
The Mathematica® Journal

Perimetric complexity of binary
digital images
Notes on calculation and relation to visual
complexity
Andrew B Watson

Perimetric complexity is a measure of the complexity of binary pictures.
It is defined as the sum of inside and outside perimeters of the
foreground, squared, divided by the foreground area, divided by 4p .
Difficulties arise when this definition is applied to digital images
composed of binary pixels. In this paper we identify these problems and
propose solutions. Perimetric complexity is often used as a measure of
visual complexity, in which case it should take into account the limited
resolution of the visual system. We propose a measure of visual
perimetric complexity that meets this requirement.

‡ Background
Perimetric complexity is a measure of the complexity of binary pictures. It is defined as the sum of
inside and outside perimeters of the foreground, squared, divided by the foreground area, divided
by 4p. The concept of perimetric complexity was first introduced (and called dispersion) by At-
tneave and Arnoult [1] in an effort to explain the apparent preceptual complexity of visual shapes.
In the field of image processing, the concept appears as its inverse compactness [2-4]. The con-
cept was given new life (and a new name) in 2006 by Pelli et al., who showed that the efficiency
of letter idetification was nearly proportional to perimetric complexity [5]. It has since become a
popular metric in a variety of shape analysis applications, including human letter identification
[5-7], handwriting recognition [8], evolution of graphical symbols [9], and design of graphical anti-
spam technologies [10-12].

In this note we develop Mathematica functions to compute perimetric complexity of binary digital
images, and illustrate their application. The code is comaptible with Version 8 of Mathematica.

Although the concept of perimetric complexity is clear when applied to continuous plane shapes,
complications arise when the concept is extended to binary digital images. We discuss these com-
plications and suggest suitable solutions. We also introduce the concept of visual perimetric com-
plexity, which takes into account the blurring action of the human visual system.
We begin by illustrating the application of the function PerimetricComplexity to a binary
image.

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

We begin by illustrating the application of the function PerimetricComplexity to a binary
image.

cat = ;

PerimetricComplexity@catD

82110.08, 89 588, 3.95494<

The output is a list containing the perimeter (in pixels), the area (in square pixels), and the complex-
ity. In the following sections we will describe the derivation of this function, as well as the options
that may be used to control its operation.

‡ Perimetric complexity of geometric shapes
Perimetric complexity is a measure of the complexity of binary pictures. In a binary picture, one
or several regions of the same color (white) are defined as foreground, and the remainder (black)
as background. Perimetric complexity C is defined here as the sum of inside and outside perime-
ters of the foreground P, squared, divided by the foreground area A, divided by 4 p

(1)C =
P2

A 4 p
.

In the remainder of this note, unless otherwise noted, we will use the term complexity as syn-
onomous with perimentric complexity.
We begin with the example of a circular disk with unit radius.

Graphics@8White, Disk@D<, PlotRange Ø 2, Background Ø BlackD

Here the perimeter is 2 p, and the area is p, so the complexity is

(2)C =
H2 pL2

p 4 p
= 1

It can be shown that the disk is the shape with the lowest complexity. The normalizing constant
4p in the definition leads to a unit value for this most simple shape. As a consequence, any other
value of complexity is easily compared to that of the circular disk. Pelli et al. [5] suggest that com-
plexity is closely related to the number of visual features in a shape. In that sense, we could say
that the circular disk has only a single feature.

2 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

It can be shown that the disk is the shape with the lowest complexity. The normalizing constant
4p in the definition leads to a unit value for this most simple shape. As a consequence, any other
value of complexity is easily compared to that of the circular disk. Pelli et al. [5] suggest that com-
plexity is closely related to the number of visual features in a shape. In that sense, we could say
that the circular disk has only a single feature.

Our next example is a square with unit sides.

Graphics@8White, Rectangle@-81, 1< ê 2, 81, 1< ê 2D<, PlotRange Ø 1,
Background Ø BlackD

The perimeter here is 4, and the area is 1, so the perimetric complexity is.

(3)C =
42

4 p
=

4

p
º 1.27

If we add a square hole in the center, with sides 1/2, there will be an interior perimeter as well, as
shown here.

Graphics@8White, Rectangle@-81, 1< ê 2, 81, 1< ê 2D
, Black, Rectangle@-81, 1< ê 4, 81, 1< ê 4D<

, PlotRange Ø 1, Background Ø BlackD

Now the total perimeter is the sum of inner and outer perimeters, and the area is the difference in
areas of the squares, so

(4)C =
H4+ 2L2

H1- 1 ê 4L 4 p
=

12

p
º 3.82

So according to this measure, the square with a hole is about three times as complex as the square.

Some important observations about complexity are 1) it is dimensionless, 2) it is independent of
scale or orientation, 3) it is additive. By additive we mean that the complexity of a pair of shapes,
considered as a single shape, is equal to the sum of their PCs computed separately.

Article Title 3

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

‡ Perimetric complexity of plane curves
Although it is beyond the scope of this note, we note for reference that if a shape is defined by a
closed parametric curve, its exact complexity can be obtained using calculus methods [13]. Specifi-
cally, if over an interval a § t § b the functions x(t) and y(t) and their derivatives x° (t) and y° (t) are
continuous, then the curve described has a length

(5)P = ‡
a

b
x° 2 + y° 2 „ t

and an area

(6)A = -‡
a

b
y° x „ t .

‡ Perimetric complexity of binary digital images
A digital image is defined here as a rectangular array of square pixels. A binary digital image con-
tains pixel values of 1 (white) and 0 (black) only. The foreground consists of the white pixels.
The original definition of complexity relies upon the notion of a perimeter, which has no unique
analog in the context of digital images. However, two definitions of perimeter are available, as de-
scribed below.

· Using “PerimeterLength”

The first definition we consider is the most straightforward. Consider a binary image consisting of
a single white pixel :

ImagePad@Image@881<<D, 1D

It seems natural to define the perimeter of this shape as 4, and the area as 1, so C = 4/p, the same
as the square discussed earlier.

Now consider this shape consisting of 3 white pixels.

ImagePad@Image@881, 0<, 81, 1<<D, 1D

Here the perimeter, consisting of the exposed pixel faces, is 8, and the area is 3, so C = 16/(3 p).

Extending this idea, we can define the perimeter as the sum of the exposed faces of pixels in the
foreground.
Version 8 of Mathematica includes a set of operators from the discipline of mathematical morphol-
ogy. These can be used to easily calculate perimetric complexity. To illustrate this we begin with a
binary image with several separated parts.

4 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

Version 8 of Mathematica includes a set of operators from the discipline of mathematical morphol-
ogy. These can be used to easily calculate perimetric complexity. To illustrate this we begin with a
binary image with several separated parts.

yi = ;

The MorphologicalComponents operator finds connected regions, and labels them with inte-
gers. The Colorize operator visualizes these regions by assigning colors to each label. The
CornerNeighbors->False option ensures that only 4-connected neighborhoods are considered.

