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AN EMPIRICAL STATE ERROR COVARIANCE MATRIX FOR THE 
WEIGHTED LEAST SQUARES ESTIMATION METHOD 

Joseph H. Frisbee, Jr.*

State estimation techniques effectively provide mean state estimates.  However, 
the theoretical state error covariance matrices provided as part of these tech-
niques often suffer from a lack of confidence in their ability to describe the un-
certainty in the estimated states.   By a reinterpretation of the equations involved 
in the weighted least squares algorithm, it is possible to directly arrive at an em-
pirical state error covariance matrix.  This proposed empirical state error cova-
riance matrix will contain the effect of all error sources, known or not.  Results 
based on the proposed technique will be presented for a simple, two observer, 
measurement error only problem. 

 

INTRODUCTION 

Over the last decade or so interest has grown significantly with regards to the question of just 
how well state error covariance matrices represent the errors in estimated states.  A principle mo-
tivating factor in this growth in interest in “covariance accuracy” is the issue of estimating the 
collision risk due to the close approach of any two Earth orbiting objects.  Typically this involves 
an active satellite and either a debris object or an inactive/nonmaneuvering satellite.  The Interna-
tional Space Station (ISS) is an example of a satellite subject to such collision risks.  Due to an 
intended long operational lifetime and as it is part of the NASA Human Space Flight Program, it 
was determined before the launch of the first component of the ISS that a probability based me-
thod was necessary in order to have an effective and efficient collision risk reduction process. 

Error covariance matrices arising from estimation processes have been viewed in either a qua-
litative or quantitative way.  When viewed as a qualitative judgment of a state vector’s accuracy 
the only real requirement was that the error covariance matrix be an acceptable guide as to 
whether or not the estimate was useful for operations.  Viewed as a quantitative measure, the er-
ror covariance matrix has usually come with doubt as to whether it really characterized the uncer-
tainty in a state estimate.  The theoretical covariance matrix coming from the usual weighted least 
squares (batch) estimation process is understood to represent only the state uncertainty associated 
with the assumed measurement errors.  The effects of errors arising from mismodeling of the 
physics of the problem, algorithmic/computational simplifications and incorrect knowledge of the 
true measurement errors are generally excluded from the state error covariance matrix†

                                                      
* ISS Trajectory Operations, NASA/JSC (United Space Alliance, LLC),  

.  The 
usual approach to a better batch filter covariance matrix is to increase its size.  That could simply 
mean “just multiply it by a big number”.  As long as the resulting state uncertainty is operational-

† Sequential methods, Kalman for example, typically rely on process noise to account for such errors.  More will be 
said on sequential filters and process noise later. 
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ly within reason, this method might be deemed acceptable.  Other covariance scaling techniques 
have been and are being used.  The most sophisticated scaling techniques involve a systematic 
and statistically formal study of the performance of the estimation process over a large population 
of appropriate estimates.  The result of such a study is a set of error covariance scale factors (per-
haps many sets for different scenarios) that, on an axis by axis basis, account for the average mi-
srepresentation of the errors in the covariance matrices of the studied process.  These statistical 
correction methods, regardless as to how effective they may be, all suffer from the problem that 
they are based on historical performance and rely on the invariability of the problem being inves-
tigated for their reliable application. 

 Dissatisfaction with the performance of the typical batch estimation algorithm to always pro-
vide an appropriate state error covariance matrix has lead to that algorithm being reexamined.  
Reexamination of the weighted least squares estimation method, invoking a literal and simple 
interpretation of the elements of the algorithm, results in the realization that the algorithm has, all 
along, provided a direct and simple path for the calculation of a formally correct empirical state 
error covariance matrix.  This path also permits the direct calculation of approximate confidence 
intervals for the elements of the state error covariance matrix in its theoretical form.  The empiri-
cal error covariance matrix includes all errors in the process without regard to the degree to which 
they are understood or whether they are even known to exist at all. 

First will be a review of a typical presentation of a batch algorithm.  Next, the derivation of 
the batch empirical error covariance matrix and the confidence intervals associated with the theo-
retical matrix elements will be presented.  A simple example of the results of the use of the em-
pirical method follows.  Finally, ideas for further study either directly or indirectly connected to 
the empirical state error covariance matrix will be presented. 

THE TYPICAL BATCH (WEIGHTED LEAST SQUARES) DERIVATION 

This presentation of the batch weighted least squares algorithm reflects the contents of section 
4.3.3 of Reference 1. An attempt will be made to be consistent with the notation and variable de-
finitions from that text throughout this document.  For that reason, explicit definitions for many 
variables will not be supplied here.  While there is some variance among texts discussing this 
subject, they are all similar enough that any one of them should be sufficient to help in under-
standing the equations presented here.  Additionally noted is that equations taken directly from 
Reference 1 will be noted as “TSB n.n.n” where n.n.n will be the equation number from that ref-
erence. 

