International Space Station External Payload Accommodations/Interfaces

Earth Venture 2 Pre-Proposal Conference

12 March, 2011

ISS Technology Demonstration Office Space Station Payloads Office

International Space Station Facts

Spacecraft Mass: 799,046 lb (362,441 kg) Velocity: 17,500 mph (28,200 kph) Altitude: 220 miles above Earth Power: 80 kW continuous Science Capability: Laboratories from four international space agencies – US, Europe, Japan, and Russia

International Space Station (ISS) External Research Facilities

Express Logistic Carrier

ELC Single Adapter	Mass capacity	227 kg (500 lb)					
Resources (2	Volume	1 m ³					
NASA payload sites per ELC)	Power	750 W, 113 – 126 VDC; 500 W at 28 VDC/adapter					
	Thermal	Active heating, passive cooling					
	Low-rate data	*1 Mbps (MIL-STD-1553)					
	Medium-rate data	*6 Mbps (shared) - Return link (payload to ISS) only					
	Sites available per ELC	2 sites					
	Total ELC sites available	8 sites					
Research Payload ExPA (see next chart)							

Japanese Experiment Module - Kibo

JEM EF External Research Accommodations

NASA/DOD HREP payload

Mass capacity	550 kg (1,150 lb) at standard site 2,250 kg (5,550 lb) at large site
Volume	1.5 m ³
Power	3-6 kW, 113 – 126 VDC
Thermal	3-6 kW cooling
Low-rate data	1 Mbps (MIL-STD-1553, two way)
Medium-rate data	1EEE-802.3(10BASE-T, two way) *
High-rate data	43 Mbps (shared, one way downlink)
Sites available to NASA	5 sites

• Ethernet bus is tested to 100BASE-T capacity.

Upgrade to 100BASE-T is being worked by JAXA

Location	Viewing	Payload Size	Power	Data
SOZ	Zenith		1 25 k/M at	
SOX	Ram	226 kg +	120 VDC	Ethernet,
SDX	Ram	CEPA	2.5 kW max	1553
SDN	Nadir			

- (1) Contact the Technology Demonstration Office (TDO) (in Space Station Payloads Office, NASA JSC) start a dialogue and arrange an assessment telecon or meeting (George Nelson, <u>george.nelson-1@nasa.gov</u>, 281-244-8514.
- (2) Background information provided to an ISS assessment team, lead by TDO representative (AI Holt or Dave Hornyak). Information on proposed payload (charts) should include:
- Description of payload concepts and preliminary design approaches.
- Include estimate launch/on-orbit mass, on-orbit volume/dimensions, power, data downlink requirements, need for active cooling, and your assessment of where the payload could be located.
- Any mass or volume/dimensions which exceed standard operational payload envelopes for a particular site will require a waiver – small deviations can often be accommodated.
- We will assess your overall design approach and let you know where your payload exceeds standard envelopes, and options related to them.

- (3) To complete the assessment a follow-up telecon may be needed, email exchanges are to be expected.
- (4) Once the ISS assessment team has reviewed all potential ISS accommodations and interfaces, and has identified and briefly discussed these with proposer, the generation of a draft feasibility assessment letter can be initiated.
- (5) Draft of the ISS feasibility assessment letter will be sent to the proposer for any comments near the end of an internal review of the letter
- (6) Letter is approved and signed by the Space Station Payloads Office manager Rod Jones
 - Signed letter is then scanned in and sent by e-mail to the proposer with the original sent by regular mail.

- When a payload is selected or funded, contact is made with the Space Station Payloads Office, and for Earth Venture 2 payloads, with the Technology Demonstration Office.
- Technical Interchange Meetings or telecons are set up to provide a further assessment of the ISS's capability to support the payload and to provide answers to payload sponsors' questions.

- These TIMs are initially led by a representative of the Technology Demonstration Office, until a Strategic Payload Integration Manager can be assigned.

