a difficulty, because the most popular subgrid formulation, Smagorinsky-based LES, is in RANS
terminology a zero-equation model; thus, it seems difficult to connect such subgrid models smoothly, say to
a two-equation RANS model.

The simplest way to enforce consistency between RANS and LES is to develop a subgrid two-equation
model that reduces to a standard RANS model in the limit that all fluctuations are modeled. Two current
systematic approaches to this goal are the Partially Integrated Transport Model (PITM) of Schiestel4 and
the Partially Averaged Navier-Stokes (PANS) of Girimaji.3 The purpose of this paper is to clarify the
formulation of PITM with particular reference to the role of spectral closure, which appears to be a natural
theoretical framework for this type of modeling. The arguments and conclusions of PANS will be compared
with PITM as appropriate. Our immediate concern is to reconcile the derivations of the subgrid dissipation
rate equation, because the same conclusion is reached in both PITM and PANS, yet the arguments are
quite different. We conclude with some observations on the role of spectral closure and of self-similarity in
formulating bridging models.

II. Background from Spectral Closure Theory

PITM originates in Schiestel’s multiple-scale model,5 which we briefly summarize. The foundation is
spectral closure, the Fourier form of two-point closure for homogeneous turbulence. In the usual formula-
tion, the basic unknown is the energy spectrum E(κ, t), the Fourier transform of the two-point correlation
function, under the kinematic assumption of isotropy of fluctuations. Important single-point quantities can
be expressed as moments of the energy spectrum, for example, the kinetic energy and dissipation rate are

k =

∫

∞

0

E(κ)dκ ǫ = 2ν

∫

∞

0

κ2E(κ)dκ (2)

The wavenumber variable κ corresponds to the intuitive idea of a “scale of motion.”
The spectral evolution equation

Ė(κ, t) = Π(κ, t) − T (κ, t) − 2νκ2E(κ, t) (3)

can be derived from the Navier-Stokes equations. In Eq. (3), Π is a spectrum of energy input, T is the
nonlinear transfer, a third-order moment of the velocity field, and the last term is the dissipation spectrum.6

Although the time variable is appears in Eq. (3), subsequently it will be assumed rather than written
explicitly. The spectral formulation is convenient because it can model the interaction between different
scales of motion more or less faithfully, depending on what is used for T . This makes possible a systematic
formulation of the interactions between resolved and unresolved scales of motion.

In studies of homogeneous isotropic turbulence, it is usual to assume that the energy input is concentrated
at some large scale, so that Π(κ) is nonzero only inside some interval |κ − κ0| ≤ ∆κ. The total production
(energy input) rate is

P =

∫

∞

0

dκ Π(κ) (4)

A spectrum for production by mean shear can be constructed by using Lumley’s7 inertial range spectrum
for shear stress. The result is

Π(κ) = CS2ǫ1/3κ−7/3 (5)

where S2 = SijSij and Sij = ∂Ui/∂xj + ∂Uj/∂xi is the mean strain rate, Ui is the mean velocity, and C is a
model constant. Eq. (5) is an inertial range result only; some modification near κ = 0 is assumed to insure
finiteness. The crucial difference between the large-scale forcing used in studies of homogeneous isotropic
turbulence and production by mean shear is that in the latter case, energy production occurs at all scales,
not only at large scales. A simple way to motivate Eq. (5) is to note that the total production due to scales
with wavenumbers larger than κ is

P (κ) = CS2

∫

∞

κ

dp ǫ1/3p−7/3 ∝ S2ǫ1/3κ−4/3 (6)

where ǫ1/3κ−4/3 is the scale-dependent eddy viscosity corresponding to Kolmogorov inertial range scaling.
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Energy conservation by nonlinear interaction implies

∫

∞

0

dκ T (κ) = 0 (7)

This fact permits the definition

T (κ) =
∂

∂κ
F(κ) (8)

where F is the energy flux satisfying F(0) = F(∞) = 0.
It will be useful to note some elementary models for the energy flux. The simplest is the Kovaznay model8

F(κ) = Cη(κ)E(κ) where η =
√

κ3E(κ) (9)

Here and subsequently, we adopt the convention that C denotes a constant, not necessarily the same one
each time it appears. A more realistic model is the Heisenberg model6, 8