Typically, batch algorithms are based on the concept of minimizing the sum of the normalized 
squared deviations of the observations from their anticipated values.  The normalization process 
is invoked so that measurements of different forms and qualities might all be brought to a com-
mon statistical basis involving unitless, scale similar quantities.  Thus, statistically similar mea-
surement errors will contribute similarly to the solution without regard to the type or absolute er-
ror of the measurement source.  With this in mind, the weighted least squares cost function (TSB 
4.3.19) is now presented. 

( ) ( ) ( )xx
2
1xJ T HyWHy −−=  (1) 

This particular function represents the total, normalized variance of all of the measurements to 
be included.  That is, it is the sum of the squared, normalized deviations of all of the measure-
ments from their estimated values.  The next step is to differentiate this function with respect to 
the unknown state variable, x.  The result (TSB 4.3.20) of such a differentiation is:  
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( )xx/J T HyWH −−=∂∂  (2) 

When this derivative function is set equal to zero the result will be indicative of the function 
being at its minimum value.  Solving directly for the unknown variable, with the addition of the 
usual notation change to indicate it is the value of the unknown variable which minimizes the 
function, the result (TSB 4.3.22) is obtained: 

( ) WyHWHH T1Tx̂ −
=  (3) 

This solution is recognized as the least square estimate of the state for linear problems or the 
differential correction to the state for a problem having been linearized with respect to an initial 
estimate of the unknown state.  For the linear differential correction problem, it is common to 
iterate on the solution until the estimated correction is essentially zero.  At that point, the refer-
ence state is the value which results in a minimum of the linearized total squared variance of the 
measurement residuals.  The final step in this typical formulation is to identify the initial coeffi-
cient in equation 3 with the covariance matrix of the error in the final state estimate (TSB 4.3.23): 

( ) 1TP −
= WHH  (4) 

Any text on this subject will almost always present more specific details of the justification of 
the result in equation 4.  Those details are omitted here.  However, in the context of this result, it 
is curious that no mention is made of the natural connection of this result with the experimental 
nature of the solution and the generally followed path in such problems.  That is, to compute an 
empirical state error covariance matrix from the existing data. 

     A last point to emphasize here is that the estimate above is that of a statistical mean value.  
While this is generally obvious, seldom is it stated directly.   The result is that most users may 
lose the connection between the solutions, their accompanying state error covariance matrices, 
and the statistical theory on which they are based.  It will be this connection that is formally taken 
advantage of in the following derivation of the empirical, batch estimate, state error covariance 
matrix. 

DERIVATION OF THE EMPIRICAL STATE ERROR COVARIANCE MATRIX 

Derivation of the empirical state error covariance matrix for the batch estimate begins with the 
typical minimization of the weighted least squares cost function.  This presentation will vary 
slightly from those in most current references on this subject.  The cost function is written in a 
more traditional form using explicit summation notation and as a mean squared variance rather 
than as a total variance.  These notational changes can be omitted from the final forms of the so-
lutions but are useful in the derivation in terms of how they tie the batch estimate to usual statis-
tical methods.  The mean form of the cost function is thus represented by: 

( ) ( ) ( )∑
=

−−=
N

1i
iii

T
ii xHyWxHy

N2
1xJ~  (5) 

This function, just as with the previous version, is differentiated with respect to the unknown 
variable, x.  Reference 1 has a coefficient of 1/2 in the original cost function, equation 1.  This 
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coefficient is not necessary but serves to permit cancellation of the factor of two that results from 
differentiating a squared term.  The divisor*

     Differentiation of the mean squared variance cost function is performed just as is done in 
the traditional least sqaures derivation.  The result is: 

, N, which might be assumed to represent the number 
of measurements could be canceled out as well.  However, this “sample size” divisor will be car-
ried along as it is significant to the process of deriving the empirical state error covariance matrix. 

( )[ ]∑
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−−=∂∂
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i xHyWH

N
1x/J~  (6) 

Again, this derivative is set equal to zero.  The result is then solved for the associated value of 
the unknown state variable.  As noted above, the sample size is not discarded but instead is car-
ried along with each term.  Solving for the unknown mean value of the state variable yields: 
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Note that the coefficient matrix in equation 7 is just the standard theoretical estimate of the 
state error covariance matrix multiplied by the factor N, as is illustrated in equation 8.  The deri-
vation will also show that the coefficient matrix in equation 7 is also an estimate of a hypothetical 
population covariance matrix. 
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At this point, a short review of basic statistics is useful.  For experimental data, assumed here 
to be of vector form, the average of the sample is just the sum of all of the samples divided by the 
number of samples.  This average is the estimate of the mean of the sampled population: 

∑
=

=
N

1i
iz

N
1z  (9) 

Similarly, an unbiased estimate of the covariance matrix of the population from which such a 
sample is drawn is given by: 

( )( )[ ]∑
=

−−
−

=
N

1i

T
iip zzzz

1N
1P~  (10) 

The relationship between this estimate of the variance of the population and the estimate of the 
variance of the mean is just the estimate of the population variance divided by the number of 
samples: 

                                                      
* While the “N” used here reasonably might be interpreted to be the number of observations, the correct divisor might 
be another integer.  For example, this other integer could represent the total number of statistical degrees of freedom of 
the problem.  The actual value of the divisor is irrelevant as the divisor will eventually cancel out in the calculation of 
the empirical error covariance matrix just as it does in the usual theoretical approach. 
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Recall from statistics that the distributional character of the uncertainty in the sample mean of 
a population tends to normality as the sample size gets large.  This is without regard to the cha-
racter of the distribution of the population itself.  This directly implies that the uncertainty in an 
estimated state vector should follow an approximately multivariate normal distribution, at least 
with large sample sizes. 