- Around the same time, a request is made to add the payload to the Multi-Increment Payload Resupply and Outfitting Manifest (strategic plan for unpressurized or external payloads)
 - A particular external payload site is selected at that point
 - Expected aunch readiness for the payload is used to locate the payload on the timeline
- Strategic Payload Integration Manager is assigned to begin leading TIM activities or strongly support TDO led TIM activities.

External Manifesting and ISS Locations ELCs, Columbus-EF

(draft through 2015 shown)

		Ca	alendar Year			2012				2013			20	14			2015	
	<u>v</u>		MONTH	MAR	APR	JUL	OCT	JAN	JUN	JUL	OCT	JAN	JUL	AUG	DEC	APR	JUL	DEC
	HO O		Inc-Year	2012-1	2	2012-2	201	13-1	201	13-2	20	14-1	201	14-2	2015-1	20	15-2	2016-1
Ę			Major Element(s)	Soyuz (Crew)	SpaceX CRS2	SpaceX CRS3	SpaceX CRS4	SpaceX CRS5	HTV	SpaceX CRS6	SpaceX CRS7	SpaceX CRS8	HTV	SpaceX CRS9	SpaceX CRS10	SpaceX CRS11	HTV	SpaceX CRS12
			Flight	308	Sx2	Sx3	Sx4	Sx5	HTV4	Sx6	Sx7	Sx8	HTV5	Sx9	Sx10	Sx11	HTV6	Sx12
Carrier	Location	Site Number	Viewing					UN	PRESSURIZE	ED FACILITY	LAUNCH / DISP	POSAL PLANS A	AND ON-ORBI	T TOPOLOG	Y			
5	P3	3	Outboard / Ram / Nadir											EuTEF-2 A (NASA launch; ESA	EuTEF-2	EuTEF-2	EuTEF-2	EuTEF-2 ♥
ц	Lower	8	Inboard / Wake / Nadir				OPALS 🛧 (NASA)	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS	OPALS 🕹
		2	Inboard / Wake / Nadir			DPP 🛧 (NASA)	DPP	DPP	DPP	DPP	DPP	DPP ↓ STP-H4 (from E 3-5)	SIDHA	STP-H4	STP-H4 ♥	Tech, Earth, Exp & Space Sci Platform ↑ (ESA)	Tech, Earth, Exp & Space Sci Platform	Tech, Earth, Exp & Space Sci Platform
ELC 4	S3 Lower	3	Inboard / Ram / Nadir	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8}	RRM ^{3, 8} ↓ (NBR-6)	R	\mathbb{N}	SAGE NVP (NASA) SAGE Ⅲ/ Hexapod ↑ (NASA)	SAGE III/ Hexapod (w/NVP)	SAGE III/ Hexapod (w/NVP)	SAGE III/ Hexapod (w/NVP)	SAGE III/ Hexapod (w/NVP)
ELC 2	S3 Upper	3	Inboard / Ram / Zenith	MISSE 8 ^{2, 3}	MISSE 8 ^{2, 3}	MISSE 8 ^{2, 3}	MISSE 8 ^{2, 3}	MISSE 8 ^{2, 3}	PRELSE 2	RELSE II2	FBELSE II2	PRELSE II ² PRELSE Resupply (NASA)	PRELSE II ²	PRELSE II ²	PRELSE II ² PRELSE Resupply	PRELSE II ²	PRELSE II ²	PRELSE II ²
		7	Outboard / Ram / Zenith					TBD-E2-7↑ (NASA)	төр-е27	TBD-12-7	UTBD-E2-7	TBD-E2-7	TBD-E2-7	TBD-E2-7	TBD-E2-7 ↓ TBD E2-7.2 ↑ (NASA)	TBD E2-7.2	TBD-E2-7.2	TBD E2-7.2
с Рз ∪ Рр Ш Upp	P3 Upper	3	Inboard / Ram / Zenith	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SOAN Testbed	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed ³	SCAN Testbed- 2 ⁴	SCAN Testbed- 2 ⁴
	26621	5	Outboard / Wake / Zenith	STP-H33	STP-H33	STP-H3 ³ ♥		STP-H4 ↑ (NASA)	STP-H4	STP-H4	STP-H4 (to E4-2)	TBD E 3-5 ↑ (NASA)	TBD E 3-5	TBD E 3-5	TBD E 3-5	TBD E 3-5	TBD E 3-5	TBD E 3-5