MorphologicalComponents@yi, CornerNeighbors Ø FalseD êê

Colorize

The ComponentMeasurements operator returns a selected set of measurements about each re-
gion. In this case we are interested in the area and the perimeter length. The results are returned as
set of rules, showing the results for each region.

cm = ComponentMeasurements@
MorphologicalComponents@yi, CornerNeighbors Ø FalseD,
8"PerimeterLength", "Count"<, CornerNeighbors Ø FalseD

81 Ø 856, 98<, 2 Ø 8198, 469<, 3 Ø 8138, 371<<

We can combine the perimeters and areas of the several regions, and then compute complexity in
the usual way.

Total@Last êü cmD

8392, 938<

% @@1DD^2 ê %@@2DD ê H4 PiL êê N

13.0365

The preceding calculations are implemented in the function PerimetricComplexity, defined in
the Appendix. To obtain the previous result, we evaluate:

PerimetricComplexity@yi, Filter Ø None,
Method Ø "PerimeterLength"D êê N

8392., 938., 13.0365<

The option MethodØ”PerimeterLength” ensures that we use the definition of perimeter described
above. The option FilterØNone will be explained below.

For future reference, to distinguish it from variants that we will consider, we will call this the
“raw” perimetric complexity.

Article Title 5

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

For future reference, to distinguish it from variants that we will consider, we will call this the
“raw” perimetric complexity.

· Using “PolygonalLength”

The second definition of the perimeter of a connected region in a binary digital image is to con-
sider the perimeter pixel centers as points on a lattice, and to define the length as the sum of the
sides of the polygon defined by those points. This estimate of the perimeter is obtained from
ComponentMeasurements by using the measurement “PolygonalLength” .

cm = ComponentMeasurements@
MorphologicalComponents@yi, CornerNeighbors Ø FalseD,
8"PolygonalLength", "Count"<, CornerNeighbors Ø FalseD

81 Ø 839.6985, 98<, 2 Ø 8159.439, 469<, 3 Ø 8117.012, 371<<

Note that the measures of perimeter length are smaller than before.

And again complexity can be easily computed:

N@Ò @@1DD^2 ê Ò@@2DD ê H4 PiLD &üTotal@Last êü cmD

8.47953

This variant of perimetric complexity is implemeted with the following options:

PerimetricComplexity@yi, Filter Ø None,
Method Ø "PolygonalLength"D êê N

8316.149, 938., 8.47953<

Or, since MethodØ”PolygonalLength” is the default,

PerimetricComplexity@yi, Filter Ø NoneD êê N

8316.149, 938., 8.47953<

‡ Approximating complexity of continuous shapes
We introduced the concept of perimeric complexity with a few continuous shapes, such as a
square and a circle. In these cases, complexity is easily calculated, because we have simple formu-
las for the area and perimeter. It might be imagined that complexity of the continuous shape could
be approximated by computing the complexity of a discrete sampled image, rendered from the
shape. As we shall see, this assumption is not strictly correct.
Consider the circular disk. As noted at the beginning, it has C = 1.

6 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

disk = Graphics@8White, Disk@D<, Background Ø BlackD

Now we consider an image rendered from the continuous shape. We render it into a certain size im-
age. We change the color so that the foreground is white, as is our convention.

size = 2^7 + 1;
diskimage = Image@ disk, "Bit", ImageSize Ø 81, 1< size,

ColorSpace Ø "Grayscale"D

If we compute the complexity, we find that it is too large, by 62%, relative to the continuous shape.

PerimetricComplexity@diskimage, Filter Ø None,
Method Ø "PerimeterLength"D êê N

8492., 11 873., 1.62241<

The reason is that the sampled image actually is more complex than the continuous shape. Its con-
tour is jagged, while that of the continuous shape is smooth. It might be imagined that this could
be remedied by increasing the resolution of the rendering. Here we show that belief is misplaced.
We render at several sizes, and plot the results. Size has little effect, and the complexity never ap-
proaches the value of 1 corresponding to the continuous shape.

Article Title 7

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

points = Table@
8size = 2^k + 1,
PerimetricComplexity@

Image@ disk, "Bit", ImageSize Ø 81, 1< size,
ColorSpace Ø "Grayscale"D

, Filter Ø None, Method Ø "PerimeterLength"D@@3DD<
, 8k, 4, 12<D;

ListLogLinearPlot@points, PlotRange Ø 81, Automatic<,
Frame Ø True, FrameLabel Ø 8"Size", "Complexity"<, Joined Ø TrueD

50 100 500 1000
1.0

1.1

1.2

1.3

1.4

1.5

1.6

Size

Co
m

pl
ex

ity

This problem can be somewhat ameliorated by using the PolygonalLength measure of perime-
ter length. Rather than the pure approach of measuring the exposed face of each foreground pixel,
this measures the length of the contour that travels between the centers of those pixels.

PerimetricComplexity@diskimage, Filter Ø NoneD

8403.647, 11 873, 1.09203<

Now the difference is reduced to 9%. Here again, the reader might think that this difference could
be reduced to zero by enlarging the resolution (number of pixels) in the rendered image, but this is
not so. We leave that as an exercise for the reader. The error can never be zero, because the path be-
tween pixel centers must always be vertical, horizontal, or diagonal, so it can never smoothly fol-
low the true circular contour. Put another way, it has a higher fractal dimension than the circle,
and thus greater length.

‡ Pelli algorithm
Pelli et al. [2] proposed a method for computing complexity which we quote here in full:

The ink area is the number of 1’s. To measure the perimeter we first replace the image
by its outline. (We OR the image with translations of the original, shifted by one pixel
left; left and up; up; up and right; right; right and down; down; and down and left; and
then bit clear with the original image. This leaves a one-pixel-thick outline.) It might
seem enough to just count the 1’s in this outline image, but the resulting ‘‘lengths’’ are
non- Euclidean: diagonal lines have ‘‘lengths’’ equal to that of their base plus height. In-
stead we first thicken the outline. (We OR the outline image with translations of the origi-
nal outline, shifted by one pixel left; up; right; and down.) This leaves a three-pixel-
thick outline. We then count the number of 1’s and divide by 3.

8 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

The ink area is the number of 1’s. To measure the perimeter we first replace the image
by its outline. (We OR the image with translations of the original, shifted by one pixel
left; left and up; up; up and right; right; right and down; down; and down and left; and
then bit clear with the original image. This leaves a one-pixel-thick outline.) It might
seem enough to just count the 1’s in this outline image, but the resulting ‘‘lengths’’ are
non- Euclidean: diagonal lines have ‘‘lengths’’ equal to that of their base plus height. In-
stead we first thicken the outline. (We OR the outline image with translations of the origi-
nal outline, shifted by one pixel left; up; right; and down.) This leaves a three-pixel-
thick outline. We then count the number of 1’s and divide by 3.

This method can be implemented using the Dilation operator, as we show here. With verbose
==True, it shows two images: the perimeter in red, and the thickened perimeter. It returns the
length of the perimeter, the area, and the complexity.