Considering equation 7, all of the coefficient terms (excepting the second sample size divisor) 
may be combined in one term within the second summation.  This result is rewritten as a single, 
measurement related coefficient matrix multiplying the corresponding measurement residual 
within the sum: 
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Note the similarity of this expression to equation 9.  If each sample vector within the sum of 
equation 9 is just recognized as the corresponding product term within the sum of equation 12, 
shown in equation 13, then the usual batch estimate solution can be interpreted as a direct appli-
cation of the standard statistical approach to finding the mean of a sample of a population. 
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By way of analogy with the sample vectors in equation 9, and for convenience in relating the 
standard batch estimate to the usual statistical methods, the product vectors in equation 12 and 
individually in equation 13, may be interpreted as vectors in a hypothetical population.  The sta-
tistical characteristics of this hypothetical population are such that the mean of a sample drawn 
from this population has exactly the same distributional character as the estimate from the batch 
method solution. 

     Now recall the iterative nature of the typical batch estimate.  On convergence, the estimate 
itself is approximately zero.  This allows equations 10 and 11 (with a large sample size assump-
tion) to be rewritten*†

( )∑
=

=
N
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T
iip zz

N
1P~

 as: 

 (14) 

                                                      
* It is important to note here that the zi appearing in equations 9, 10, 11, 13, 14 and 15 DO NOT represent the solutions 
(using generalized inverses) of the individual residual expressions appearing in equations 5 and 6.  These zi are pre-
sented in 9-11 and 13-15 to illustrate standard statistical forms and to relate the batch estimate to those forms.   The 
specific definition of each of the zi is given by equation 13. 
† Using the converged solution is not just a matter of convenience.  It is the most useful.  Without thinking about how, 
it might be possible to employ the empirical error covariance matrix in the iteration process.  However, with the nature 
of empirical estimates it is anticipated that more iterations would be required for convergence, provided the process just 
wouldn’t diverge. 
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Based on the logic in the paragraph following equation 12 and using the expanded version of 
the notation shown in equation 13, the population covariance matrix in equation 14 and the mean 
covariance matrix in 15 may both be rewritten using more standard notation typical of the batch 
estimate process.  This gives for these two matrices: 
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Each of these may be further simplified by rearranging and factoring out the covariance matrix 
terms.  Note that the sample size will remain in the population covariance expression but is absent 
from the expression for the covariance of the mean.  Also, the symmentry of P is used to elima-
nate some matrix transpose symbols. 
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The first result, equation 18, is the empirical covariance matrix of the hypothetical parent pop-
ulation associated with the batch estimate of the mean vector.  Equation 19 is the empirical error 
covariance matrix of the batch estimate itself.  Because each residual contains the contributions of 
all error sources, known or not, this empirical error covariance matrix will fully describe the un-
certainty in a state estimate to within sampling accuracy.  To show both the equivalence of the 
expression in 18 to that in equation 4, as well as the relationship between the population and 
mean covariance matrices it is only necessary to consider the expected values of the above two 
expressions.  Since only the measurement residual terms are random values, the above may be 
rewritten using expectation notation as: 
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With the assumption that each measurement weighting matrix is just the inverse of the cova-
riance matrix of the error associated with that measurement, equations 20 and 21 become respec-
tively: 
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The second equality on the right in each equation follows directly from the fact that the brack-
eted summation in each of these equations is just the inverse of the original description, in sum-
mation notation, of the standard, theoretical estimate of the state error covariance matrix of the 
batch estimation method (equation 8).  Equation 23 shows that the empirical error covariance ma-
trix of equation 19 is a proper representation of the state error, under measurement error only.  
The relationship between equations 22 and 23 similarly shows that equation 22 is a proper esti-
mate of the population covariance. 

Just to place these results in a frequently observed format, each of the above may be rewritten 
in the original matrix notation of Reference 1.  As the population covariance is just the sample 
size (degrees of freedom?) multiplied times the covariance of the estimate of the mean, only the 
covariance of the mean is presented. 

PPP~ TWYWHH=  (24) 

The central matrix, Y, is not simply the outer product of the appended residual vector with it-
self but is a block diagonal matrix with each block being the outer product of a specific measure-
ment residual with itself. 





















=

T
NN

T
22

T
11

yy00

0yy0
00yy









Y  (25) 

This block diagonal form implies independence of the measurements.  There may be the pos-
sibility of this not being the case*

                                                      
* An example of when dependence could occur might be when two or more observations belong to one track (a single 
sensor pass).  In computing the empirical state error covariance matrix, it might be appropriate to define an appended 
super observation composed of the dependent observation residuals.  This would result in a super block within equation 
23 which would be the outer product of the appended super observation with itself.  If a large number of such tracks for 
a specific sensor were included in an estimate, that should empirically account for the correlation between the observa-
tions in the tracks having such correlated measurements. 