All TBDs except TBD-ESA-1 and TBD-ESA-2 (highlighted in gold) represent NASA opportunities that have not yet been named (minimum of 1 Columbus opportunity and 3 ELC opportunities)

External Manifesting and ISS Locations JEM-EF

(draft through 2015 shown)

		Cale	endar Year			2012				2013		2014					2015	
ر م			MONTH	MAR	APR	JUL	OCT	JAN	JUN	JUL	OCT	JAN	JUL	AUG	DEC	APR	JUL	DEC
LIGH.			Inc-Year	2012-1	2	2012-2	201	3-1	201	3-2	201	14-1	201	4-2	2015-1	201	15-2	2016-1
H		N	Major Element(s)	Soyuz (Crew)	SpaceX CRS2	SpaceX CRS3	SpaceX CRS4	SpaceX CRS5	HTV	SpaceX CRS6	SpaceX CRS7	SpaceX CRS8	HTV	SpaceX CRS9	SpaceX CRS10	SpaceX CRS11	HTV	SpaceX CRS12
			Flight	308	Sx2	Sx3	Sx4	Sx5	HTV4	Sx6	Sx7	Sx8	HTV5	Sx9	Sx10	Sx11	HTV6	Sx12
Carrier I	_ocation	Site Number	Viewing		UNPRESSURIZED FACILITY LAUNCH / DISPOSAL PLANS AND ON-ORBIT TOPOLOGY													
	1	I	Ram	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAXI ³	MAK13	MAXI ³				
	3	•	Ram	SMILES ³	SMILES ³	SMILES ³	SMILES ³	SMILES ³	SMILES ³	SMILES ³	SMILES3	6MILES ³	SMILES (TBR-2)					
	5	;	Ram															
	7	•	Ram		:		:		1		Systems	(ICS-EF)						
	9 ⁶	5	Ram	SEDA-AP ³	SEDA-AP ³	SEDA-AP ³	SEDA-AP	SEDA-AP	SEDALAP ³	SEDA-AP3	SEDA-AP ³	SEDA-AP ³ (to J-11)	CALET ↑ (TBR-2) (GOJ)	CALET	CALET	CALET	CALET	CALET
JEM-EF	2	2	Wake						\mathcal{Y}				TBD-J-2 ↑ (TBR-2) (NASA)	TBD-J-2	TBD-J-2	TBD-J-2	TBD-J-2	TBD-J-2
	4		Wake							TBD-J-4 ⁷ ↑ (TBR-1) <i>(NASA)</i>	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷	TBD-J-4 ⁷
	6	•	Wake	HREP ³	HREP ³	HREP ³	HREP ³	HREP ³	HREP ³	HREP ³ ↓ TBD-J-6↑ (TBR-1) (NASA)	TBD-J-6	TBD-J-6	TBD-J-6	TBD-J-6	TBD-J-6	TBD-J-6	TBD-J-6	TBD-J-6
	8	•	Wake	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³	MCE ³
	10	0	Wake		;						Systems ((HTV/EP)						
	11	1	Zenith										SEDA-AP ³ (from J-9)	SEDA-AP ³				
	12	6	Zenith		:		:				Temp / S	staging ⁶	1					
S3 Up	per Inb	oard	Zenith	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³	AMS ³

- All TBDs (highlighted in gold) represent NASA opportunities that have not yet been named (minimum of 3 sites with flight opportunities)
- Location/site numbers are color-coded to match the illustration on page 5

Getting Manifested

A payload's RPO sponsor initially responds to the RPWG "Call for Payloads" with a list of candidate payloads and resource requirements for consideration. This starts the manifesting process.