2/28/11 12:10:52 (Local) In[2]:=
PelliMethod@image_, verbose_: FalseD := Module@

8tmp0, tmp1, tmp2, tmp3, perimeter, area<,
tmp0 = ImagePad@image, 2D;
tmp1 = Dilation@tmp0, BoxMatrix@1DD;
tmp2 = ImageSubtract@tmp1, tmp0D;
tmp3 = Dilation@tmp2, CrossMatrix@1DD;
If@verbose, HPrintü GraphicsRow@

8ColorCombine@8tmp1, tmp0, tmp0<D, tmp3<DLD;
perimeter = Total@ImageData@tmp3D, 2D ê 3;
area = Total@ImageData@tmp0D, 2D;
8perimeter, area, perimeter^2 ê area ê H4 PiL<

D

 Applying this to the three-component Chinese character, we get:

PelliMethod@yi, TrueD êê N

8326.333, 938., 9.03463<

The exact method gives the following:

PerimetricComplexity@yi, Filter Ø None,
Method Ø "PerimeterLength"D êê N

8392., 938., 13.0365<

We see that the perimeter is substantially underestimated by the Pelli method in this case. This
method has other limitations. It effectively assumes regions that are large in pixel dimensions. For
example, consider the case of a single pixel object. As noted above, it has C = 4/p º1.273. But the
Pelli method yields an complexity value more than three times too large.

Article Title 9

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

test = ImagePad@Image@881<<, "Bit"D, 3D

PelliMethod@test, TrueD êê N

87., 1., 3.8993<

‡ Visual perimetric complexity
Much of the motivation for the use of perimetric complexity is the hope that it might provide an ap-
proximate measure of the visually perceived complexity of shapes. But this only makes sense if
the shape is actually visible. Consider the difference between the continuous circular disk, and its
sampled image, as discussed above. They have different perimetric complexities, no matter how
high the resolution of the sampled version. But of course, at a certain viewing distance, they will
be indistinguishable.

· Filtering

Here we propose an approach to dealing with this problem. The idea is to first blur the image, in a
manner consistent with visual blur, and then compute perimetric complexity. We begin with the ex-
ample of a Chinese character.

jun

To make things simple, we will use Gaussian blur, although this is not an accurate description of
human visual blur. Later we will show a more accurate form of blur.
First we pad the image, so that the blur is contained.

10 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

tmp0 = ImagePad@jun, 5D

Next we magnify the image. This allows greater flexibility in the filtering.

mag = 4;
tmp1 = ImageResize@tmp0, mag ImageDimensions@tmp0DD

Then we blur the image, in this case by a Gaussian filter with a radius of 8 pixels.

Article Title 11

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

tmp2 = GaussianFilter@tmp1, 8D

Then we binarize the image. Unfortunately, this requires some method of setting the threshold.
Here we use a fixed threshold of 0.5.

tmp3 = Binarize@tmp2, 0.5D

And because we imagine that the image is viewed at such a distance that the pixels are not re-
solved, we use the PolygonalLength method.

12 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

PerimetricComplexity@tmp3, Filter Ø None,
Method Ø "PolygonalLength"D êê N

81944.82, 24 044., 12.5182<

We can compare this to the unfiltered “raw” version:

PerimetricComplexity@jun, Filter Ø None,
Method Ø "PerimeterLength"D êê N

8606., 1467., 19.9207<

The filtered version has substantially lower complexity, as we expect.

· Visual filtering using a Gaussian

For the filtering to approximate visual blur, it must be based on the size of the original image and
its distance from the viewer. Obviously, as the shape becomes smaller or farther from the ob-
server, its details are more blurred, less visible, and contribute less to the visual complexity.
The challenge is to determine the appropriate value of the Gaussian filter radius for a given view-
ing distance. From measurements of visual sensitivity, we know that visual Gaussian blur has a
standard deviation of about B = 0.01549 degrees of visual angle [11]. But we need to convert this
into a radius in pixels. Recall that the image may be magnified by M before filtering. If we express
the viewing distance V in terms of pixels (before magnification), then the size of each pixel S
(after magnification) is approximately

(7)S =
57.3

MV
deg

The constant 57.3 is an approximation to 1/ArcTan[1°].

1. ê ArcTan@1 °D

57.3016

By default, the radius is twice the standard deviation. So the filter radius should be

(8)R =
2 B

S
=

2 BMV

57.3
pixel

Consider an example. Suppose that charimage is displayed on a typical computer screen with a res-
olution of 72 pixels/inch, and viewed at a distance of 12 inches. Then

V = 12 µ 72

864

And recall that

B = 0.01549;

Article Title 13

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

Suppose further that the magnification is

M = 4;

Then

R = 2 B M V ê 57.3

1.86853

proceding now with the steps outlined above for filtering,

tmp0 = ImagePad@jun, 1D;
tmp1 = ImageResize@tmp0, M ImageDimensions@tmp0DD;
tmp2 = GaussianFilter@tmp1, RD;
tmp3 = Binarize@tmp2, 0.5D
PerimetricComplexity@tmp3, Filter Ø NoneD êê N

82365.71, 23 472., 18.9741<

Notice that the final result is not that different from the raw value.

PerimetricComplexity@jun, Filter Ø None,
Method -> "PerimeterLength"D êê N

8606., 1467., 19.9207<

This is because the image is viewed close enough that the blur has little effect. But if we repeat the
process, with 4 times the viewing distance, we will see that the complexity is substantially reduced.

1 ê ArcTan@1.` °D

57.3016

14 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

2.33 ê 60

0.0388333

V = 4 µ 12 µ 72;
M = 4;
R = 2 B M V ê 57.3
tmp0 = ImagePad@jun, 1D;
tmp1 = ImageResize@tmp0, M ImageDimensions@tmp0DD;
tmp2 = GaussianFilter@tmp1, RD;
tmp3 = Binarize@tmp2, 0.5D
PerimetricComplexity@tmp3, Filter Ø NoneD êê N

7.47413

81987.85, 23 932., 13.1395<

The preceding steps of padding, magnification and filtering are built in to the function
PerimetricComplexity, as shown below. With Verbose->True, the function also shows the
original, the filtered version, the binarized version, and the original (in red) with the perimeter of
the filtered version (in white - within the original- and aqua - outside the original).

Article Title 15

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

PerimetricComplexity@jun, Magnification Ø 4, Filter Ø "Gaussian",
ViewingDistance -> 4 µ 12 µ 72, Verbose Ø TrueD êê N

81987.85, 23 932., 13.1395<

The Gaussian is parameterized by a scale in degrees of visual angle. The default value is 2.33/60
degrees. The user can experiment with different values via the option GausianScale.