.  With independence, the expected value of the outer product of 
the appended residual vector with itself will be the same as the expected value of the matrix in 
equation 25.  However, the simple outer product of the entire appended residual vector with itself, 
instead of the general block diagonal form in equation 25, will result in the empirical matrix in 
equation 24 being singular.  In general, without strong evidence of a dependent condition, the 
empirical state error covariance matrix should be computed using equation 25, if equation 24 is 
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chosen over equation 19.  The form of equation 19*

This concludes the derivation of the empirical state error covariance matrix for the batch esti-
mate.  Either one of equations 19 or 24 may be viewed as the description of how to actually com-
pute the empirical state error covariance matrix.  The empirical error covariance matrix may be 
computed for each of the iterations but only if a form of the empirical matrix consistent with equ-
ation 10 is used.  The result will be iterative values of the empirical matrix.  However, the final 
forms in equations 19 and 24 imply that the batch iteration is allowed to converge and only the 
results of the last iteration give rise to the final, working value of the empirical state error cova-
riance matrix. 

 implies independence of measurements so 
there is no ambiguity with regard to its meaning. 

BATCH ESTIMATE COVARIANCE MATRIX ELEMENT CONFIDENCE INTERVALS 

One aspect of any sampled data problem is that statistics derived from such data are inherently 
uncertain.  For this reason, it is very common for confidence intervals to be determined for such 
statistics.  In batch state estimation, the expected value of the state error covariance matrix has 
always represented, under measurement error only, a theoretical statement of the uncertainty in 
the estimated state.  Given the sample data estimate of the uncertainty in the estimated state, it is 
appropriate to consider the uncertainty in the elements of the state error covariance matrix.  In 
order to determine the error covariance matrix uncertainty both the variance and the third central 
moment of each element of the error covariance matrix need to be computed.  These element by 
element statistics are determined in their theoretical form.  The degree of difficulty in doing so 
depends on the assumed form of the distributions associated with the measurement residuals.  
Here it will be assumed that the measurement uncertainties have zero mean values and are nor-
mally distributed. 

Derivation of the theoretical variance in each element of the batch state error covariance ma-
trix follows directly from the standard statistical approach.  The variance (second central mo-
ment) of any variable is computed as the expected value of the squared difference between the 
expected value of that variable and the possible random values of the same variable.  To approach 
this for each element of the error covariance matrix, it is convenient to first repose the description 
of the error covariance matrix of equation 19 in terms of the contribution of each observation.  
This is motivated by the fact that the variance of the sum of independent random variables is just 
the sum of the variances of those same independent random variables.  So under the assumption 
that the measurements are independent, the contribution of each to the variance of the empirical 
state error covariance matrix may be individually determined.  The results are combined to de-
termine the variance of any element of that error covariance matrix.  Thus, the i-th measurement’s 
contribution to the empirical state error covariance matrix is given by: 

PHWyyWPHP~ T
ii

T
iiiii =  (26) 

Following common practice and as noted previously in section III, the measurement weighting 
matrix may be interpreted as the inverse of the covariance of the corresponding measurement er-
ror.  This allows each measurement to be written in terms of the product of the measurement co-
variance matrix square root matrix (obtained through Cholesky decomposition of the inverse of 
the weighting matrix) and a normalized random column vector, ui. 
                                                      
* Recall that this form specifically applies to the converged solution where the estimated state correction is assumed to 
be equal to zero. 
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With substitution for yi, and after simplification, equation 26 becomes: 

PHSuuSPHP~ T
i
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iii

−−=  (28) 

At this point it is useful to redefine the first three matrices on the right hand side of equation 
28 as a single matrix: 

1
iii SPHB −=  (29) 

This new matrix, Bi, is dimensioned p x ki where p is the number of elements of the state vec-
tor to be estimated and ki is the number of elements of the measurement residual vector yi.  With 
this matrix substitution, equation 28 becomes: 

T
i

T
iiii BuuBP~ =  (30) 

The last part of this preliminary is to give the element by element representation of the contri-
bution of the i-th measurement to the state error covariance matrix.  This is accomplished by not-
ing that the (m,n) element of the contribution of the i-th measurement involves only rows m, bi:m, 
and n, bi:n, of Bi. 

T
n:i

T
iim:imn:i buubP~ =  (31) 

The expected value of the outer product of the normalized measurement residual ui with itself 
is just the identity matrix.  Therefore, the expected value of equation 31 is given by: 

T
n:im:imn:imn:i bbPP~ ][ ==E  (32) 

This result, equation 32, is the element by element representation of the contribution of the i-th 
measurement to the theoretical state error covariance matrix in equation 23.  Note that it is just 
the inner product of row m of Bi with row n of Bi. 