- Once the payload development activity reaches a point where weekly telecons are needed, a Payload Integration Manager is assigned.
- The Payload Integration Manager leads the Technical Interchange Meetings from then on, and acts the central point of contact for interaction with other offices in the Space Station Program Office and ISS analytical services.

Payload Integration Manager

u NASA Payload Integration Manager (PIM)

- Functions as the Payload Developer's primary interface to the ISS Program
- Serves as payload advocate while protecting ISS Program Requirements

- Ensures payload requirements are accurately defined and documented
- Facilitates payload integration product development, delivery schedules, and communications with the ISS Program

ISS Payload Integration Process Overview 1/11/11

ISS Standard Payload Integration Process

- NASA PIMs provide integration leadership during all phases of the payload's life cycle
 - Strategic ISS integration requirements, products, and schedule development to ensure that an ISS compatible payload is built; support manifest process (payload data collection and feasibility assessments)
 - Tactical represent PD interests to Increment and Flight-specific teams to ensure that integration and operations requirements are addressed; provide oversight for payload CoFR and verification submittals
 - Operations assist with operations issue resolution between the PD and the Increment Payload Manager; maintains
 payload insight; and coordinates payload resupply or return requirements; assure payload CoFR and verification
 submittals during payload lifetime on-orbit
 - Post-flight coordinate vehicle deintegration requirements; return of payload material from the landing site to the PD; and Lessons Learned submittals

ISS Payload Integration Process Overview 1/11/11

Integration Products

ISS Payload Integration Process Overview 1/11/11

Strategic Timeframe Overview

ISS Payload Integration Process Overview 1/11/11

Tactical Timeframe Overview

Note: EXPRESS Sub-rack payloads will have a compressed integration cycle

ISS Payload Integration Process Overview 1/11/11

For technical questions associated with International Space Station Payloads:

Dr. George Nelson Venture 2 ISS Payload POC Space Station Payload Office Mail Stop OZ NASA Johnson Space Center Houston, TX 77058 Tel: 281-244-8514 Email: george.nelson-1@nasa.gov

Customer Service Helpline :The International Space Station Payloads Office has both a phone and an email customer service helpline that Payload Developers and others interested in doing research can contact to get assistance. The phone is staffed during regular business hours, or messages may be issued after hours, and a representative will return the call on the next business day. Phone: 281-244-6187, email: jsc-iss-payloads-helpline@mail.nasa.gov."

ISS External Accommodations

Dexterous End Effector

SSRMS attachment which the ground team or on-orbit crew can use robotically to install, remove and replace payloads and failed components 22

JEM RMS Payload Support

Express Logistics Carriers Overview

Payload Locations Circled

ELC-1 Port lower 2 Nadir payload sites

ELC-2 Starboard upper 2 Zenith payload sites

Express Logistics Carriers Overview

Express Pallet Adapter (ExPA) Assembly	ExPA overall Mass	255 lb	
	ExPA overall dimension	46.05" x 47" x 13.06" (H)	
	ExPA payload carrying capability	34" x 46" x 49" (H) and 500 lb"	
Adapter plate	Payload electrical interface	Power(120VDC & 28VDC): Four NATC connectors Data (1553, Ethernet): Six NATC connectors	
	Payload thermal interface	Active heating, passive cooling	
FRAM	Payload structural interface	2.756" X 2.756" Grid with 250-28 UNF Locking Inserts and 1.625" diameter Shear Boss Provisions	
	EVA compatibility	EVA handrail provisions	
	EVR compatibility	All EVR interfaces on ExPA	

