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ABSTRACT

Location technologies have many applications in wireless
communications, military and space missions, etc. US

Global Positioning System (GPS) and other existing and
emerging Global Navigation Satellite Systems (GNSS)
are expected to provide accurate location information to
enable such applications. While GNSS systems perform
very well in strong signal conditions, their operation in
many urban, indoor, and space applications is not robust
or even impossible due to weak signals and strong
distortions. The search for less costly, faster and more
sensitive receivers is still in progress.

As the research community addresses more and more
complicated phenomena there exists a demand on flexible
niultiniode reference receivers, associated SDKs, and
development platforms which may accelerate and
facilitate the research. One of such concepts is die
software GPS/GNSS receiver (GPS SDR) which permits
a facilitated access to algoritlunic libraries and a
possibility to integrate more advanced algorithms without
hardware and essential software updates. The GNU-SDR
and GPS-SDR open source receiver platforms are such
popular examples.

This paper evaluates the performance of recently
proposed block-corelator techniques for acquisition and
tracking of GPS signals using open source GPS-SDR
platform.

I. INTRODUCTION

In conventional GPS [1],[2], satellites orbiting the earth
transmit direct sequence spread spectrum (DSSS) ranging
signal on the carrier frequencies of Ll (1575.42 MHz)
and L2 (1227.60 MHz).

The GPS receiver measures the time-of-transmission
(TOT) of the satellite ranging code. Based on this and its
own time, it determines the time required for the signal to
propagate from the satellite to the receiver. This time is
converted to a distance when it is multiplied by the speed
of light. The receiver also decodes the navigation data
from satellite messages, which contains orbital
parameters, correction data, time stamps, etc. Using
navigation data and transmission times the receiver
estimates the locations of GPS satellites. Having the
satellite locations, and satellite-to-receiver distances, one
can unambiguously determine the position of the receiver
using trilateration techniques. The estimation can also
resolve for the receiver clock error as it is generally
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Figure 1. A schematic structure of a GPS receiver. Hardware accelerators are often completely excluded m software defined GPS

biased. Least Squares (LS) or closed form methods can be
used to solve GPS tilateration equations.

In the conventional civilian receiver each satellite
modulates the sinusoidal LI car rier signal with a rmique
coarse acquisition (C/A) code known at the receivers. The
C/A code is a binary pseudorandom noise (PRN) code
sequence comprising 1023 chips repeating each

millisecond. The C/A code is Inns long containing values
of-1 and+1.

The Ll signal is further modulated with the navigation
data at a bit rate of 50 bit/s. Thus, the transmitted signal is
a product of a data component, a PRN code component
and a sinusoidal carrier component. The primary
measurement tasks at the receiver include calculation of a
range (satellite-to-receiver distance), range rate, and
demodulation of the navigation data. For range and
range-rate measurements the receiver has to synchronize
locally generated `replica' code with the received signal
in order to de-spread the code and estimate delays. The

synchronization is done in two phases; coarse

synchronization (acquisition) and fine synchronization
(tracking).

In both modes, correlators are used to find the best
alignment of the received signal and replica code

sequence and thus to find their relative signal shift (delay)
called `code-phase'. The notion of the code-phase is due
to the DSSS signal structure, which has the same
pseudorandom signal pattern periodically repeating in
time. The signals are aligned when the edges of the code
periods are aligned. Figure 1 illustrates the structure of a
conventional GPS receiver. Acquisition and Lacking
modules may reuse correlators, and most of the state-of-
the-art receivers use dedicated hardware accelerators for
the correlators. With the development of faster processing
units and more reconfiguration capability needs the
correlators can be completely implemented in software, a
concept known as software defined radio or receiver
(SDR) [8]-[l1].

Dedicated hardware has clear advantages in faster
processing but the functionality is limited to the particular
design of each chip. Software implementations are
becoming more and more attractive due to their flexibility
to adapt to GPS signal modernization, new Global
Navigation Satellite System (GNSS) signals [2], and
demand of nmltinnode weak signal processing algorithms
[2],[3] to handle many possible scenarios and nnulti-
sensor integrations. Examples of software GPS receiver

implementations are [4]-[8]. Tight integration of baseband
and positioning algorithms of the GPS receiver along with
other sensor's is a big advantage of software receivers.

Software implementations may reduce the cost of the
positioning systems as new versions can be simply
installed as software upgrades.