· Accurate visual filtering with Sech

Visual blur is more accurately represented with filters other than a Gaussian. In one simple form,
the kernel is a Sech (Hyperbolic Secant) function [14,15]. This filter can be selected with an op-
tion (the default) in the function PerimetricComplexity:

PerimetricComplexity@jun, Filter Ø "Sech"D êê N

81016.14, 5977., 13.7472<

Or, because it is the default,

PerimetricComplexity@junD êê N

81016.14, 5977., 13.7472<

The Sech is parameterized by a scale in degrees of visual angle. The default value is 2.16/60 de-
grees [14, 15]. The user can experiment with different values via the option SechScale.
To the advanced reader, it may be of interest that the Sech kernel corresponds to a Sech Contrast
Sensitivity Function, with a scale that is the inverse of the kernel. For example the CSF correspond-
ing to the default scale is plotted here:

16 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

LogLogPlot@Sech@Pi u 2.16 ê 60D, 8u, 1, 60<, PlotRange Ø 8.0099, 1.01<,
FrameLabel Ø 8"Spatial frequency HcyclesêdegreeL",

"Contrast sensitivity"<D

1 2 5 10 20 50
0.01

0.02

0.05

0.10

0.20

0.50

1.00

Spatial frequency HcyclesêdegreeL

Co
nt

ra
st

se
ns

itiv
ity

· Accurate visual filtering with an arbitrary point spread function

In real human eyes, blur results from both low-order aberrations such as defocus and astigmatism,
and also from higher-order aberrations. In this example, we use a blur function defined by an array
of values representing the filter kernel. This example is an actual estimate of the point-spread func-
tion for an individual human observer, as measured using a device called a wavefront aberrometer,
that includes both low and high order aberrations [16].

ImageAdjust@Image@psfDD

We can use this blur kernel by supplying it directly to the Filter option.

Article Title 17

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

PerimetricComplexity@charimage, Verbose Ø True, Filter Ø psfD êê

N

8120.569, 950., 1.21768<

We will not adress this topic in detail, but when a kernel is supplied, the pixels of the kernel and of
the magnified image must be of the same size, in degrees of visual angle, for the filter to be accu-
rate. The size of the magnified pixels in degrees will depend upon the viewing distance and the
magnification, as described above. Here we magnify the image, and get a different result.

PerimetricComplexity@charimage, Verbose Ø True, Filter Ø psf,
Magnification Ø 4D êê N

81405.26, 25 663., 6.12344<

· Magnification parameter

The Magnification parameter should be set with a value that ensures that a filter kernel, if pre-
sent, has enough pixels in it to adequately represent the filter. For the Sech filter, we generally
want a width of least 3 times the scale, and at least 8 pixels. This means that the magnification
should be greater than

(9)M ¥
8 µ 57.3

3 V B

This rule is effectively implemented by the default Magnification->Automatic option.

· Binarization

After applying visual blur, it is necessary to binarize the image before calculation of perimetric
complexity. There are many ways to binarize an image, and mathematica offers many of them as
options. The simplest is to use a fixed threshold. Since our images are initially defined as 0 or 1, a
natural choice of threshold is 0.5. One drawback of this choice is that as images become severely
blurred, no pixels may remain that exceed the threshold. From a perceptual point of view, the
mean might appear a reasonable choice. As the image blurs, all pixels revert towards the mean, but
some always remain above the mean until a uniform image is reached. A drawback of the mean is
that it is influenced by the area of the background. For this reason, we adopt the fixed value of 0.5
as the default threshold for binarization.

18 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

After applying visual blur, it is necessary to binarize the image before calculation of perimetric
complexity. There are many ways to binarize an image, and mathematica offers many of them as
options. The simplest is to use a fixed threshold. Since our images are initially defined as 0 or 1, a
natural choice of threshold is 0.5. One drawback of this choice is that as images become severely
blurred, no pixels may remain that exceed the threshold. From a perceptual point of view, the
mean might appear a reasonable choice. As the image blurs, all pixels revert towards the mean, but
some always remain above the mean until a uniform image is reached. A drawback of the mean is
that it is influenced by the area of the background. For this reason, we adopt the fixed value of 0.5
as the default threshold for binarization.
We should acknowledge that a more valid visual thresholding scheme might be devised, that better
reflects our perceptual segregation of areas into light and dark. This is a topic for future research.
It should also be acknowledged that for severely blurred images, considerable grayscale informa-
tion remains that is lost in binarization. Thus we should question whether perimetric complexity is
an appropriate measure for such images.
To illustrate the problem, we show an example of a character viewed at 10 feet on a display with
100 pixels/inch. Note that the blurred image displays internal grayscale structure that is not con-
veyed by the binarized version.

PerimetricComplexity@charimage, ViewingDistance Ø 10 µ 12 µ 100,
Verbose Ø TrueD êê N

8199.51, 1604., 1.97476<

· Viewing distance

For a given shape, complexity will decline with viewing distance, as a result of visual blur. Here
we illustrate this effect with an example Chinese character. First we find the raw complexity,

raw =
PerimetricComplexity@jun, Filter Ø None,

Method Ø "PerimeterLength"D@@3DD êê N

19.9207

Now we compute complexity for viewing distances ranging from 3 inches to 10 feet, assuming a
display with a resolution of 100 pixels/inch. For reference, we show as red lines the raw complex-
ity, and the theoretical limit of 1 (a circular disk). As it should, the visual complexity proceeds
from one of these limits to the other as distance increases.

Article Title 19

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

8min, max< = 83, 10 µ 12<;
points =

8Ò, PerimetricComplexity@jun, ViewingDistance Ø Ò 100D@@3DD< & êü
Range@min, max, 3D êê N;

ListPlot@points, Frame Ø True, Joined Ø True,
Epilog Ø 8Red, Line@88min, raw<, 8max, raw<<D,

Line@88min, 1<, 8max, 1<<D<,
PlotRange Ø 880, Automatic<, 80, 22<<
, PlotStyle Ø Blue, Axes Ø False,
FrameLabel Ø 8"Distance HinchesL", "complexity"<D

0 20 40 60 80 100 120
0

5

10

15

20

Distance HinchesL

co
m

pl
ex

ity

At very small viewing distances (in pixels) the blur has little effect on each pixel, so the visual com-
plexity approaches the raw value. As a rule of thumb, this asymptote is approached when the size
of each pixel exceeds 1/4 degree.
It is reassuring to know that the algorithm does approach the correct asymptote as distance in-
creases. Here we show the intermediate images for a case of extreme blur (distance = 30 feet).

PerimetricComplexity@charimage, Verbose Ø True,
ViewingDistance Ø 30 µ 12 µ 100D

8104.669, 818, 1.06579<

But a note of caution is warranted. Consider the effect of distance on our other example character
yi (). We show it here along with the previous plot. Note that the curves cross, so that at large

distances (large blurs) the “simpler” character becomes the more complex of the two.