JEM-EF Detailed Accommodations by Site

Location	Viewing	Payload Size	Description / Notes	Power	Data
1	Ram, Nadir, Zenith	500 kg	Ram field of View (FOV) obstruction by JEM module	6 kW	Ethernet, 1553, Video
3	Ram, Nadir, Zenith	500 kg	Clear view	3 kW	Ethernet, 1553, Video
5	Ram, Nadir, Zenith	500 kg	ICS System back-up site (negotiable?)	3 kW	Ethernet, 1553, Video
7	Ram, Nadir, Zenith	500 kg	ICS-dedicated	-	-
9	Port, Zenith, Nadir	2.5 MT	Best volumetrically for large payloads (up to 2.5 MT), but not necessarily the best viewing	3 kW	Ethernet, 1553, Video
2	Wake, Nadir, Zenith	2.5 MT	Can hold large payloads, but has an FOV obstruction by JEM module	6 kW	Ethernet, 1553, Video
4	Wake, Nadir, Zenith	500 kg	Clear view	3 kW	1553, Video
6	Wake, Nadir, Zenith	500 kg	Clear view	3 kW	Ethernet, 1553, Video
8	Wake, Nadir, Zenith	500 kg	Obstruction during EP berthing, slight obstruction from camera mount	3 kW	1553, Video
10	Wake, Nadir, Zenith	500 kg	EPMP berthing site	-	-
11	Zenith only	500 kg	Good Zenith viewing	3 kW	Ethernet
12	Zenith only	500 kg	Temporary stowage location	3 kW	Ethernet

Columbus EF

ISS Cargo Vehicles

Progress Cargo Capacity (Roscosmos, The Russian Federal Space Agency)

Cargo Capacity 3,100 kg ascent

HTV (JAXA) Cargo Capacity

5,500 kg

Payload Allowable Up-Mass & Volume Summary Table

Attach Payload Location	Allowable Payload Weight (including Flight Support Equipment)	Accommodation Weight (including adapter plate)	Total Weight	Payload Volume (W x H x L)
HTV Exposed Pallet (JEM EF Payload)	979 Lb (445 Kg)	121 Lb (55 Kg)	1100 Lb (500 Kg)	31.5" x 39.4" x 72.8" (800mm x 1000mm x 1850 mm)
HTV Exposed Pallet (ExPA, CEPA Payload)	See ExPA & CEPA payload specification for ELC & CEF	See ExPA & CEPA payload specification for ELC & CEF	*See ExPA & CEPA payload specification for ELC & CEF	*See ExPA & CEPA payload specification for ELC & CEF
ELC (ExPA)	490 Lb (222 Kg)	250 Lb (114 Kg)	740 Lb (336 Kg)	34" x 49" X 46" (863mm x 1244mm x 1168 mm)
Columbus (CEPA)	388 Lb (176Kg)	250 Lb (114 Kg)	638 Lb (290 Kg)	34" x 49" X 46" (863mm x 1244mm x 1168 mm)
JEM-EF	979 Lb (445 Kg)	121 Lb (55 Kg)	1100 Lb (500 Kg)	31.5" x 39.4" x 72.8" (800mm x 1000mm x 1850 mm)

* Location constraint applies in HTV Exposed Pallet

Upgrades In Work

Enhanced Processor and Integrated Communications	Phase A will upgrade the three Command and Control (C&C) MDMs and the two Guidance, Navigation, & Control (GN&C) MDMs.		
(EPIC) Project	Phase B will upgrade the two Payload MDMs, and add Ethernet support for the C&C and Payload MDMs.		
Air to Ground High Rate Communications System	Increase data rates internally and on the RF link 300 Mbps downlink, 7/25 Mbps uplink		
(HRCS) Project	Combine audio and video on orbit		
	Provide two way, high quality audio		
	Open the door to internet protocol communications		
	Open the forward link to multiple users		
	Allow for the capability of transmitting & recording HDTV		
On Orbit External Wireless High Rate	100 Mbps 2-way Ethernet capability		
	1 Mbps 1553 capability		
	Up to 4 antennas attached to EVA handrails on US Lab		

ISS as a Platform for Earth Science

All geographic locations between 51.6 North and South latitude can be observed NADIR pointing Provides coverage of 85% of the Earth's surface and 95% of the world's populated landmass every 1-3 days