     To determine the variance of the element expressed in equation 31, the usual definition of 
the variance being the expected value of the square of the difference between that element and its 
expected value is employed.  This definition directly gives the following relationship: 

( ) ][][ 2
mn:i

T
n:i

T
iim:imn:i PbuubP~ −= EV  (33) 

By way of a term by term expansion of the squared expression in equation 33, followed by 
appropriate application of the expectation operator to the random variable terms, it can be shown 
that equation 33 reduces to: 

( )2T
n:im:i

T
n:in:i

T
m:im:imn:i bbbbbbP~ ][ +=V  (34) 

At this point, equations 32 and 34 give explicit representations of both the mean expected val-
ue of mn:iP~  and of its variance.  Both mean and variance terms will be necessary in defining the 
characteristics of the distributions of the theoretical uncertainties of the covariance matrix ele-
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ments.  For some of the terms of the matrix the third central moment may also be necessary and 
so it is presented next.  By definition, the third central moment is given by: 

( ) ][][ 3
mn:i

T
n:i

T
iim:imn:i3 PbuubP~ −= EM  (35) 

Through substitution and simplification, the right hand side of equation 35 reduces to: 
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The expressions in 32, 34 and 36 are used to determine the total element by element values 
through simple summation over the observation index i.  These results are given by: 
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Before continuing, it is convenient to note that all of the outer products appearing in 37-39 are, 
by way of equation 32, nothing more than the contribution of each of the individual observations 
to the empirical error covariance matrix.  Using this observation, it is possible to rewrite equa-
tions 37-39 as the following: 
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The convenience of these forms are that they show, as the empirical error covariance matrix is 
being calculated through observation by observation accumulation, the variance and third central 
moment of each of the covariance matrix elements may be computed from only the terms used to 
compute the matrix itself. 

     The results in equations 40, 41 and 42 (which use equation 32) are specifically based on the 
a priori information.   As such, the confidence intervals to be determined using these results will 
describe how empirical error covariance matrix terms vary with respect to their corresponding 
theoretical covariance matrix terms under perfect system and measurement modeling.  Such pre-
cise knowledge is seldom the case. 

Given the results in equations 40, 41 and 42 the important question now is “How are the 
mean, variance and third central moment used to determine the characteristics of the uncertainties 
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in the error covariance matrix?”  The characteristics of the uncertainty for any random variable 
are defined by the form of the appropriate probability density function (pdf).  Generally speaking, 
any pdf is described by a set of parameters.  For example, a univariate normal distribution is de-
scribed using both its mean and its variance or, equivalently, its standard deviation.  For the un-
certainties in the elements of the error covariance matrix of the batch estimate in theoretical form, 
there are three reasonably good candidate distributions.  These candidate distributions are the 
normal distribution, the chi-square distribution and the gamma distribution.  As error covariance 
matrices are composed of two distinct classes of “random” variables, diagonal and off-diagonal 
elements, the discussion of appropriate distributions describing each will be done separately.  
Addressed first will be the diagonal elements of the error covariance matrix. 

     The expectation for the diagonal terms of an error covariance matrix is that they will be 
positive-definite since each represents the variance of the corresponding state element.  Those 
with sufficient familiarity of probability and statistics might anticipate that the diagonal elements 
might have chi-square distributions.  It turns out that independent samplings of an i.i.d. (indepen-
dent, identically distributed) random variable do result in the variances of multiple random sam-
ples having a distribution that is chi-square with a degree of freedom associated with the size of 
the sample drawn.  In the more general estimation problem being discussed here, the random va-
riables being drawn are, in general, not i.i.d.  While a chi-square fit might be reasonable to try, it 
is unlikely that empirical data will lead to integer value estimates for the degrees of freedom as-
sociated with the distributions of the diagonal covariance matrix elements of an given estimation 
problem.  A better distributional form would be that associated with the gamma distribution.  The 
gamma distribution allows for noninteger shape values whereas the chi-square distribution is in-
tended to reflect integer degrees of freedom, which correspond to the “shape” of the gamma dis-
tribution.  When the shape parameter of a gamma distribution is sufficiently large (analogous to 
when the degrees of freedom for a chi-square distribution is large) the gamma distribution may be 
approximated as a normal distribution.  At this point it is appropriate to present the forms of the 
pdfs for both the gamma and normal distributions to be used as candidates for representation of 
the uncertainty of the diagonal elements of the error covariance matrix.  Presented first is the 
gamma distribution pdf followed by the normal approximation pdf. 
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The constant parameters αmm and βmm in equation 43 represent, respectively, the shape and 
scale parameters of the gamma distribution function.  The terms µmm and σmm in equation 44 
represent the mean and standard deviation of the normal approximation.  For the gamma distribu-
tion, the expected value (mean value) and the variance of the distribution are given by: 

( ) βα= mmmmmmCE  (45) 
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( ) βα=
2
mmmmmmCV  (46) 

For the theoretical state error covariance matrix it is necessary to equate (with m equal to n) 
equation 37 or 40 to equation 45 and equation 38 or 41 to equation 46.  Solving for the unknown 
parameters αmm and βmm will yield the following two results: 

V
P

mm

2
mm

mm =α  (47) 

P
V

mm
mm

mm =β  (48) 

For the situation in which the normal distribution approximation might be appropriate*