20 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

But a note of caution is warranted. Consider the effect of distance on our other example character
yi (). We show it here along with the previous plot. Note that the curves cross, so that at large

distances (large blurs) the “simpler” character becomes the more complex of the two.

points2 =
8Ò, PerimetricComplexity@yi, ViewingDistance Ø Ò 100D@@3DD< & êü

Range@min, max, 3D êê N;
ListPlot@8points, points2<, Frame Ø True, Joined Ø True,
Epilog Ø 8Red, Line@88min, raw<, 8max, raw<<D,

Line@88min, 1<, 8max, 1<<D<,
PlotRange Ø 880, Automatic<, 80, 22<<
, PlotStyle Ø 8Blue, Green<, Axes Ø False,
FrameLabel Ø 8"Distance HinchesL", "complexity"<D

0 20 40 60 80 100 120
0

5

10

15

20

Distance HinchesL

co
m

pl
ex

ity

This makes sense, since the densely packed features of the “complex” character blur onto each
other ,while the more widely separated features of the “simple” character remain distinct. This is il-
lustrated in the following, which shows the intermediate images for the two characters when
highly blurred (distance = 8 feet).

Article Title 21

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

PerimetricComplexity@Ò, ViewingDistance Ø 8 µ 12 µ 100,
Verbose Ø TrueD & êü 8charimage, charimage2<;

But the conclusion we must draw is that even the relative complexity of different shapes cannot be
known without specifying the viewing distance.
As a default value, we use the quantity ViewingDistanceØ48 /ArcTan[1°]. This corresonds
to a visual resolution of 48 pixels/degree. It is commonly encountered resolution, about that
achieved by a display with 100 pixels/inch viewed from 27 inches. But in actual use, it is advised
to use the actual viewing distance rather than relying on this default.

Here is a panel that allows you to experiment with different viewing distances. The complexity,
and the diagnostic images are shown.

Manipulate@
8Ò@@3DD êê N, GraphicsRow@Ò@@4DD, ImageSize Ø 400D< &ü
PerimetricComplexity@charimage, ReturnImages Ø True,
ViewingDistance Ø inches 100D

, 8inches, 1, 200<D

‡ Recommended practice
The reader, and potential user of PerimetricComplexity may be daunted by the number of vari-
ants of the operator, or unsure what parameters to use. Here we offer suggestions that simplify this
matter.
In general, we recommend using the function with default parameters. As a reminder, these are:

22 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

Options@PerimetricComplexityD

8Magnification Ø Automatic, Pad Ø Automatic,
Verbose Ø False, Threshold Ø 0.5, Method Ø PolygonalLength,
Filter Ø Sech, Normalized Ø True, ViewingDistance Ø 2750.48,
MorphologicalOperators Ø True, SechScale Ø 0.036,
GaussianScale Ø 0.0388333, ReturnImages Ø False<

The only option that should be specified for the typical use of this function is ViewingDistance.
This specifies the distance from the eye to the image, specified in uinits of pixels. The default is
ViewingDistanceØ2750.48, consistent with a display having 96 pixels/inch, viewed at 28.65
inches (equal to a display with 48 pixels/degree of visual angle).

It is difficult to imagine a case in which vision, in some form, would not be used to view the shape
in question. If such a case arises, however, the “raw” complexity can be measured with the follow-
ing options:

SetOptions@PerimetricComplexity, Filter Ø None,
Method -> "PerimeterLength"D

This will also be an appropriate measure when the pixels are very large (larger than 1/4 degree).

When trying to approximate the raw complexity of a continuous shape by means of a sampled rep-
resentation (e.g., a circle via an image of a circle), the following options will yield the lowest er-
ror. But as noted above, the error will still be significant.

SetOptions@PerimetricComplexity, Filter Ø NoneD

‡ Examples
We conclude with two examples of the application of PerimetricComplexity .

The first example is a set of three binary images. Below each image we print the complexity.

pictures = 8cat, horse, family<;

Article Title 23

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

Grid@
8pictures,
Style@NumberForm@Last@PerimetricComplexity@ÒDD, 3D, 18D & êü
pictures<

, ItemSize Ø 10, Spacings Ø 2D

3.95 8.62 22.1

The second example is an array of characters. This array was created as part of an experiment on
the effect of complexity on visual acuity [6]. The first row are the Sloan letters, a well known set
of letter acuity targets [5]. The remaining six rows are sets of Chinese characters, selected so as to
be of equal complexity within a row, but increasing in complexity from row to row [6]. The metric
of complexity used for selection was different from that developed in this paper.

GraphicsGrid@chararrayD

We first apply the function to each character, and plot the results, with a different curve for each
set.

24 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

2/28/11 12:10:54 (Local) In[26]:=
c = Map@Last@PerimetricComplexity@ÒDD &, chararray, 82<D;
ListLinePlot@c, PlotRange Ø 88.7, 10.3<, 80, 18<<
, FrameLabel Ø 8None, "Complexity"<D

2/28/11 12:10:55 (Local) Out[27]=

2 4 6 8 10
0

5

10

15

Co
m

pl
ex

ity

The figure shows that there is considerable variation in each set. If we take the mean of each set
we see a progression in complexity, except for the last three sets. In this figure we show at the bot-
tom an exemplar from each set.

2/28/11 12:11:08 (Local) In[29]:=
ListLinePlot@Mean êü c, Mesh Ø Full, PlotRange Ø 88.7, 7.3<, 80, 15<<
,
Epilog Ø
8Table@Inset@chararray@@k, 1DD, 8k , .1<, Scaled@8.5, 0<D, .6D,

8k, 7<D<
, FrameLabel Ø 8None, "Complexity"<D

2/28/11 12:11:08 (Local) Out[29]=

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

Co
m

pl
ex

ity

‡ Conclusions
We have illustrated several different methods for computing the perimetric complexity of binary
digital images. These methods differ in how they compute the perimeter, and in whether the image
is blurred and binarized before the complexity calculation. We have introduced the concept of vi-
sual perimetric complexity, and argued that in general it requires blur for a sensible estimate. We
have described several methods of implementing visual blur.

Article Title 25

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

We have illustrated several different methods for computing the perimetric complexity of binary
digital images. These methods differ in how they compute the perimeter, and in whether the image
is blurred and binarized before the complexity calculation. We have introduced the concept of vi-
sual perimetric complexity, and argued that in general it requires blur for a sensible estimate. We
have described several methods of implementing visual blur.
The computed value of visual perimetric complexity depends somewhat upon details of the calcula-
tion, such as the presumed magnitude and nature of visual blur, and the binarization threshod. In
this regard, we have proposed a set of standard default settings and procedures for calculation of vi-
sual perimetric complexity.
We have also made the observation that visual perimetric complexity cannot be estimated without
specifying the resolution of the display and the viewing distance. As a general rule, the visual peri-
metric complexity will approach the raw complexity when the width of a pixel exceeds 1/4 degree
of visual angle.

‡ Appendix

· Functions

Here we define several functions based on the derivations presented above.

