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Abstract. Formal behavioral specifications written early in the systesign
process and communicated across all design phases havehmemto increase
the dficiency, consistency, and quality of the system under deweémt. To pre-
vent introducing design or verification errors, it is crudia test specifications
for satisfiability Our focus here is on specifications expressed in linear deahp
logic (LTL).

We introduce a novel encoding of symbolic transition-baB&dhi automata and
a novel, “sloppy,” transition encoding, both of which rdsnlimproved scalabil-
ity. We also define novel BDD variable orders based on tre@mgosition of
formula parse trees. We describe and extensively test a ndtiremcoding ap-
proach utilizing these novel encoding techniques to crg@encoding variations.
We show that our novel encodings translate to significambediones exponential,
improvement over the current standard encoding for syrolddil satisfiability
checking.

1 Introduction

In property-based desigiormal properties, written in temporal logics such as LTIL]3
are written early in the system-design process and comratedcacross all design
phases to increase théieiency, consistency, and quality of the system under develo
ment [34, 36]. Property-based design and other designddfication techniques cap-
ture design intent precisely, and use formal logic properboth to guide the design
process and to integrate verification into the design p[&4. The shift to specifying
desired system behavior in terms of formal logic propertisks introducing specifi-
cation errors in this very initial phase of system desigising the need foproperty
assurancg30, 34].

The need for checking for errors in formal LTL properties egsing desired sys-
tem behavior first arose in the context of model checking,reiacuity checkingims
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at reducing the likelihood that a property that is satisfigdthe model under verifi-
cation is an erroneous property [2,27]. Property assur@ogore challenging at the
initial phases of property-based design, before a modéleiplementation has been
specified.Inherent vacuity checking a set of sanity checks that can be applied to a
set of temporal properties, even before a model of the syh#sybeen developed, but
many possible errors cannot be detected by inherent vachigking [19].

A stronger sanity check for a set of temporal properties ik t&alizability check-
ing, in which we test whether there is an open system thaifitiall the properties
in the set [32], but such a test is very expensive computaliprin LTL satisfiability
checking, we test whether there is a closed system thafisatal the properties in
the set. The satisfiability test is weaker than the reallitgtbést, but its complexity is
lower; it has the same complexity as LTL model checking [8®fact, LTL satisfiability
checking can be implemented via LTL model checking; seevbelo

Indeed, the need for LTL satisfiability checking is widelgognized [14, 23, 25,
28, 35]. Foremost, it serves to ensure that the behaviosargion of a system is in-
ternally consistent and neither over- or under-constiiffean LTL property is either
valid, or unsatisfiablehis must be due to an error. Consider, for example, the speci
fication alwaygb; — eventually b), whereb; andb, are propositional formulas. If
b, is a tautology, then this property is valid. b is a contradiction, then this prop-
erty is unsatisfiable. Furthermore, the collective set aipgrties describing a system
must be satisfiable, to avoid contradictions betwedi@int requirements. Satisfiabil-
ity checking is particularly important when the set of prajes describing the design
intent continues to evolve, as properties are added ancdgfand have to be checked
repeatedly. Because of the need to consider large sets péiies, it is critical that the
satisfiability test bescalable and able to handle complex temporal properties. This is
challenging, as LTL satisfiability is known to be PSPACE-qdbate [39].

As pointed out in [35], satisfiability checking can be penfied via model check-
ing: auniversal mode(that is, a model that allows all possible traces) does nafga
a linear temporal property: f precisely whenf is satisfiable. In [35] we explored the
effectiveness of model checkers as LTL satisfiability check&tescompared there the
performance of explicit-state and symbolic model checkBrth use the automata-
theoretic approach [43] but in afterent way. Explicit-state model checkers translate
LTL formulas to Bichi automata explicitly and then use apl&it graph-search algo-
rithm [11]. For satisfiability checking, the constructiohtbe automaton is the more
demanding task. Symbolic model checkers construct symleoicodings of automata
and then use a symbolic nonemptiness test. The symbolitractien of the automaton
is easy, but the nonemptiness test is computationally ddingnThe extensive set of
experiments described in [35] showed that the symbolic @ggr to LTL satisfiability
is significantly superior to the explicit-state approacherms of scalability.