Pmmmm =µ

, the re-
sults are even more simple.  These normal distribution approximation results are for the theoreti-
cal estimate: 

 (49) 

Vmmmm =σ  (50) 

     Having presented the parameters describing the distributions of the diagonal elements of 
the state error covariance matrix, the off-diagonal elements are next.  Generally speaking, the 
procedure is the same as that for the diagonal elements of the matrix.  The complicating factor is 
that the off-diagonal terms may be positive or negative.  If it is clear that the magnitude of the 
mean value of any (m,n) off-diagonal element is significantly larger than the square root of the 
variance of that same (m,n) element then a normal approximation might serve as a reasonable pdf 
function for that element.   Also, if the mean value of an off-diagonal element is essentially zero 
and its magnitude is much less than the square root of its variance then the normal approximation 
might again work.  When the normal distribution does appear to be a good candidate for the dis-
tributions of off-diagonal elements of the error covariance matrix, equations 49 and 50 may be 
used to determine the means and standard deviations of appropriate off-diagonal elements of the 
error covariance matrix†

     For cases that are much less clear, a more generalized version of the gamma distribution is 
suggested.  This more generalized gamma distribution is of the same form as that shown in equa-
tion 43 except that an origin shift, µmno, is included.  This more generalized gamma pdf is: 

. 

                                                      
* The shape, akin to the degrees of freedom, of the general estimation problem probably will not correspond to the 
number of observations.  In fact the shape parameter may be substantially less than the number of observations.  There-
fore, in order to know if the normal approximation might be appropriate for the uncertainty in the diagonal matrix ele-
ments, it is necessary to actually compute the shape parameter from equation 47 first. 
† As the form of the equations used to solve for the off-diagonal covariance element normal distribution fit parameters 
µ and σ are exactly the same as those in 49 and 50 the equations will not be explicitly given.  It is just noted that, to 
create such a set of equations, one only needs to replace the “mm” subscripts by “mn” subscripts so that the expressions 
will represent any off-diagonal term of the error covariance matrix. 
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Based upon this generalized pdf form the three parameters µmno, αmn and βmn may be deter-
mined, specifically for the theoretical case, from the following three relationships: 
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(54) 

     Having determined the parameters (theoretical or empirical) for any selected pdf form, the 
distributions may be used in the usual way to determine the confidence intervals associated with 
any selected error covariance matrix element.  Typically, this would be something of the form, 
“Given the covariance element Pmn, what is the interval for Pmn (Phigh> Pmn>Plow) such that the 
probability that Pmn lies within the interval is at least of the chosen content?”  At this point, it 
might seem that the problem of the uncertainty in the estimated state error covariance matrix has 
been substantially solved (at least as by the methods presented in this paper).  That in fact is not 
the case. 

     One reason is that the proposed confidence intervals for the error covariance matrix ele-
ments may not simply just be applied independently.  Specifically, considering both diagonal and 
off-diagonal elements, the covariance matrix must remain positive definite regardless as to the 
apparent individual confidence intervals of its elements.  So, perhaps, if one attempted to random-
ly generate error covariance matrices from the proposed confidence intervals it would be neces-
sary to check for positive definiteness after each random matrix draw.  Nonpositive definite ma-
trices would have to be rejected and a new one drawn.  But even this conditional Monte Carlo 
technique is not actually possible at this point.  

     Connected to the above, as to why the covariance matrix uncertainty described in this doc-
ument is not complete is that the covariance between any two matrix terms has not been pre-
sented.  All that have been given are the variances of each matrix element.  To make this clear, 
suppose one constructs a vector where each element of the vector is a unique element of the em-
pirical state error covariance matrix.  Since each element is a statistic, a new random vector has 
been created.  This random covariance vector then clearly implies, in general, the existence of an 
associated covariance matrix describing its uncertainty.  What are presented in this paper are just 
the diagonal elements of the covariance matrix describing the uncertainty of the random cova-
riance vector.  The off-diagonal terms not presented are each as simple to determine as the pre-
sented diagonal variances.  Any formal attempt to randomly generate state error covariance ma-
trices would require the determination of all of the off diagonal elements of the covariance matrix 
describing the uncertainty in the random covariance vector. 

     A last point to be noted (though not necessarily the only remaining issue) is that of the in-
terpretation of a confidence interval of an error covariance matrix.  How that might come into 
play in analyzing the effect of the uncertainty of an error covariance matrix on some function of 
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the original state vector and/or its estimated error covariance matrix is difficult to anticipate.  This 
issue also includes the characterization of the confidence interval given that the different elements 
of the state error covariance matrix may have different distributional types (normal, chi-square, or 
gamma).  This complication may actually imply that the best approach is a Monte Carlo genera-
tion of error covariance matrices, and perhaps state vectors as well, followed by calculation of the 
functional value of interest. Such an involved Monte Carlo scheme would eventually build up the 
character of the uncertainty of any function of interest.  