ü PerimetricComplexity

Clear@PerimetricComplexityD

26 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

PerimetricComplexity::usage =
"PerimetricComplexity@image_,opts___RuleD Compute the

perimetric complexity of a binary image. Perimetric
complexity is defined as the square of the sum of
inner and outer perimeters divided by the foreground
area, divided by 4p. By default, foreground pixels
are white H1L. The function returns a list:
8perimeter, area, complexity<. Optionally, the
image can be filtered and thresholded before
calculation of complexity, to provide a a better
estimate of the visual complexity of the image.
Options available are Pad Hwidth of padding to add
around imageL, Magnification Hfactor by which to
magnify each pixel before calulation of complexityL,
Method H\"PerimeterLength\" or \"PolygonalLength\",
the method used to compute the perimeterL, Threshold
Ha numerical threshold, or the method to use in
thresholding operations after filteringL, and Filter
HNone: no filter, \"Gaussian\" for Gaussian filter;
\"Sech\" for a Hyperbolic Secant filter; or an
array supplied directly as the filter kernel. For
the gaussian and the Sech, the size of the filter
is determined by the ViewingDistance optionL,
ViewingDistance Hin pixels, used to determine the
radius of Gaussian and Sech filtersL,
MorphologicalOperators Hwhether to use Mathematica's
built in operatorsL, Normalized Hwhether to normalize
complexity by the value for a disk, 4pL. Defaults
are: 88MagnificationØAutomatic, PadØAutomatic,
VerboseØFalse, ThresholdØ0.5, MethodØ\"PolygonalLength\",
FilterØ\"Sech\", NormalizedØTrue,
ViewingDistanceØ48êArcTan@1°D,
MorphologicalOperatorsØTrue<, SechScaleØ2.16ê60,
GaussianScaleØ2.33ê60, ReturnImagesØFalse<";

Options@PerimetricComplexityD =
8Magnification Ø Automatic, Pad Ø Automatic, Verbose Ø False,
Threshold Ø 0.5, Method Ø "PolygonalLength", Filter Ø "Sech",
Normalized Ø True, ViewingDistance Ø 48 ê ArcTan@1. °D,
MorphologicalOperators Ø True, SechScale Ø 2.16 ê 60,
GaussianScale Ø 2.33 ê 60, ReturnImages Ø False<;

2/28/11 12:10:52 (Local) In[5]:=
PerimetricComplexity@image_, opts___RuleD := Module@

8tmp, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, plength, area,
mag, radius, pad, verbose, fdim, pc, norm, threshold,
method, filter, vdist, pixelsperdegree, sechpixels,
sechdegrees, morpho, sechscale, gscale, anglescale,
rimages, images<,

8mag, pad, verbose, threshold, method, filter, norm, vdist,
morpho, sechscale, gscale, rimages< =

Article Title 27

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

morpho, sechscale, gscale, rimages< =
8Magnification, Pad, Verbose, Threshold, Method, Filter,

Normalized, ViewingDistance, MorphologicalOperators,
SechScale, GaussianScale, ReturnImages< ê. 8opts< ê.

Options@PerimetricComplexityD;
anglescale = ArcTan@1. DegreeD;
If@mag === Automatic , mag = Switch@filter

, None, 1
, _?ListQ, 1
, "Gaussian", Ceiling@2. ê Hvdist anglescale gscaleLD
, "Sech", Ceiling@3. ê Hvdist anglescale sechscaleLD

DD;
pixelsperdegree = mag vdist anglescale;
sechpixels = Ceiling@pixelsperdegree 3 sechscaleD;
If@pad === Automatic,
pad = If@filter === None, 2,

Ceiling@pixelsperdegree sechscaleDDD;
If@EvenQ@sechpixelsD, sechpixels++D;
sechdegrees = sechpixels ê pixelsperdegree;
radius = 2 gscale pixelsperdegree ê Sqrt@2 PiD;
tmp0 = Binarize@imageD;
tmp1 = If@mag > 1, ImageResize@tmp0, mag ImageDimensions@tmp0DD,

tmp0D;
tmp2 = ImagePad@tmp1, padD;
tmp4 = Switch@filter

, None, tmp2
, _?ListQ, ImageConvolve@tmp2, filterD
, "Gaussian", GaussianFilter@tmp2, radiusD
, "Sech",
ImageConvolve@tmp2, SechKernel2D@sechpixels 81, 1<,

sechdegrees 81, 1<, sechscaleDD
D;

tmp5 = If@ImageType@tmp4D === "Bit", tmp4,
If@NumericQ@thresholdD, Binarize@tmp4, thresholdD,
Binarize@tmp4, Method Ø thresholdDDD;

8plength, area< = If@morpho,
Total@
Last êü
Htst = ComponentMeasurements@MorphologicalComponents@tmp5D,

8method, "Count"<, CornerNeighbors Ø FalseDLD
,
8PerimeterLength@tmp5, Switch@method, "PerimeterLength",

PixelBorderLength, "PolygonalLength", PixelPathLengthDD,
Total@ImageData@tmp5D, 2D<D;

H*Print@"mag = ",mag, " ppd = ",pixelsperdegree,
" sechpixels = ",sechpixels," pad = ", padD;*L

tmp6 = MorphologicalPerimeter@tmp5, CornerNeighbors Ø FalseD;
images = 8tmp2, tmp4, tmp5, ColorCombine@8tmp2, tmp6, tmp6<D<;
If@verbose, H

28 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

Print ü GraphicsRow@images, ImageSize Ø 400D;
LD;

8plength, area, Hplength^2 ê areaL ê If@norm, 4 Pi, 1D< êê

If@rimages, Append@Ò, imagesD, ÒD &
D

Here is an example.

PerimetricComplexity@charimage, Verbose Ø TrueD êê N

81016.14, 5977., 13.7472<

ü PerimeterLength

2/28/11 12:10:52 (Local) In[6]:=
PerimeterLength::usage =

"PerimeterPathLength@image_,verbose_:FalseD Given a
binary image that represents a set of perimeters,
defined by connected white pixels, compute the
total length of the perimeters. It first locates
all foreground pixels. It then extracts the 3 x 3
neighborhood of each, and using PixelPathLength,it
computes half the distance to each of the pixels
two nearest foreground neighbors. The perimeter is
the sum of all these distances. If verbose is true,
it shows a tally of the neighborhoods and their
corresponding path lengths.";

Article Title 29

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

2/28/11 12:10:52 (Local) In[7]:=
PerimeterLength@image_, method_: PixelBorderLength,

verbose_: FalseD :=
Module@8positions, neighborhoods, tally, perim<,
perim = Perimeter@imageD;
positions = Position@ImageData@perimD, 1D;
neighborhoods =
ImageTake@Switch@method, PixelPathLength, perim,

PixelBorderLength, imageD,
Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü positions;

tally = Transpose@Tally@neighborhoodsDD;
If@verbose, H

Print @"pixels = ", Length@positionsDD;
Print ü
TableForm@Transpose@8tally@@1DD, tally@@2DD,

method êü tally@@1DD<DD;
LD;

Total@tally@@2DD Hmethod êü tally@@1DDLD
D

Here is an example.