To make use of the advantages and potential of software
implementations, computationally efficient algorithms
should be used to implement massive correlators
employed in the state-of-the-art receivers for high
sensitivity. This is a very big challenge for software
implementations. GPS receivers process signals in three
dimensional uncertainty space: `available satellites',
`code-phase of each satellite', and `Doppler frequency
shifts'. Doppler shifts are due to relative satellite-receiver
movement and clock inaccuracies. The Doppler shift
causes changes both in code rate and carrier frequency.

For example, in terrestrial applications, the maximum
change in the apparent received carrier frequency due to
Doppler is estimated to be less between t10kHz.

This multidimensional search requires significant
computational resources. In addition, unlike conventional
software communication systems, positioning receivers
deal with weak signals and need long integration times
(on the order of seconds) to detect signals in difficult
environments. Thus, new algorithms with significantly
reduced computational complexities are required for
"software" implementations.

Recently, block-correlator algorithms have been
suggested for drastic computational reductions both un the
frequency [12], [13] and time domain [141. In these
algorithns, many operations are shared and
computational redundancy is minimized, resulting in
significantly faster processin g. Due to computational
architecture specifics, the arithmetic operations reduction
may not necessarily result in faster processing, as it
depends on many factors related to data flow. This paper
describes implementations of hvo block-correlator
concepts for acquisition and tracking on an open source
platform to validate theoretical performance acceleration
estimates on a real-time GPS receiver platform. ^t is
demonstrated that indeed this performance improvement
is achieved as compared to alternative methods. 	 Comment [LBW21]: Just needs some summary

The paper is organized as follows. Section II concisely 	
of the positive results achieved.

presents the GPS-SDR open source software receiver
platform. Section III describes fast FFT-based block-
con'elator for si gnal acquisition. Section IV provides a



time-domain block-col-relator for tracking. Algorithm
performance results for GPS-SDR receiver are shown in
Section V and conclusions are made in Section VI.

II. GPS-SDR OPEN SOURCE PLATFORM
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multithreaded enabled. Currently it processes GPS Ll
C/A signals, and can handle certain weak signal
conditions. This receiver nuns on a PC/laptop which
connects to the front-end through a USB 2.0 port. Other
extensions such as L2 signal processing are being

implemented. The receiver has a built-in GUI that allows
the user to conveniently interact with the receiver during
the operation. This receiver also has advanced capabilities
to determine tine velocity and time information during
motion. The acquisition unit of the receiver is designed
and developed for both strong and weak signal acquisition
with the capability for both coherent and non-coherent

integration over different GPS signal durations of GPS
signal. For faster processing, the original correlations are
performed using assembly level functions to meet critical
processing speeds for real-tithe receiver operation. Figure
2 illustrate the architecture of the modified GPS-SDR
project with incorporated new advanced acquisition and
tracking modules highlighted. While many components of
GPS-SDR employ conventional approaches, novel
technical solutions such as optimized FIFO make the real-
time processing feasible.

III. FAST BLOCK-CORRELATOR ALGORITHM
FOR ACQUISITION

CMD	 KBD	 The acquisition is the first step of the synchronization and
it is typically the most computationally intensive stage as

Figure 2. New GPS-SDR Architecture [8]. 	 compared to tracking. Block correlators algorithms are

proposed to reduce arithmetic complexity in [12],[13].
The GPS-SDR [8] open source project is a popular real-	 Both approaches employ two stage Doppler frequency
time C/C++-based GPS receiver which can be used to 	 compensations: (1) coarse frequency compensation in
evaluate the overall performance of the block-correlator 	 integer kHz steps and (2) sub-kHz fine frequency
algorithms by replacing appropriate blocks. The GPS- 	 compensation. The GPS-SDR platform originally
SDR is compatible with popular RF front-ends, OSRPComment [LBW22]: Should define all acronyms

[11] and SiGe [4]. Real-time signal processing is achieved

	

	 wben first used.
frequency shift compensation is implemented after the

through the use of carefully coded low-level processing 	 corelators.. This results in correlation peak degradations
routines. The GPS-SDR	 is highly modular and
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Figure 3. (Left) Block-diagram of Fast FFT based Acquisition [12]; (Right) Correlation peak using of Fast FFT based acquisition technique



(see Figure 4a). As a result, the coarse frequency spacing
needs to be more dense, e. g ., about 250kHz or 500kHz to
be able to acquire weak signals. This paper employs the
method introduced it [12] (Figure 3) as it is free from
peak degradation phenomena (Figure 4b).

P

(a)

(b)
Figure 4. Examples of correlation peak degradations due to residual
Doppler frequency shifts for the acquisition with integer kHz coarse
Doppler frequency compensation. (a) after fine frequency compensation
by the method in [13]; (b) after fine frequency compensation by the
method in [ 121.