In the context of explicit-state model checking, there hasrbextensive research
on optimized construction of automata from LTL formulas [13,20-22, 38, 40, 41],
where a typical goal is to minimize the size of constructetbanata [42]. Optimizing
the construction of symbolic automata is morgidult, as the size of the symbolic rep-
resentation does not correspond directly to its optimadityinitial symbolic encoding
of automata was proposed in [6], but the optimized encodiagall CGH, proposed
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by Clarke, Grumberg, and Hamaguchi [10], has become theatie $¢eandard encoding.
CGH encoding is used by model checkers such as CadenceSMNwWBIdV, and has
been extended to symbolic encodings of industrial spetidicdanguages [9]. Surpris-
ingly, there has been little follow-up research on this topi

In this paper, we propose novel symbolic LTL-to-automagastations and utilize
them in a new multi-encoding approach to achieve significgorthetimes exponential,
improvement over the current standard encoding for LTLs§atbility checking. First
we introduce and prove the correctness of a novel encodisgrabolic automata in-
spired by optimized constructions of explicit automata, 2. While the CGH encod-
ing usesGeneralized Biichi Automa{&BA), our new encoding is based dransition-
Based Biichi Automat@lf GBA). Second, inspired by work on symbolic satisfiability
checking for modal logic [29], we introduce here a nosteppyencoding of symbolic
automata, as opposed to thissyencoding used in CGH. Sloppy encoding uses looser
constraints, which sometimes results in smaller BDDs. Ty approach can be ap-
plied both to GBA-based and TGBA-based encodings, prouidaibne uses negation-
normal form (NNF), [40], rather than the Boolean normal fof@NF) used in CGH.
Finally, we introduce several new variable-ordering scegnbased on tree decompo-
sition of the LTL parse tree, inspired by observations tletdte tree decompositions to
BDD variable ordering [17]. The combination of GBRGBA, fussysloppy, BNFNNF,
and diferent variable orders yields a space of 30 possible contignsaof symbolic
automata encodings. (Not all combinations yield viableficumations.)

Since the value of novel encoding techniques lies in ine@ssalability, we evalu-
ate our novel encodings in the context of LTL satisfiabilityecking, utilizing a compre-
hensive and challenging collection of widely-used benatkrifamulas [7, 14, 23, 35].
For each formula, we perform satisfiability checking usitig3@ encodings. (We use
CadenceSMV as our experimental platform.) Our results destnate conclusively that
no encoding performs best across our large benchmark suitthermore, no single
approach—GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or ang wariable order,
is dominant. This is consistent with the observation madethgrs [1, 42], that in the
context of symbolic techniques one typically does not find/enhing” algorithmic con-
figuration. In response, we developed a multi-encoding ®aNDA, which runs sev-
eral encodings in parallel, terminating when the first psscesturns. Our experiments
demonstrate conclusively that the multi-encoding apgnasging the novel encodings
invented in this paper achieves substantial improvemesit©GH, the current standard
encoding; in fact PANDA significantly bested the native LTlodel checker built into
CadenceSMV.

The structure of this paper is as follows. We review the CGldoeling [10] in
Section 2. Next, in Section 3, we describe our novel symbbEBA encoding. We
introduce our novel sloppy encoding and our new methodsHoosing BDD variable
orderings and discuss our space of symbolic encoding tquaksiin Section 4. After
setting up our scalability experiment in Section 5, we pnéseir test results in Section
6, followed by a discussion in Section 7. Though our consimaccan be used with
different symbolic model checking tools, in this paper, we folibe convention of [10]
and give examples of all constructions using the SMV syntax.
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2 Preliminaries

We assume familiarity with LTL [16]; For convenience, AppienA defines LTL se-
mantics. We use two normal forms:

Definition 1 Boolean Normal Form (BNF) rewrites the input formula to use onty,
v, X, U, andF . In other words, we replace, —, R, andG with their equivalents:
O1A G2 =~(=01V —Q2) 01 R Q2 = =(~01 U ~Q2)
01 > 02= 01 \Y g ggl = _'?L-—'gl

Definition 2 Negation Normal Form (NNF) pushes negation inwards until only atomic
propositions are negated, using the following rules: ~(Xg) = X(~g)

-—~g=g (1 UG2) = (-1 R~02)
—(91 A 92) = (=01) V (=02) —(91R92) = (91 U—02)
=(91 Vv 92) = (=01) A (=02) -(G9) = ¥ (-0)
(91 = G2) =(-01) V G2 -(79) = 6(-9)

In automata-theoretic model checking, we represent LTinfidas with Buichi automata.

Definition 3 A Generalized Bichi Automaton (GBA) is a quintupl€Q, %, 6, Qo, F),

where: 5 C Qx 2 x Qis atransition relation.
e Q is afinite set of states. e Qo C Qs a set of initial states.
e X' is a finite alphabet. e F C 29is a set of accepting state sets.

A run of a Buchi automaton A over an infinite trace- o, 71, 72, ... € 2'is a sequence
do, d1, O, . . . Of states such thatyge Qo, and{(q;, 7j, gi+1) € ¢ for alli > 0. A accepts
7 if the run overr visits states in every set in F infinitely often. We denotes#éteof

infinite traces accepted by A Iy, (A).

A trace satisfying LTL formulaf is an infinite run over the alphab&t= 2P"°P where
Propis the underlying set of atomic propositions. We denotertndel$f) the set of
traces satisfying. The next theorem relates the expressive power of LTL to dfiat
Buchi automata.

Theorem 1 [44] Given an LTL formula f, we can construct a generalized Biachi
tomaton A = (Q, 2, 6, Qo, F) such thatQ| is in 22010, * = 2P™P and £, (Ar) is exactly
model$f).

This theorem reduces LTL satisfiability checking to autcarifieoretic nonemptiness
checking, ad is satisfiablefi model¢f) # 0 iff £,(A¢) £ 0.

LTL satisfiability checking relates to LTL model checking fadlows. We use a
universal model Mhat generates all traces overop such that£,(M) = (2°©P)«,
The code for this model appears in [35] and Appendix B. We navehthatM doesnot
satisfy—f iff f is satisfiable. We use a symbolic model checker to check tineufia— f
againstM; f is satisfiable precisely when the model checker finds a coexdenple.
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CGH encodingln this paper we focus on LTL to symbolic Biichi automata cdation.
We recap the CGH encoding [10], which assumes that the farifniglin BNF, and then
forms a symbolic GBA. We first define tli&GH-closureof an LTL formulaf as the set
of all subformulas off (including f itself), where we also add the formul(g U h)
for each subformula of the form U h. The X-formulas in the CGH-closure df are
calledelementaryformulas.

We declare a Boolean SMV variabtel x4 for each elementary formul¥g in the
CGH-closure off. Also, each atomic proposition ifiis declared as a Boolean SMV
variable. We define an auxiliary variab®, for every formulah in the CGH-closure
of f. (Auxiliary variables are substituted away by SMV and do regjfuired allocated
BDD variables.) The characteristic function for an auxilizariableSy, is defined as
follows:

Sh:pifpeAP &Z!Sgithﬂg Sh:Sgl|ng ifh:glvgz
Sh=EL, if hisaformulaXg Sh = Sg2l(Sg1& Sx g1 4/ ) If h=01 U G2
We now generate the SMV modil;:
MODULE main
VAR
a: boolean; /*declare a Boolean var for each atomic prop in f */
EL_Xg: boolean; /*declare a Boolean var for every formula Xg in the CGH-closure*/
DEFINE /*auxiliary vars according to characteristic function */
S_h = ...
TRANS /*for every formula Xg in the CGH-closure, add a transition constraint*/
(S_Xg = next(S_g))
FAIRNESS !S_gUh | S_h /*for each subformula gUh */