A SIMPLE EXAMPLE 

In order to illustrate the potential usefulness of the empirical error covariance approach, a 
simple example is presented.  This example is a basic geometric triangulation problem involving 
a stationary target and multiple, range only, observations from two independent stationary ob-
servers.  The observer locations are fixed and known.  For this simple problem only measurement 
noise will be introduced to corrupt the true, exact measurements.  Two variations of this problem 
will be presented.  The first variation will illustrate the effectiveness of the empirical method 
when the problem is ideal, which is, modeled correctly.  So for the batch solutions the measure-
ment errors associated with the observations from each of the two observers are correctly de-
scribed by their reported, but different, sensor measurement uncertainties.  The second variation 
will involve mismodeling of the anticipated measurement errors for each of the two observers.  
This will be accomplished for the batch solutions by simply switching the assumed measurement 
uncertainties for the two observers.  Thus the first observer will have, as its reported measurement 
uncertainty, the true uncertainty of the second observer.  The second observer will have as its re-
ported measurement uncertainty the true uncertainty of the first observer.  In both cases, the first 
observer will report 10 observations for each estimate and the second observer will report 20 ob-
servations to go into the same estimate.  In fact, the same set of observations will be used for both 
variations with the only difference being that the assumed measurement errors will be switched in 
the mismodeled solution.  The solutions will be repeated, with new and independent normal ran-
dom error draws, for a total of 500 trials.  Because the empirical method is only intended as an 
adjunct to the existing batch estimate, it is based on the final converged theoretical solution.  For 
this reason, there is only one actual state estimate for each trial in each case.  That is, the empiri-
cal covariance matrix is referenced to the same solution as the theoretical covariance matrix.  The 
Table below documents the data used in both the ideal and mismodeled solutions.  Note that for 
each solution, the assumed location of the target at the start of each estimate’s iteration cycle was 
chosen to be the target’s true location. 

Table 1.  Data for the Ideal and Mismodeled Problem Variations. 

Data type 

Observer 1 

Location 

Observer 2 

Location 

Target 

Location 
Observer 1 

Range Sigma 

Observer 2 

Range Sigma 
X1 Y1 X2 Y2 Xt Yt 

True 0 0 14000 0 9000 12000 30 10 

Ideal 0 0 14000 0 9000 12000 30 10 

Mismodeled 0 0 14000 0 9000 12000 10 30 

 

What follow now are the results for the ideal variation of the triangulation problem.  Figure 1 
displays the dispersion of the deviations of the 500 trial solutions of the target location from its 
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true position.  Superimposed over this field of deviations are ellipses*†

 

, representing the theoreti-
cal error covariance matrix, the average (over the 500 trials) empirical error covariance matrix 
and the covariance matrix computed directly from the 500 trials.  The average empirical error 
covariance matrix is used here as it best displays the goal of having a method which, on average, 
represents the actually uncertainty.  Individual empirical error covariance matrices typically will 
be close to the mean value but there is some small likelihood of an empirical error covariance 
matrix being markedly different from the mean expectation.  This is just a fundamental aspect of 
any sampled data process.  In any case, it is clear that both the theoretical error covariance matrix 
and the average empirical error covariance matrix are consistent with the observed dispersion of 
the solutions as well as the dispersion covariance ellipse computed from those dispersed solu-
tions. 

Figure 1. Ideal Case Solutions with Position Error Covariance Matrix Ellipses. 

     With some confidence being implied from Figure 1 that the empirical error covariance ma-
trix does represent the uncertainty of an estimate, it is reasonable to consider what happens if the 
method is applied to the case where some mismodeling exists.  As described by Table 1 and asso-

                                                      
* The ellipses correspond to a chi-square value of 2, equivalent to a sigma level (Mahalanobis number) of the square 
root of 2.  The choice of ellipse size is somewhat arbitrary and usually a value of 1 is used but the value of 2 appears 
most compatible with the data presented. 
† All ellipses are referenced to the true target position. 



 16 

ciated prior text, the case is considered where the presumed measurement errors are switched.  
This switching of measurement errors is not intended to imply that such a mistake is apt to hap-
pen.  The intent is to directly show how the empirical error covariance matrix compares to the 
theoretical result under any measurement error misrepresentation.  Indirectly, it implies that the 
empirical method should also accommodate errors induced by other sources. 

     Before presenting the results for the mismodeled case, it is of interest to note a special cha-
racteristic (presented without proof) of the specific, two observer, problem that is being examined 
here.  It turns out that both the state updates for any iteration as well as the converged empirical 
error covariance matrices are independent of the assumed measurement errors.  The result of this 
is that the set of 500 estimated solutions and their corresponding empirical error covariance ma-
trices are unchanged from the results obtained in the ideal case.  As a result, the covariance ma-
trix of the 500 estimates and the average empirical error covariance matrix to be displayed in Fig-
ure 2 are exactly the same as those displayed in Figure 1.  For other problems this condition 
should not be expected to exist.  In any case, Figure 2 is now presented to display the effect of the 
measurement error assumption.  Note that, due to its specific dependence on the assumed mea-
surement error characteristics, the theoretical state error covariance matrix is drastically different 
from the mean empirical error covariance, the covariance matrix of the set of trial solutions as 
well and the theoretical error covariance matrix of the ideal case. 

 

Figure 2. Mismodeled Case Solutions with Position Error Covariance Matrix Ellipses. 

