@l Software

Dynamically Alterable Arrays
of Polymorphic Data Types

An application library package was de-
veloped that represents data packets for
Deep Space Network (DSN) message
packets as dynamically alterable arrays
composed of arbitrary polymorphic data
types. The software was to address a limi-
tation of the present state of the practice
for having an array directly composed of a
single monomorphic data type. This is a
severe limitation when one is dealing with
science data in that the types of objects
one is dealing with are typically not
known in advance and, therefore, are dy-
namic in nature. The unique feature of
this approach is that it enables one to de-
fine at run-time the dynamic shape of the
matrix with the ability to store polymor-
phic data types in each of its indices. Exist-
ing languages such as C and C++ have the
restriction that the shape of the array
must be known in advance and each of its
elements be a monomorphic data type
that is strictly defined at compile-time.
This program can be executed on a vari-
ety of platforms. It can be distributed in
either source code or binary code form. It
must be run in conjunction with any one
of a number of Lisp compilers that are
available commercially or as shareware.

This program was written by Mark James
of Caltech for NASA’s Jet Propulsion Lab-
oratory. I'Further information is contained
in a TSP (see page 1).

This software is available for commercial
licensing. Please contact Karina Edmonds of
the California Institute of Technology at
(626) 395-2322. Refer to NPO-42071.

¢3 Identifying Trends in Deep
Space Network Monitor Data
A computer program has been devel-
oped that analyzes Deep Space Network
monitor data, looking for changes of
trends in critical parameters. This pro-
gram represents a significant improve-
ment over the previous practice of man-
ually plotting data and visually inspecting
the resulting graphs to identify trends.
This program uses proven numerical
techniques to identify trends. When a sta-
tistically significant trend is detected,
then it is characterized by means of a
symbol that can be used by pre-existing

NASA Tech Briefs, December 2006

model-based reasoning software. The

program can perform any of the follow-

ing functions:

® Given an expectation that data in a
given list should exhibit an upward,
downward, constant, or unknown trend,
it can determine whether the data do or
do not follow such a trend.

® Given a list of data, it can identify which
of the aforementioned trends the data
follow.

e Given two lists of data, it can deter-
mine whether or not both follow the
same trend.

This program can be executed on a va-
riety of computers. It can be distributed in
either source code or binary code form. It
must be run in conjunction with any one
of a number of Lisp compilers that are
available commercially or as shareware.

This program was written by Mark James
of Caltech for NASA’s Jet Propulsion Lab-
oratory. Further information is contained in
a TSP (see page 1).

This software is available for commercial
licensing. Please contact Karina Edmonds of
the California Institute of lechnology at
(626) 395-2322. Refer to NPO-42107.

L
W Predicting Lifetime of
a Thermomechanically
Loaded Component

NASALIFE is a computer program for
predicting the lifetime, as affected by
low cycle fatigue (LCF) and creep rup-
ture, of a structural component subject
to temporally varying, multiaxial ther-
momechanical loads. The component
could be, for example, part of an aircraft
turbine engine. Empirical data from
LCF tests, creep rupture tests, and static
tensile tests are used as references for
predicting the number of missions the
component can withstand under a given
thermomechanical loading condition.

The user prepares an input file con-
taining the creep-rupture and cyclic-fa-
tigue information, temperature-depend-
ent material properties, and mission
loading and control flags. The creep rup-
ture information can be entered in tabu-
lar form as stress versus life or by means
of parameters of the Larson-Miller equa-
tion. The program uses the Walker
mean-stress model to adjust predicted
life for ranges of the ratio between the

maximum and minimum stresses. Data
representing complex load cycles are re-
duced by the rainflow counting method.
Miner’s rule is utilized to combine the
damage at different load levels. Finally,
the program determines the total dam-
age due to creep and combines it with
the fatigue damage due to the cyclic
loading and predicts the approximate
number of missions a component can
endure before failing.

This work was done by Pappu L. N.
Murthy of Glenn Research Center, John
Z. Gyckenyesi of N&R Engineering and
Management Services Corp., Subodh Mital
of the University of Toledo, and David N.
Brewer of the U. S. Army Aviation Systems
Command. Further information is contained
in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steve Fedor, Mail
Stop 4-8, 21000 Brookpark Road, Cleveland,
Ohio 44135. Refer to LEW-18081.

¢3 Partial Automation of Re-
quirements Tracing

Requirements Tracing on Target
(RETRO) is software for after-the-fact
tracing of textual requirements to support
independent verification and validation
of software. RETRO applies one of three
user-selectable information-retrieval tech-
niques: (1) term frequency/inverse docu-
ment frequency (TF/IDF) vector re-
trieval, (2) TF/IDF vector retrieval with
simple thesaurus, or (3) keyword extrac-
tion. One component of RETRO is the
graphical user interface (GUI) for use in
initiating a requirements-tracing project
(a pair of artifacts to be traced to each
other, such as a requirements spec and a
design spec). Once the artifacts have been
specified and the IR technique chosen,
another component constructs a repre-
sentation of the artifact elements and
stores it on disk.

Next, the IR technique is used to pro-
duce a first list of candidate links (poten-
tial matches between the two artifact lev-
els). This list, encoded in Extensible
Markup Language (XML), is optionally
processed by a “filtering” component de-
signed to make the list somewhat smaller
without sacrificing accuracy. Through the

17