F(κ) = C

∫ κ

0

dµ µ2E(µ)

∫

∞

κ

dp E(p)θ(p) where θ(p) = 1/
√

p3E(p) (10)

The Kovaznay model describes energy transfer as a stepwise cascade in wavenumber space; the Heisenberg
model treats energy flux as local energy production: the product of a spectral eddy viscosity (the second
integral on the right side of Eq. (10)) and the square of a local strain (the first integral). Some refinements
are offered by a generalized Heisenberg model,9

F(κ) = C

{
∫ κ

0

dµ µ2E(µ)

∫

∞

κ

dp E(p)θ(p) −

∫ κ

0

dµ µ4

∫

∞

κ

dp
E(p)2θ(p)

p2

}

(11)

Whereas the Kovaznay and Heisenberg model treat transfer as purely “forward,” that is, from large scales
to small scales, this model allows transfer from small to large scales, often referred to as energy backscatter.
This feature is crucial to a correct formulation of the problem of isotropic decay.

Integrate the spectral evolution equation over all wavenumbers κ using the relations (some of which have
already been noted)

∫

∞

0

dκ Ė(κ) = k̇

∫

∞

0

dκ Π(κ) = P

∫

∞

0

dκ T (κ) = 0

∫

∞

0

dκ 2νκ2E(κ) = ǫ (12)

to obtain the energy balance
k̇ = P − ǫ (13)

We note that although this equation provides an exact relation, the nonlinear transfer F , the heart of the
turbulence problem, plays no role in it.

III. Formulation of PITM

Schiestel5 refined the energy balance of Eq. (13) by introducing partition wavenumbers κ1, · · ·κn, corre-
sponding spectral “bins” or “slices” κi−1 ≤ κ ≤ κi, and partial energies

ki =

∫ κi

κi−1

dκ E(κ) (14)

Heuristic arguments were used to obtain coupled sets of two-equation models for the ki and fluxes F(κi). The
result is an alternative to numerical integration of Eq. (3) with some flux model like Eq. (10). However, this
model is not a consequence of spectral closure, but is instead a heuristic modification specifically designed
to connect to the usual RANS models. Our suggestion is that this multiple-scale model could be formulated
as a perturbation theory in which the energy flux is a slowly varying function of wavenumber, so that the
spectrum is approximately of Kolmogorov form at each wavenumber, but a global Kolmogorov spectrum
over the entire inertial range does not necessarily exist.
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Chaouat and Schiestel10 applied this formalism to two-equation subgrid modeling by taking only one
subgrid wavenumber shell. In their words, “In this framework, a cutoff wavenumber κc is introduced in the

medium range of eddies while the wave number κd is located at the end of the inertial range of the spectrum

after the transfer zone.” We assume then that their κd is the inverse Kolmogorov scale,

κd ∼
( ǫ

ν3

)1/4

(15)

where ν is the kinematic viscosity. With this understanding, the unresolved scales are κc ≤ κ ≤ κd and the
resolved scales are κ ≤ κc; the RANS limit is κc → 0 and the DNS limit is κc → ∞.

Chaouat and Schiestel10 define the resolved energy

kr =

∫ κc

0

dκ E(κ) (16)

and subgrid (or unresolved) energy

kc =

∫

∞

κc

dκ E(κ) (17)

so that the sum of the resolved and unresolved energy is the total energy. The partially integrated spectral
evolution equation contains the terms

∫ κc

0

dκ Ė(κ) = k̇r

∫ κc

0

dκ Π(κ) = Pr

∫ κc

0

dκ T (κ) =

∫ κc

0

dκ
∂F

∂κ
= F(κc)

∫ κc

0

dκ 2νκ2E(κ) = ǫr (18)

so we obtain the resolved energy equation

k̇r = Pr −F(κc) − ǫr (19)

For production by forcing concentrated near κ0 ≪ κc, Pr = P . We expect dissipation to occur at small
scales; then ǫr ≈ 0, so consequently Eq. (19) becomes

k̇r = P −F(κc) (20)

In the Heisenberg model Eq. (10),

F(κc) = C

∫ κc

0

dµ µ2E(µ)