Computational savings are achieved through block-
processing by optimizing the coherent processing stage.
Initially, a coarse Doppler frequency compensation is
performed with frequencies as integer kHz. This can be

performed by multiplying the input with a sinusoid at a
compensating frequency (e g. p kHz,

p=-10,-9,...,9,10), or equivalently by cyclically

shifting the FFT of the replica signal by p samples. Sub-

kHz Doppler frequencies are processed jointly. Let input
samples x„ be arranged in a matrix X filled cohi nrn-by-

coluni n. In other words, the matrix X contains elements

xn a, = xm:a N, ,	 where	 n, = 0,..., N, —1	 and

n2 = Q..., N2 —1,	 N, is the code period length in

samples, and N2 is the number of coherently combined

code periods. The frequency resolution will be 1/ N,

kHz. Combining multiple code periods of the input signal
coherently with Doppler compensation can be performed
as:

NRC	 NN'h 'k = '	 (2)
Columns of the matrix Z"" are coherently combined
epochs with a candidate Doppler frequency wiped-off.
Each column corresponds to a certain frequency fiom the
group of frequencies defined by the index k:

k
A = f	 , where k=0,1, .... N2 —1, and f is the

N, N,

sampling frequency. Equation (1) states that all the
frequencies corresponding to the values of index

k = 0,1,..., Nz —1 are processed jointly using the DFT.

Each of the columns of the matrix Z CO is then correlated
with the replica code at all possible code phases. In the

frequency domain, using the convolution theorem.. one

can obtain for the output of the coherent stage
Z— — IFN R FN 1. k.N

1 f	 I 	 ^.	 2	

(3)

Here, R f is a diagonal matrix, diag(R f )= Farr r is the

inverted replica code epoch with zero code phase.. F N is
the DFT matrix of size N. It can be shown that in (3), the
fragment FN C.+(%FN Z ) can be implemented by a single

DFT (implemented using the FFT algorithm). Thus one
FFT is used for a joint processing of multiple Doppler
frequencies and code-phases. The overall processing

structure is shown in Figure 3.

IV. A FAST BLOCK-CORRELATOR ALGORITEW
FOR TRACKING

The tracking loop follows the incomin g signal and adjusts
itself to de-spread and de-modulate the incomin g signal.
Two tracking loops are used to track the incoming GPS
signal: a delay-locked loop (DLL) to hack the code and a
frequency (FLL) and/or phase locked loop (PLL) to track
the frequency/phase of the incoming signal. See Figure 5.
Here, the DLL consists of early, prompt, and late code
generators, filters and discriminators. The early and late
codes are half a chip (or less) time shifted versions of the
prompt code. The incoming signal is correlated with early

Z`1 =C.*(XF r )	 (1)

	where F is the DFT matr' notation.* denotes	 Comment[LBW23]:De6nethis
element-wise multiplication, and C has elements



and late C/A codes to produce two outputs which are fed
to a discriminator. A control signal is generated based on
discriminator's output to adjust the rate of the locally
generated C/A code to match the C/A code of the

incoming signal. Different discriminators can be kedl
The navigation data is finally extracted by de-spreading

the received GPS signal with the locally generated prompt
code. Advanced DLL tracking loops may use more
correlators to address multipath and non-triangular
autocorelation shapes.	 }

Figure 5. Block diagram of the combined tracking loop.

As for the frequency tracking: phase and/or frequency
locked loop (PLL/FLL) can be used [1],[2]. Conventional
PLL loops generate a local carrier signal that is driven to
alignment with the incoming signal.. In the block
correlation, approach there is no need to generate the local
carrier for every incoming sample. Sine and cosine tables
are generated and stored in memory once, and using the
feedback from the PLL loop.. the local sinusoid is

designed to nm either slow or fast [15]. ht the GPS-SDR,
a Costas Loop is used (Figure 6) for the implementation
of a PLL feedback loop. Costas loops are insensitive to
ISO' phase transitions due to navigation data bits and they
are typically preferred choice in GPS receivers.

I	 L.—pass filter

PRN code

Input	 NCO carrier	 Camer Loop	 Carrier Loop
generator	 filter	 di—iminator

00'

Loupase filter

Figure 6. Costas PLL for carrier tracking

In the tracking block-corelator all three correlations are
computed together. As opposed to conventional
correlators, block correlators use fixed groups of replica
sequences. The errors froth the tracking loop just switches
replica selections front one group to another when
needed.