ISS coverage in 24 hrs for a 70°-swath optical payload. (Courtesy of ESA)

Processing lighting (changes with subsequent passes) Well-suited for test bed concepts with hardware change out and upgrades

ISS Attitude Torque Equilibrium Attitude (TEA) & Wobble Oscillation Description

For Stage configurations (i.e.; no Orbiter or Orbiter sized vehicle docked on the ISS) in the foreseeable future, the predicted TEA ranges are: Roll: $-1.0 \sim +3.0 \text{ deg}$ Pitch: $-7.0 \sim +2.0 \text{ deg}$ Yaw: $-15 \sim +15 \text{ deg}$.

Momentum Manager Controller Peak to Peak Attitude Wobble Oscillation

	Peak to Peak	Attitude Oscillat	ions Per Orbit	Peak Attitude Variation from Steady-State Orbit-Average Attitude		
Performance Descriptions	Roll (X)	Pitch (Y)	Yaw (Z)	Roll (X)	Pitch (Y)	Yaw (Z)
	(deg)	(deg)	(deg)	(deg)	(deg)	(deg)
Non-Micro-Gravity (Assembly Stages) Non-Propulsive (Momentum Manager)						
Attitude Control Performance Requirement	10.0	10.0	10.0	+/- 5	+/- 5	+/- 5
Micro-Gravity (Assembly Complete) Non-Propulsive (Momentum Manager)						
Attitude Control Performance Requirement	7.0	7.0	7.0	+/- 3.5	+/- 3.5	+/- 3.5
Typical Steady-State Performance of Minimum CMG momentum oscillation						
Momentum Manager Controller	1.6	1.6	2.0	+/- 0.8	+/- 0.8	+/- 1
Typical Steady-State Performance of Minimum Attitude oscillation						
Momentum Manager Controller	1.6	0.4	0.2	+/- 0.8	+/- 0.2	+/- 0.1
Typical Steady-State Performance of Minimum CMG momentum & Attitude oscillation Blended						
Momentum Manager Controller	1.6	0.7	1.2	+/- 0.8	+/- 0.35	+/- 0.6

ISS Quiescent Mode Truss Vibratory Environment For External Payload Pointing Instrument

Data measured on ISS S3 truss

- ISS quiescent mode = No thruster firings, dockings, EVA, or robotics operations
- Typical response, not worst case
- Maximum per octave band - SDMS S3B1N on-orbit accelerometer data.

- Snapshot of 3 10-minute data takes - All data taken on March 16, 26, and 27, Stbd SARJ Rotating, exercise, 3 crew.

ULF-4 analysis concluded peak ELC rotations on the order of 0.03 degrees (quiescent mode)

Data provided by Boeing, June 2010³⁷

- The International Space Station provides an exceptionally clean environment to external payloads and science assets
- External contamination control requirements limit contaminant deposition to 130Å/year on external payloads and ISS sensitive surfaces
 - Specified levels are lower than any previous space station (Mir, Skylab, Salyut) by several orders of magnitude
- Measurements of contaminant deposition on ISS returned hardware have demonstrated that requirements are met at ISS payload sites

Experiment	Side	Requirement (130Å/year)	Measured
MISSE 2	ram	520 Å (4 years)	50 Å
	wake	520 Å (4 years)	500 Å
Node 1 nadir window cover	nadir	390 Å (3 years)	50 Å

Back Up Charts

OTHER

- ISS Program Scientist Toolbox: http://iss-science.jsc.nasa.gov/index.cfm
- ISS National Laboratory Office:

http://www.nasa.gov/mission_pages/station/research/nlab/index.html

- Advanced Avionics Development Office: http://iss-www.jsc.nasa.gov/nwo/avionics/aado/home/web/
- Attached Payload Interface Requirements Document, SSP 57003
- FRAM (ELC) Attached Payload Launch Vehicle IRD, SSP 57012
- ATV-2 Cargo Summary (24 Sep 2009)
- HII Transfer Vehicle Cargo IRD, HTV-CG-001 Rev D
- Requirements for International Partner Cargo Transported On Russian Progress and Soyuz Vehicles, ∏32928-103
- Cygnus Fact Sheet (Orbital, 2009)
- JEM EF Attached Payload Accommodation Handbook, NASDA-ESPC-2857B_Cargo IRD
- Columbus EF Payload Accommodations, COL-RIBRE-SPE-0165-1C_Columbus External Payloads IRD