test = ImagePad@Image@880, 1<, 81, 1<<, "Bit"D, 1D
PerimeterLength@test, PixelBorderLength, TrueD

pixels = 3

1 3

1 3

1 2

8

ü PixelPathLength

PixelPathLength::usage =
"PixelPathLength@image_D Given a 3x3 binary image, finds

the coordinates of white pixels not at the center,
and returns their mean distance from the center.";

30 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

2/28/11 12:10:53 (Local) In[9]:=
PixelPathLength@image_D := Module@8tmp1, tmp2, tmp3<,

tmp1 = DeleteCases@Position@ImageData@imageD, 1D, 82, 2<D;
tmp2 = HÒ - 82, 2<L & êü tmp1;
tmp3 = Sort@Norm êü tmp2D;
Mean@Take@tmp3, 2DD

D

Here is an example.

tst = Image @880, 0, 0<, 80, 1, 1<, 81, 0, 0<<, "Bit"D
PixelPathLength@tstD

1

2
J1 + 2 N

ü PixelBorderLength

2/28/11 12:10:53 (Local) In[10]:=
PixelBorderLength::usage =

"PixelBorderLength@image_D Given a 3x3 binary image,
counts the number of black neighbor H4-connectedL
pixels. This is a measure of the length of the
exposed border of the foreground HwhiteL pixel.";

2/28/11 12:10:53 (Local) In[11]:=
PixelBorderLength@image_D :=
Total@1 - Flatten@ImageData@imageDD@@82, 4, 6, 8<DDD

Here is an example.

Framed@tst = Image @880, 0, 0<, 80, 1, 1<, 81, 1, 1<<, "Bit"DD
PixelBorderLength@tstD

2

Article Title 31

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

ü SechKernel2D

SechKernel2D::usage =
"SechKernel2D@samples_,degrees_,scale_D Compute a

convolution kernel defined by a Hyperbolic Secant
HSechL function of distance from the origin. samples
is a list 8height,width< of dimensions of the kernel
in pixels, and degrees is a list of the corresponding
dimensions in degrees of visual angle. scale defines
the width of the kernel in degrees. The origin is
defined as Floor@samplesê2D. The kernel is normalized.";

2/28/11 12:26:19 (Local) In[38]:=
SechKernel2D@samples_, degrees_, scale_D :=
HÒ ê Total@Ò, 2DL &ü
Sech@
Pi Array@N@Norm@8ÒÒ< degrees ê samplesDD &, samples,

-Floor@samples ê 2DD ê scaleD

Here is an example.

ImageAdjust@Image@SechKernel2D@832, 32<, 81, 1<, .4DDD

ü Perimeter

2/28/11 12:10:53 (Local) In[13]:=
Perimeter@image_D := Module@8padded, positions<,

padded = ImagePad@image, 1D;
positions = Select@Position@ImageData@paddedD, 1D,

PixelBorderLength@ImageTake@padded,
Sequence üü Transpose@8Ò - 1, Ò + 1<DDD > 0 &D;

ImagePad@
Image@ReplacePart@ImageData@paddedD 0, Ò Ø 1 & êü positionsD,
"Bit"D, -1DD

· Initializations

2/28/11 12:10:53 (Local) In[14]:=
SetOptions@Graphics, ImageSize Ø 128D;

2/28/11 12:10:53 (Local) In[15]:=
SetOptions@ListLinePlot, Axes Ø False,

BaseStyle Ø 810, FontFamily Ø "Helvetica", AbsolutePointSize@4D<,
Frame Ø True, ImageSize Ø 300D;

32 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

2/28/11 12:10:53 (Local) In[16]:=
SetOptions@LogLogPlot, AspectRatio Ø Automatic, Axes Ø False,

BaseStyle Ø 810, FontFamily Ø "Helvetica"<, Frame Ø True,
ImageSize Ø 300D;

2/28/11 12:10:53 (Local) In[17]:=
SetOptions@ListLogLinearPlot, AspectRatio Ø Automatic,

Axes Ø False, BaseStyle Ø 810, FontFamily Ø "Helvetica"<,
Frame Ø True, ImageSize Ø 300D;

2/28/11 12:10:53 (Local) In[18]:=
SetOptions@ListLogLinearPlot, AspectRatio Ø 1, Axes Ø False,

BaseStyle Ø 810, FontFamily Ø "Helvetica"<, Frame Ø True,
ImageSize Ø 300D;

The next cell, containing the definition of the pointspread function, is closed to suppress printing/

2/28/11 12:10:53 (Local) In[20]:=

jun = ;

2/28/11 12:10:53 (Local) In[21]:=

yi = ;

2/28/11 12:10:53 (Local) In[22]:=
chararray =

:: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

Article Title 33

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

: , , , , ,

, , , , >,

34 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

: , , , , ,

, , , , >>;

2/28/11 12:10:53 (Local) In[23]:=

cat = ;

2/28/11 12:10:54 (Local) In[24]:=

horse = ;

2/28/11 12:10:54 (Local) In[25]:=

family = ;

· Computing Complexity without using Mathematica’s Morphological
Operators

Some readers may wish to write code in other languages to compute complexity. For that reason
we provide an explanation here of how to compute complexity without using Mathematica’s mor-
phological operators. This amounts to finding aletrnate methods for computig the perimeter. These
are incorporated in the function PerimeterLength, defined above, and derived below. These
functions can be exercised from within PerimetricComplexity by selecting the option
MorphologicalOperators->False. This is useful mainly for testing.

Consider the following binary image.

Article Title 35

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

jun

The foreground area is easily obtained, since it is just the sum of all the white pixels:

Total@ImageData@junD, 2D

1467

ü Using “PerimeterLength”

As noted above, there are two definitions of the perimeter of a binary digital image. The first con-
sists of the sum of the exposed pixel faces. To count the exposed faces we use the function
PixelBorderLength. This takes a binary image of dimensions {3,3} , and counts the number of
black 4-connected neighbors of the center pixel.
Here is an example.

Framed@test = Image @880, 0, 0<, 80, 1, 1<, 81, 1, 1<<, "Bit"DD
PixelBorderLength@testD

2

In this example, the center pixel has only two black neighboring pixels.

The total perimeter can be obtained by applying this function to the {3,3} neighborhood of every
white pixel in the image. Pixels in the interior will return a value of 0, so only perimeter pixels
will contribute.
To implement this idea, we first identify the positions of all the white pixels.

positions = Position@ImageData@junD, 1D;

Next we extract all the {3,3} neighborhoods.

neighborhoods =
ImageTake@jun, Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü positions;

We can look at the first five.

36 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

Framed êü neighborhoods@@Range@5DDD

: , , , , >

Framed êü neighborhoods@@Range@5DDD

: , , , , >

We can also compute the pixel border length of the first five.

PixelBorderLength êü neighborhoods@@Range@5DDD

82, 1, 2, 2, 0<

In a large complex image, the same neighborhood might occur many times, so we perform a tally.

tally = Tally@neighborhoodsD;

We can take a look at the tally, along with the pixel border length for each type of neighborhood.
Note that 850 cases consist of all white, drawn from the interior of the foreground, with 0 border
length. Here we just look at the first 10 elements of the tally.