The joint block correlation is described next following the

original approach in [14]. For performing correlation
operations, samples of the received signal are stored in

memory. This set of samples is denoted as:

xN_1,xY_21 , x3 , X2' Xl , xp where N is the number of

samples. In this paper we compute K correlations in

	

block processing mode. The replica code sequence is set	 COn11110nt [LBW24]: Maybe a reference here

as	 r3,7k,7ik,r0 where k E {1,...,K] identifies

the respective replica code sequence and n E {-1,+1] .

Denoting the consecutive cor relation values as &, the
operation of conventional correlators is defined as:

N-1
Ck =	 1°xj , k E {1,...,K] .	 (4)

j=o

For the block processing method (Figure 7).. the received
samples which multiply the same set of replica samples in
a group of correlators are grouped together. Let the index
variable j identify received samples and Jy y be the set

of these indices belonging to the same group. Formally

jIJ, n if (r1.,.. 1,	 )=(b1 ..... bK ), biE{-1,+1]. There

are 2K such groups. Then (4) becomes

Ck	 /^ /^ rj xJ
All 2t'	 jEJA,

o.b.n —
c b,...,bx	

(5)

Y bk	 xj = Y bkSq..ak
All 2a	 jEJm..tk	 All2K

combivatiom	 combioatiobs

The fast block processing algorithm is based on the idea
that samples from each group will be used only once for

computing sub-stuns Sq a, _ 1] xj . These sub-suns
i EA 4

are then used for computing K correlations. The number
of additions is reduced almost K times if the number of
sub-stmns is significantly less than the number of samples.
For K = 3 there are eight groups J-1-1,-1 to J+r,+r,+r
each identifying a group of samples. A register is assigned
to each group to store sub-stun Sy bK . All such registers

are also indexed as (br ... bK ) . For illustration purposes our

figures also use an equivalent notation for (b1 ..bK ) where

signed binary values of bk are replaced with (0, 1) binary

values or (b1 ..bK ) is replaced by an integer. Example:

Here (1,03) is the binary

codeword of 5.

For calculating the sub-sun Sq t for each group and for

each of the corelator iterations, all 2k registers are
initialized to zero. Then.. the algorithm processes the

stored received samples xj one after the other forming the

sub-sums. In Figure 7a, one of the received samples is



denoted as xt . The samples of the three replica code

sequences having the same index n are ^ = —1, 7^ = +1

, n3 =-1 . These samples correspond to the register
address (010) or "2". The adder adds the received value
xt to the sub-sun S2 and stores the new value of sub-

sum S2 into the register again. This procedure is

performed analogously for all N received samples. The

combining unit of Figure 7a then combines all stored sub-
sums Sb br, to obtain the K correlation values Ck at once

as a result of block processing. Note that multiplications
bk S4 br are just sign changes as bl. is either +1 or-1 .

Figure 7a illustrates an example of how the sub-suns are
formed while Figure 7b presents an example how the sub-
sums are combined to produce three parallel outputs
corresponding to the correlations with three parallel
replicas. In the example of Figure 7, correlation values
C l

, C2, C3 have to be calculated for K =3 replica code
sequences, and the nmmnber of groups is eight. The
complexity reduction estimate is about 3 times for three
joint correlations. The integration of tine block correlator
into the tracking loop is illustrated in Figure 8 [15].
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Figure 7. (a) Suggested block correlator structure. An example with three
replica sequences: (b) sub-sum combining [14],[15]

The block-correlator described above has been integrated

into the GPS-SDR. Once satellites are acquired, the initial
estimates of code phases and Doppler frequencies of each
satellite are provided to the tracking channels dedicated to
individual satellites. The tracking loops continuously
track the variations in received fi'equency and code phase

due to the line of sight (LOS) dynamics between the GPS
satellites and the receiver.

To implement the code-phase corrections, the GPS-SDK's
original implementation has several versions of replicas
corresponding to different code phases. Depending oil
DLL output error.. the appropriate replica is selected and
multiplied against the next Inns signal fragment. The next
fragment is chosen according to the code phase error

obtained after tracking the previous 1 nns duration of the
GPS signal. To validate the block correlation algorithm
with the GPS-SDR, binary indices described in the
algorithm itself are created for all the versions of original
replicas. Later, the binary index values for a particular
replica version is chosen for trackin g using block
correlation algorithm according to the code phase error.
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Figure 8. Block correlator structure used in the combined tracking loop

[14],[15]

V. PERFORMANCE EVALUATION

The block correlator requires only additions since all the
multiplications in the equations can be implemented with
sign changes. The computational performance of block-

correlators for acquisition and tracking are evaluated in
the GPS-SDR. The GPS-SDR receiver is implemented in
C++ with some lower level functions such as the FFT and
lms correlations implemented in assembly code. The
same assembly level FFT is used for the acquisition block
correlator.