Acronyms

- ACES Atomic Clock Ensemble in Space
- AMS Alpha Magnetic Spectrometer
- ASI Italian Space Agency
- ASIM Atmospheric Space Interactions Monitor
- ATA Ammonia Tank Assembly
- BCDU Battery Charge Discharge Unit
- CALET Calorimetric Electron Telescope
- C&DH Command and Data Handling
- CEF Columbus Exposed Facility
- CEPA Columbus External Payload Adapter
- CMG Control Moment(um) Gyro(scope)
- COL-EPF Columbus Exposed Payload Facility
- CSA Canadian Space Agency
- CTC Cargo Transport Container
- DPP Dextre Pointing Package
- ELC External Logistics Carrier
- ELM-ES Experiment Logistics Module-Exposed Section
- ELM-PS Experiment Logistics Module Pressurized Section
- EF Exposed Facility
- EFU Exposed Facility Unit
- EPF Exposed Payload Facility
- EPMP Exposed Pallet Multi-Purpose
- ESA European Space Agency
- EuTEF European Technology Exposure Facility
- EVA Extravehicular Activity
- EVR Extravehicular Robotics
- ExPA EXPRESS Pallet Adapter

Acronyms (Continued)

- FHRC Flex Hose Rotary Coupler
- FOV Field of View
- FSE Flight Support Equipment
- HPGT High Pressure Gas Tank
- HREP Hyperspectral Imager for the Coastal Ocean (HICO)/Remote Atmospheric and Ionospheric Detection System (RAIDS) Experiment Payload
- HRS Heat Rejection Subsystem
- HTV H-II Transfer Vehicle (Japanese resupply vehicle)
- ICS-EF Inter-Satellite Communication System Exposed Facility
- ISS International Space Station
- JAXA Japan Aerospace Exploration Agency
- JEM Japanese Experiment Module
- JEM-EF Japanese Experimental Module-Exposed Facility
- JEM-PM Japanese Experimental Module-Pressurized Module
- Kg kilogram
- LAN Local Area Network
- LEE Latching End EffectorMAXI Monitor All-sky X-ray Image
- MCE Multi-mission Consolidated Equipment
- MIM Multi-Increment Manifest
- MiPROM Multi-Increment Payload Resupply and Outfitting Manifest
- MISSE Materials International Space Station Experiment
- NASA National Aeronautics and Space Administration
- NTA Nitrogen Tank Assembly
- ODAR Obsolescence Driven Avionics Re-Design
- OPALS Optical Planetary Access Link for Space Station
- PCU Plasma Contactor Unit
- PFRAM Passive Flight Releasable Attach Mechanism

- PIU Power Interface Unit
- P/L Payload
- PRELSE Platform for Retrievable Experiments in a Leo Space Environment
- R2D2 Robotic Refueling Dexterous Demonstration using Dextre
- RMS Remote Manipulator System
- SAGE III /Hexapod Stratospheric Aerosol and Gas Experiment III w/ Hexapod
- SARJ Solar Array Rotary Joint
- SASA S-Band Antenna Support Assembly Testbed
- SCAN Space Communication And Navigation Testbed
- SDN Starboard Deck Nadir
- SDX Starboard Deck X-Direction
- SEDA Space Environmental Data Acquisition Equipment
- SMILES Superconducting Sub-Millimeter Wave Limb Emission Sounder
- SOLAR Solar Observatory Grouping
- SOX Starboard Overhead X-Direction
- SOZ Starboard Overhead Zenith
- SPDM Special Purpose Dexterous Manipulator
- Stbd Starboard
- Sx SpaceX (US commercial resupply vehicle)
- TBD To Be Determined
- TBR To Be Resolved
- TEA Torque Equilibrium Attitude
- TUS-RA Trailing Umbilical System-Reel Assembly
- ULF Utilization & Logistics Flight
- U.S. United States
- USOS U.S. Operational Segment