Article Title 37

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

8Framed@Ò@@1DDD, Ò@@2DD, PixelBorderLength@Ò@@1DDD< & êü tally êê

Take@Ò, 10D & êê TableForm

10 2

123 1

8 2

12 2

29 0

850 0

24 0

15 1

4 2

1 2

The total perimeter length will be the sum of all of the border lengths for all the collected neighbor-
hoods. We use the tallied neighborhoods, so that the pixel border length of each type of neighbor-
hood is computed only once.

Total@HÒ@@2DD PixelBorderLength@Ò@@1DDD & êü tallyLD

606

Thus the complexity would be

606^2 ê 1467 ê H4 PiL êê N

19.9207

38 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

ü Using “PolygonalLength”

The second definition of the length of the perimeter is the sum of sides of a the polygon defined by
the perimeter pixels considered as points in a lattice.
To extract the perimeter, we use a new function Perimeter, defined above. This duplicates a
builtin Mathematica function. We verify that they yield the same results.

perimeter = Perimeter@junD

perimeter2 = MorphologicalPerimeter@jun, CornerNeighbors Ø FalseD

ColorCombine@8jun, perimeter, perimeter2<D

We identify the positions of all of the pixels in the perimeter.

Length@positions = Position@ImageData@perimeterD, 1DD

498

We extract all of the 3x3 neighborhoods of pixels in the perimeter.

neighborhoods =
ImageTake@perimeter, Sequence üü Transpose@8Ò - 1, Ò + 1<DD & êü
positions;

Then we use a new function PixelPathLength. This looks at a 3x3 binary neighborhood, identi-
fies the two closest white pixels not at the center, and finds the distances from their centers to that
of the central pixel. That is the path length corresponding to that neighborhood.

Article Title 39

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

Then we use a new function PixelPathLength. This looks at a 3x3 binary neighborhood, identi-
fies the two closest white pixels not at the center, and finds the distances from their centers to that
of the central pixel. That is the path length corresponding to that neighborhood.
We apply this to all the perimeter pixels, and add up the results.

Total@PixelPathLength êü neighborhoodsD êê N

547.084

We can verify this is the same perimeter length obtained from PerimetricComplexity using Mathe-
matica’s morphological operators.

PerimetricComplexity@jun, Filter Ø None,
Method Ø "PolygonalLength"D êê N

8547.084, 1467., 16.2356<

‡ Acknowledgments
I thank and blame Denis Pelli for introducing me to perimetric complexity [5]. I thank Dr. Cong
Yu for providing the Chinese character optotypes [6]. I thank Albert Ahumada and Jeffrey Mulli-
gan for useful discussions. I thank Larry Thibos for providing the wavefront data [16]. This work
supported by NASA Space Human Factors Engineering WBS 466199.

‡ References
[1] F. Attneave and M. D. Arnoult, “The quantitative study of shape and pattern perception,” Psychol Bul-

letin, Volume 53(6), 1956 pp. 452-471.

[2] P. V. Sankar and E. V. Krishnamurthy, “On the compactness of subsets of digital pictures,” Computer
Graphics and Image Processing, Volume 8(1), 1978 pp. 136-143.

[3] S. Ullman, "The visual analysis of shape and form," in The cognitive neurosciences, M. S. Gazzaniga,
Ed., Cambridge, MA : MIT Press, 1995, pp. 339–350.

[4] R. Montero and E. Bribiesca, "State of the art of compactness and circularity measures," in Interna-
tional Mathematical Forum, 2009, pp. 1305 - 1335.

[5] D. G. Pelli, C. W. Burns, B. Farell, and D. C. Moore-Page, “Feature detection and letter identification,”
Vision Research, Volume 46(28), 2006 pp. 4646-4674.

[6] J.-Y. Zhang, T. Zhang, F. Xue, L. Liu, and C. Yu, “Legibility Variations of Chinese Characters and Impli-
cations for Visual Acuity Measurement in Chinese Reading Population,” Invest. Ophthalmol. Vis. Sci.,
Volume 48(5), 2007 pp. 2383-2390.

[7] A. B. Watson and A. J. Ahumada, Jr., “Modeling acuity for optotypes varying in complexity,” Invest
Ophthalmol Vis Sci., 2010 pp. ARVO E-Abstract

[8] A. Rusu and V. Govindaraju, “The influence of image complexity on handwriting recognition,” in Inter-
national Workshop on Frontiers in Handwriting Recognition, La Baule (France) 2006.

[9] S. Garrod, N. Fay, J. Lee, J. Oberlander, and T. MacLeod, “Foundations of Representation: Where
Might Graphical Symbol Systems Come From?,” Cognitive Science, Volume 31(6), 2007 pp. 961-987.

40 Author(s)

The Mathematica Journal volume:issue © year Wolfram Media, Inc. TMJ_perimetriccomplexity.nb 2/28/11

[10] M. Chew and H. Baird, “Baffletext: a human interactive proof,” in SPIE/IS&T Document Recognition &
Retrieval Conf. X, Santa Clara, CA, 2003.

[11] B. Biggio, G. Fumera, I. Pillai, and F. Roli, “Image spam filtering using visual information,” in Interna-
tional Conference on Image Analysis and Processing, 2007, pp. 105-110.

[12] G. Fumera, I. Pillai, F. Roli, and B. Biggio, “Image spam filtering using textual and visual information,”
Journal of Machine Learning Research, Volume 7(2006 pp. 2699-2720,
 http://www.jmlr.org/papers/volume7/fumera06a/fumera06a.pdf.

[13] R. Courant and E. J. McShane, Differential and integral calculus, 2 ed. vol. 1. London, Glasgow,:
Blackie & Son limited, 1937.

[14] A. B. Watson and A. J. Ahumada, Jr “A standard model for foveal detection of spatial contrast,” Jour-
nal of Vision, Volume 5(9), 2005 pp. 717-740, http://www.journalofvision.org/5/9/6/.

[15] A. B. Watson and A. J. Ahumada, Jr., “Blur clarified,” Journal of Vision, 10(7):1385;
doi:10.1167/10.7.1385, 2010, http://www.journalofvision.org/10/7/1385.

[16] L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and im-
age quality in a normal population of healthy eyes,” J Opt Soc Am A Opt Image Sci Vis, Volume
19(12), 2002 pp. 2329-2348.

About the Authors

Andrew B. Watson is the Senior Scientist for Vision Research at NASA. He is Editor-in-Chief of
the Journal of Vision (http://journalofvision.org). He is the author of over 150 scientific papers
and four patents. He is a Fellow of the Optical Society of America, the Association for Research in
Vision and Ophthalmology, and the Society for Information Display.
Andrew B Watson
MS 262-2
NASA Ames Research Center
Moffett Field, CA 94035
hn://1/
andrew.b.watsonünasa.gov

Article Title 41

TMJ_perimetriccomplexity.nb 2/28/11 The Mathematica Journal volume:issue © year Wolfram Media, Inc.