The performance of the algorithms described in this paper by the profiler in offline mode for the duration of
have been estimated using the GPS-SDR running on a PC acquisition. One can apparently see the efficiency of the
with	 the	 following	 parameters: 	 Intel	 Core	 2	 Duo block correlator from [12].
Processor,	 2.00GHz	 clock,	 2GB	 RAM,	 LINUX- The performance evaluation of the trackin g algorithmsUBUNTU OS. 'OProfile' profiling tool is used for CPU was performed on captured data ( 	 seconds) for 12load estimations [16]. `Oprofile' is a system-wide profiler
for Linux systems with a capability of profiling all codes channels	 the same PC. For 

3
300 seconds	 recorded

with little overhead [16]. 'Oprofile' is released under the

a	 k-
signal	 the	 computation	 time	 of the bloccotrelator

GNU GPL, and sample data are collected using a kernel approach [14] was found	 be 1	 seconds compared to

driver	 and	 a	 daemon.	 The	 collected	 data	 are	 later the	 original R	 conventional	 correlation
'

converted	 to	 useful	 information	 using	 several	 post-

s	
119performed	 in	 assembly level,	 which was	 abbout

out9

profiling tools of `Oprofiler'. `Opconrol' and `Opreport' seconds. The conventional  correlation performed in C++

scripts are mainly used to profile the C++ codes using language was about 23 seconds. Figure 10seconds.	 demonstrates

`Oprofiler'.	 The	 `Opcontrol'	 script	 is	 nun	 to:	 start

at
the performances for various signal durations. Table

profiling, end a profiling session, dump profile data, and

t
shows CPU loads by the block-cotrelator approach (about

set up the profiling parameters. The `Opreport' script is 11the conventional correlation implemented in

mused to output binary image sunnaries, or per-symbol (about	 33.	 and	 GPS-SDR	 assembly	 code(abouons

data from `Oprofile' profiling sessions, which includes unplementations (about 17%).
(

the CPU percentage timings of processes running in the
N. Comment [LBW25]: In tables i and 2 be

Vt. CONCLUMONS l consts[eu[ with number of significant figures 	 J
Tablel.'Oprofiler--based'CPULoad'eatimationsforacgnisition This paper describes the implementation of two recently

Block- Conventional
conelator Block-
[12] c—lator [13]

CPU Load (%) of acquisition as a
fraction of overall GPS SDR load 30.6% 17%

Tablet. ` Oprofiler' CPU average load estimations for tracking

Conventional Conventional
Block-
Bloc a[or

Coaelator, C'orrelator,
[14]

Assembly Cl-

CPU Load 11% 17% 33.79%

The CPU loadrequired by the implemented block
conelator [12] is compared with original GPS-SDR
block-cotrelator implementation [13] using the
`Opcontrol' and 'Opreport' command scripts of the
profiler. In addition, clocking commands such as
`clockbegO' and `clockendo' are used in the receiver
code to determine the overall time consumption.

The GPS-SDR's original acquisition algorithm was run
for the whole set of 32 satellite codes. Coherent
integration length was set to Sms. The execution time
estimates using clocking tools were found to be 0.6
second for [12] and 5.32 seconds for [13]. This
performance improvement is partially explained by the
extra correlation computations to avoid peak degradations
for post-correlation fine Doppler frequency compensation
(see Fugure 4a) employed in [13]. For this experiment the
original GPS-SDR performs four iterations of 'coarse'
acquisition with 250kHz Doppler frequency shifts for
each 1kHz frequency search range. Even with four
iterations, the block-cotrelator from [12] takes only 4
seconds. Table 1 shows the average CPU load estimated
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Figure 9. Perfontrance evaluation of block-correlator
acquisition algoritha [ 12] (left) and [ 13] (right) using

clocking tools

25

E 20 Simple
i=
w Cortelation(wc)

15

a to
tSimple Correlati-

_ in A— b ly

g̀a	 5
le-1(—)

—A—Block
o ^^	 c^rrelatiu"(see[

O 10	 2C	 30	 40

Signal duration

Figure 10. Correlator performance using clocking tools for tracking block-
correlator [ 14] es conventional correlators implemented in C++ and assembly

codes for various signal durations.