US Laboratory Window 50-cm diameter Telescope-quality optical glass NADIR view

Facility to support visual and multispectral remote sensing using Lab Optical Window

Windows on the Earth

Service Module Window 40-cm diameter NADIR view

ExPRESS Rack Resources

(Expedite the Processing of Experiments for Space Station)

System	Middeck Locker Locations	ISIS Drawer Locations	Rack-Level Accommodation	
Structural	72 lbs. within cg constraints	64 lbs. within cg constraints	8 Mid deck Lockers	
			2 ISIS Drawers (4 Panel Unit)	
Power	28 Vdc, 0 – 500 W	28 Vdc, 0 – 500 W	2000 Watts 28Vdc power	
Air Cooling	<u><</u> 200 Watts	<100 Watts	1200 Watts	
Thermal Control System Water Cooling	500 Watts (2 positions per rack)	500 Watts (2 positions per rack)	2 positions per rack	
Command and Data	RS422 Analog	RS422 Analog	RS422 Analog	
Handling	Ethernet 5 Vdc Discrete	Ethernet 5 Vdc Discrete	Ethernet 5 Vdc Discrete	
Video	NTSC/RS170A	NTSC/RS170A	NTSC/RS170A	
Vacuum Exhaust System	1 payload interface per rack	1 payload interface per rack	1 payload interface per rack	
Nitrogen	1 payload interface per rack	1 payload interface per rack	1 payload interface per rack	

⁴⁹ Telescience Resource Kit (TReK) Clients

Operations Timeframe Overview

ISS Payload Integration Process Overview 1/11/11

ISS Requirements & Agreements

ISS Payload Integration Process Overview 1/11/11

ISS Requirements & Agreements

Requirements ensure safety, interface, and operations compatibility •

Safety Requirements Documents

- NSTS 1700.7B, "Safety Policy and Requirements for Payloads using the Space Transportation System" •
- NSTS 1700.7B, ISS Addendum, "Safety Policy and Requirements for Payloads Using the International Space Station" •
- NSTS/ISS 13830, "Payload Safety Review and Data Submittal Requirements for Payloads Using the ISS" •
- NSTS/ISS 18798, "Interpretations of NSTS/ISS Payload Safety Requirements" •
- KHB 1700.7, "Space Shuttle Ground Safety Handbook" •
- SSP 52005, "Payload Flight Equipment Requirements and Guidelines for Safety-Critical Structures" •
- SSP 57025, "ISS Payload Interface System Fault Tolerance Document"

Standard Requirements Documents (partial listing)

- SSP 52000-PDS, "Payload Data Sets Blank Book" ٠
- SSP 52054, "ISS Program Payloads Certification of Flight Readiness Implementation Plan, Generic" ٠
- SSP 57000, "Pressurized Payloads Interface Requirements Document" ٠
- SSP 57003, "Attached Payload Interface Requirements Document"
- SSP 57061, "Standard Payload Integration Agreement for Attached Payloads"
- SSP 57072, "Standard Payload Integration Agreement for Pressurized, Small, and ExPRESS/WORF Rack Payloads"

IP requirements also exist for integration into partner modules, elements, or facilities

Joint Agreements are required in the following disciplines

- Safety Requirements
- Physical Interface Requirements
- Human Factors and Labeling Requirements •

ISS Payload Integration Process Overview 1/11/11

- Command and Data Downlink Requirements Ground Data
- **Operational Requirements** •
 - **Crew Training Requirements**
- Electrical/Thermal Interface Requirements Transportation to/from Orbit Requirements
- Services
- EVA/EVR **Requirements**