∫

∞

κc

dp E(p)θ(p) (21)

Although we will not solve the Heisenberg model, it suggests the usual heuristic that the subgrid scales act
on the resolved scales as an eddy viscosity. We might model this subgrid eddy viscosity by a two-equation
ansatz

∫

∞

κc

dp E(p)θ(p) = C
k2

c

ǫc
(22)

In this case, we need equations for kc and ǫc ≈ ǫ.
The obvious starting point is to integrate the spectral evolution equation over the unresolved scales. This

generates the terms

∫

∞

κc

dκ Ė(κ) = k̇c

∫

∞

κc

dκ Π(κ) = Pc

∫

∞

κc

dκ T (κ) =

∫

∞

κc

dκ
∂F

∂κ
= −F(κc)

∫

∞

κc

dκ 2νκ2E(κ) = ǫc (23)

so we obtain
k̇c = Pc + F(κc) − ǫc (24)
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Note that the sum of Eqs. (24) and (19) is the equation for total energy, Eq. (13). For production by forcing
concentrated near κ0 ≪ κc, Pc = 0. For production by shear,

Pc =
3

4
CS2ǫ1/3κ−4/3

c (25)

is small when κc is large, but since the decay is only algebraic, the unresolved production Pc can be significant.
Again, since dissipation will occur at very small scales, we expect ǫc ≈ ǫ, so

k̇c = Pc + F(κc) − ǫ (26)

A key point for Schiestel is that κc can be a function of time. Allowing κc = κc(t), we have

d

dt

∫

∞

κc(t)

dκ E(κ, t) =

∫

∞

κc(t)

dκ Ė(κ, t) − κ̇c(t)E(κ, t) (27)

which adds a term to Eq. (26):
k̇c = Pc + F(κc) − E(κc)κ̇c − ǫc (28)

Define a new quantity
Fc = F(κc) − E(κc)κ̇c (29)

so that
k̇c = Pc + F (κc) − ǫ (30)

Then solve Eq. (29) for κ̇c,

κ̇c =
F(κc) − Fc

E(κc)
(31)

Here, some caution seems indicated, since what is happening is a reshuffling of definitions, not the introduc-
tion of new relations.

Attempts to find a dissipation rate equation from “equilibrium” considerations alone introduce the Kol-
mogorov relation

κ = C
ǫ

k3/2
(32)

which is just a restatement of the Kolmogorov energy spectrum E(κ) = Cǫ2/3κ−5/3. Chaouat and Schiestel10

also use the differential form of this relation

ǫ̇

ǫ
=

3

2

k̇

k
+

κ̇

κ
(33)

Here however we come to a difficulty, because if we integrate the Kolmogorov spectrum from κc to the
Kolmogorov scale κd, we obtain

kc − kd = C

∫ κd

κc

ǫ2/3κ−5/3 =
3

2
Cǫ2/3

(

κ
−2/3
d − κ−2/3

c

)

(34)

Therefore, after some rearrangement,

[

1

κ
2/3
c

−
1

κ
2/3
d

]

−3/2

= C
ǫ

(kc − kd)3/2
(35)

(recall the convention on the use of the constant C), whereas Chaouat and Schiestel10 state a dimensionally
consistent alternative

κd − κc = C
ǫ

k
3/2
c

(36)

That Eqs. (35) and (36) are not equivalent is shown by the limits as κd → ∞ of their left sides:

[

1

κ
2/3
c

−
1

κ
2/3
d

]

−3/2

→ κc (37)
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but
κd − κc → ∞ (38)

At this point, a basic principle, or perhaps belief, about turbulence becomes relevant: it is that limits
κd → ∞, or equivalently, in view of Eq. (15), ν → 0, are always finite. The idea is that letting ν → 0 creates
more small scales but leaves large scales unchanged. This idea can be stated as the existence of a high Re
“fixed point;” it permits the usual modeling heuristic that Reynolds number appears only in low Reynolds
number models. This principle would seem to favor Eq. (35) over Eq. (36); but perhaps it is uncertain that
this principle applies to the interval κc ≤ κ ≤ κd.