     Figures 1 and 2 indicate clearly that the empirical error covariance matrix has an ability to 
reflect the actual uncertainty characteristics of an estimate even when the theoretical error cova-
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riance matrix is incorrect.  The summary statistics of both the ideal and the mismodeled cases are 
given in Table 2.  The data in Table 2 represents average values over the 500 trials for theoretical 
(ideal and mismodeled) and empirical cases.  The “Collective Solution Statistics” category 
represents the covariance of the 500 individual trial solutions. 

Table 2. Summary of Position Error Covariance Matrix Values. 

Matrix Element: Pxx Pxy Pyy 

Theory (ideal case average): 107.630 39.814 20.361 

Theory (mismodeled case average): 50.280 -24.318 23.819 

Empirical (both cases, average): 94.086 34.497 17.899 

Collective Solution Statistics (both cases): 106.527 37.988 19.196 

 

The question is how would a user know if any observed difference between the two error co-
variance matrices (or more specifically, their elements) might be due to mismodeling or is just a 
reflection of sampling variability?  In other words, how is any difference between corresponding 
elements of the two error covariance matrices determined to be statistically significant?  Using 
the technique described earlier, the constants, α and β, of the gamma distribution are determined 
for the x element covariance, Pxx, of the theoretical error covariance matrix in both the ideal and 
mismodeled cases.  Using the gamma function constants, 95% confidence intervals are deter-
mined for each case.  The empirical and collective values of Pxx are compared to the theoretical 
confidence intervals for each case.  If the empirical or collective values fail to lie within the 95% 
confidence interval for either of the two theoretical cases then the failing case is said to disagree 
at the 5% significance level.  In other words, at the 5% significance level, the difference is not 
explained purely by random variation.  Comparing the Pxx values for the empirical and collective 
results in Table 2 to the confidence intervals in Table 3 it can be seen that the Pass/Fail notations 
in Table 3 are consistent with the desired confidence interval requirement.  The conclusion is that 
the results shown in Tables 2 and 3 indicate that modeling for the theoretical position error cova-
riance is consistent with the observation residuals in the ideal case but, for the mismodeled case, 
the modeling is inconsistent with the observation residuals. 

Table 3. Summary of Theoretical Solution Gamma Distribution Results for Pxx. 

Theoretical Case αxx βxx Pxx_upper 95% Pxx_lower 95% Empirical Collective 

Ideal 5.421 19.853 215.455 36.970 Pass Pass 

Mismodeled 14.291 3.518 79.500 27.682 Fail Fail 

 

CONCLUSIONS 

The principal and most significant conclusion within this work is that for the batch least 
squares estimate an empirical error covariance matrix exists and that this matrix will reflect all 
errors present in the modeling and measurement processes.  This empirical error covariance ma-
trix is a specific result for any single estimate and does not rely on historical data.  Furthermore 
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the empirical error covariance matrix development also gives rise to a method by which uncer-
tainty in error covariance matrices may be investigated.  Substantial difference between the theo-
retical error covariance matrix elements and their corresponding empirical forms may indicate 
that modeling or measurement process error exists.  Through confidence interval analysis it can 
be concluded whether or not the differences between the two matrix forms are significant.  The 
result of this will be when to accept the empirical error covariance matrix as the appropriate re-
presentation of the state uncertainty rather than the usual theoretical error covariance matrix. 

FUTURE WORK AND RELATED CONCEPTS 

The principal goal of intended and in-progress work is to fully resolve the issue surrounding 
the proper sample size divisor.  Resolution of this factor will open the door to complete utilization 
of both the empirical error covariance matrix and of the equivalent parent population matrix.  A 
specific goal is to develop empirically based confidence intervals so that, when  the empirical 
matrix is an appropriate alternative, the confidence intervals will empirically reflect the true phys-
ics and measurement processes at work in the problem.  While minimally mentioned, the parent 
population covariance matrix may offer a great deal of utility.  For example, it is suggested that 
the parent population matrix is the appropriate matrix for testing for observation outliers and 
more generally is desired for any search algorithm based on a least squares state estimate.  An 
example of this would be searches for lost satellites, asteroids or aircraft. 

Lastly, a very specific goal is to extend this theory to sequential estimates.  Difficulties with 
this are more related to associated aspects of sequential estimates rather than their actual sequen-
tial character.  Specifically, most sequential estimates involve the use of a process noise term.  
Process noise is commonly understood to account for unmodeled effects in the physics and mea-
surement processes.  While it may do this, process noise is more specifically understood to con-
trol over convergence of the state error covariance matrix which becomes vanishingly small as 
observations continue to be accumulated.  This statistical contraction of the error covariance ma-
trix  is to be expected in typical sequential algorithms.  For the empirical error covariance matrix, 
process noise is inherently included over the fit interval.  In fact, it is likely possible to estimate 
any unknown process noise by comparing the empirical error covariance to the theoretical cova-
riance and so have a real time process noise estimate to apply to propagated matrices.  Regard-
less, applying the empirical matrix concept to sequential estimates will require various detailed 
considerations. 
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