Meanwhile, completing the model requires two more relations. Schiestel5 used the Kovaznay closure
for the (static) flux F , given by Eq. (9). This might be open to the objection that it uses both a model
(Kovaznay’s) and its solution (the Kolmogorov spectrum), but Chaouat and Schiestel10 do not use any
particular closure for the flux; instead, they set

Fc = ǫ (39)

to eliminate Fc from the equations.
We complete the derivation using what we think are correct equations, but following Chaouat and Schi-

estel10 by leaving the flux model unspecified. Return to Eq. (31) and substitute Eq. (39),

κ̇c =
F(κc) − Fc

E(κc)
=

F(κc) − ǫ

E(κc)
= σ

κc

kc
(F(κc) − ǫ) (40)

where

σ =
kc

κcE(κc)
(41)

is a (possibly) scale-dependent factor, although in an inertial range, σ = 3
2 is a constant.

Next, return to Eq. (33) to obtain

ǫ̇ =
3

2

k̇c

kc
ǫ +

κ̇c

κc
ǫ =

3

2

ǫ

kc
(Pc + Fc) −

3

2

ǫ2

kc
+ σ

ǫ2

kc

(

F(κc)

ǫ
− 1

)

(42)

This equation states a subgrid dissipation rate equation

ǫ̇ = Csg
ǫ1

ǫ

kc
(Pc + Fc) − Csg

ǫ2

ǫ2

kc
(43)

with

Csg
ǫ1 =

3

2
Csg

ǫ2 =
3

2
− σ

(

F(κc)

ǫ
− 1

)

(44)

Because of using Eq. (36) instead of Eq. (35), a much different result for the constants is obtained in
Chaouat and Schiestel:10

Csg
ǫ1 =

3

2
(45)

but

Csg
ǫ2 =

3

2
−

kc

κdE(κd)

(

F(κc)

ǫ
− 1

)

(46)

so that when kc = k and all of the kinetic energy is modeled, we obtain the RANS model coefficient

Cǫ2 =
3

2
−

k

κdE(κd)

(

F(κc)

ǫ
− 1

)

(47)

In either case, the value Csg
ǫ1 = 3

2 , obtained here because of the Kolmogorov relation Eq. (33), is in reason-
able agreement, perhaps coincidentally, with the value obtained by calibrating to homogeneous shear flow.

However, since κdE(κd) ∝ κ
−2/3
d (recall that κd is assumed in Chaouat and Schiestel10 to be at the end of

the inertial range), the model constants in Eqs. (46) and (47) are divergent as κd → ∞.
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That this is unsatisfactory is of course recognized in Chaouat and Schiestel,10 and some arguments are
given to lead to a finite result. One possible approach is to evaluate the ratio of the last terms on the right
sides of Eqs. (46) and (47); this (purely formal) step cancels the divergences to give

Csg
ǫ2 − 3

2

Cǫ2 −
3
2

=
kc

k
(48)

and so permits Chaouat and Schiestel10 Eq. (46),

Csg
ǫ2 −

3

2
=

kc

k
(Cǫ2 −

3

2
) (49)

where now we can set Cǫ2 to some empirical value. We stress that although this formal manipulation
produces a finite answer, this theory does not predict a definite value of Cǫ2.

To conclude, we have obtained the subgrid dissipation rate equation in the form

ǫ̇ = Cǫ1
ǫ

kc
(Pc + Fc) −

(

Cǫ1 +
kc

k
(Cǫ2 − Cǫ1)

)

ǫ2

kc

= Cǫ1
ǫ

kc
(Pc + Fc − ǫ) − (Cǫ2 − Cǫ1)

ǫ2

k
(50)

although the argument cannot inspire complete confidence. It is therefore important that the same subgrid
dissipation rate equation is obtained in PANS by a simpler, more straightforward argument:
1. Postulate the standard equation

ǫ̇ = Cǫ1
ǫ

k
P − Cǫ2

ǫ2

k
(51)

2. Remark that in any self-similar flow, kc/k is constant, so
k̇c

kc
=

k̇

k
. Then

P − ǫ =
k

kc
(Pc + Fc − ǫ) (52)

The appeal to self-similarity is justified by the fact that the dissipation rate equation is calibrated to self-
similar flows; we will return to this point shortly.
3. Substituting in the standard equation,

ǫ̇ = Cǫ1
ǫ2

k
+ Cǫ1

ǫ

kc
(Pc + Fc − ǫ) − Cǫ2

ǫ2

k
(53)

in agreement with Eq. (50) after simple regrouping of terms. This alternate derivation suggests that
although we can question some aspects of the argument of Chaouat and Schiestel,10 incuding Eq. (36) and
the consequent need to cancel divergent terms (although we stress that Eq. (48) is our own interpretation
of Chaouat and Schiestel10), the final result is consistent with an alternative derivation which does not raise
these questions.

For the bridging model to succeed, it must indeed connect RANS to LES. In the limit κc → 0, Eq.
(28) reduces to Eq. (13) because κc being constant, κ̇c = 0; the production becomes the total production,
and the dissipation rate is unchanged. The reduction of the resolved dissipation rate equation to its RANS
counterpart is obvious from Eq. (50) on setting Fc = 0, Pc = P and kc = k.

What is perhaps less trivial is the DNS limit κc ≫ κd. In this limit, kc → 0; substituting Eq. (49) in Eq.
(43) shows that in this limit, we can have a steady state in which Pc + Fc = ǫ. Then the entire two-equation
subgrid model is replaced by a local equilibrium condition and the two-equation model effectively disappears
in the limit of high resolution.

Recall that for production by a mean shear, the subgrid production is given by Eq. (25). For very large

κc corresponding to highly resolved LES, approaching DNS, Pc ∝ κ
−4/3
c ≪ Fc ∝ κ0

c : direct production by
shear is dominated by local nonlinear transfer. Thus, homogeneous shear is not an appropriate calibration
case for large κc; consistency with a forced steady state is more plausible. This change of calibration case is
implied by the possibility, noted previously, of a steady state in the subgrid scales in the DNS limit. This
consistency check gives some theoretical support to the subgrid dissipation rate equation common to PITM
and PANS.
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IV. Comments on the Subgrid Dissipation Rate Equation

In a self-similar flow, quantities with the same units are constant multiples of each other. Thus, in
self-similar decay, the equation

ǫ̇

ǫ
= −C

ǫ

k
(54)

is not a “model;” it is rather a consequence of the assumption of self-similarity. Since different self-similar
flows can give different values of the proportionality constant, such a relation is not at all a general principle,
and there is therefore no reason to believe that Eq. (54) can be deduced from any theory. The standard
dissipation rate equation Eq. (51) is simply a more general statement of self-similarity that can apply to
two self-similar flows, usually chosen as homogeneous shear and decay: data from these flows is used to
determine the model constants.

As derived in Eqs. (51)–(53), the subgrid dissipation rate equation follows from the usual self-similarity
assumptions and the additional observation that kc/k is constant in a self-similar flow. Since we do not
consider that this equation can be derived from anything more basic, the elaborate explanation in Chaouat
and Schiestel10 may not add anything significant to the very elementary PANS argument that is based openly
and explicitly on self-similarity alone.

We have stressed the role of self-similarity in formulating the standard and the subgrid dissipation rate
equations. These equations describe certain calibration cases; their extension to other problems comes with
no guarantees. A different viewpoint1 is that the length-scale determining equation of the two-equation
model explicitly must describe not self-similarity or “equilibrium” but departures from them. Woodruff
and Rubinstein1 propose a two-equation model based on the classical Heisenberg model Eq. (10) that is
consistent with this idea.

V. Conclusions

The spectral formulation of PITM is a useful and convenient way to discuss variable-resolution modeling.
Deriving the subgrid energy equation is straightforward; the new element in the role of nonlinear transfer in
addition to direct energy production by shear. In PANS, the subgrid dissipation rate equation is formulated
in terms of self-similarity (or ‘fixed-point’ analysis); the agreement with the PITM formulation, obtained by
an apparently different argument, perhaps illustrates the extent to which the assumption of a (self-similar)
Kolmogorov spectrum limits the range of possible end results. An interesting new feature of the subgrid
dissipation rate equation is that one calibration case changes from homogeneous shear to steady-state forced
turbulence as the resolution increases. Finally, the subgrid two-equation becomes nugatory in the DNS limit;
this fact insures the consistency of the bridging model with this limit.
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