FAIRNESS TRUE /*or a generic fairness condition otherwise*/
SPEC 1(S_f & EG true) /*end with a SPEC statement*/

The traces oM; correspond to the accepting runs/f, starting from arbitrary states.
Thus, satisfiability off corresponds to nonemptiness Mf;, starting from an initial
state. We can model check such nonemptinessSPEa ! (S_f & EG true).Acoun-
terexample is an infinite trace starting at a state wBgneolds. Thus, the model checker
returns a counterexample that is a trace satisfying

Remark 1 While the syntax we use is shared by CadenceSMV and NuSMve thee
semantics of CTL model checking in these model checkers fallyopdocumented and
there are some subtle but significanffdiences between the two tools. Therefore, we
use CadenceSMV semantics here and describe these sushitiedippendix C.

3 A Symbolic Transition-Based Generalized Bchi Automata
(TGBA) Encoding

We now introduce a novel symbolic encoding, referred to aBAGnspired by the
explicit-state transition-based Generalized Bichi eatta of [22]. Such automata are
used by SPOT [15], which was shown experimentally [35] toHmelest explicit LTL
translator for satisfiability checking.

Definition 4 A Transition-Based Generalized Bichi Automaton (TGBA) is a quin-
tuple(Q,2, 6, Qo, F), where:
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e C Qx 2 xQisatransition relation.
¢ Q is afinite set of states. e Qo C Qis a set of initial states.
¢ X is a finite alphabet. e F C 2° is a set of accepting transitions.

A run of a TGBA over an infinite trace= ng, 71, 72, ... € X' is a sequencéo, 7o, q1),
(Q1, 11, O2), {02, 72, O3), . . . Of transitions ins such that g € Qp. The automaton accepts
nif it has a run overr that traverses some transition from each set in F infinitélgro

The next theorem relates the expressive power of LTL to th@GBASs.

Theorem 2 [12,22]Given an LTL formula f, we can construct a TGBAA(Q, 2, 6,
Qo, F) such thaiQ] is in 2201 > = 2P and £,,(A¢) is exactly modeld).

Expressing acceptance conditions in terms of transitiatiser than states enables a
significant reduction in the size of the automata correspai LTL formulas [12,22].

Our new encoding of symbolic automata, based on TGBAS, asstinat the input
formula f is in NNF. (This is due to the way that the satisfactionZéfformulas is
handled by means of promise variables; see below.) As in G@Hfirst define the
closureof an LTL formula f. In the case of TGBAs, however, we simply define the
closure to be the set of all subformulasfofincluding f itself). Note that, unlike in the
CGH encoding{- and¥ - formulas do not require the introduction of néiaformulas.

The set of elementary formulas now contairis:all U-, R-, ¥-, G-, and GF -
subformulas in the closure df as well as all subformulagwhereXg is in the closure
of f. Note that we treat the comm@j¥ combination as a single operator.

Again, we declare a Boolean SMV varialiid 4 for every elementary formulg
as well as Boolean variables for each atomic propositiofi im addition, we declare
a Boolean SMVpromise variable g for every U-, -, and g7 -subformula in the
closure. These formulas are used to define fairness condlitintuitively, Py holds
wheng is a promise for the future that is not yet fulfilled.Pf does not hold, then the
promise must be fulfilled immediately. To ensure satistactf eventualities we require
that each promise variabl is false infinitely often. The TGBA encoding creates fewer
EL variables than the CGH encoding, but it does add promisalvias.

Again, we define an auxiliary variab$, for every formulahin the closure off . The
characteristic function fo8y, is defined as in the CGH encoding, with the following

changes: Sh=Su&Sgif h=gi A g
Sh = nex(ELg) if h=Xg
Sh = S2l(Sg1& Pg1 4 2&(nNex(Elgi ¢/ i2))) if h=01 U 0>
Sh = Sg2&(Sg1l(Nex(ELg  ¢2))) if h=0g1 R g2
Sh = Sg&(nex(Elgq))ifh=6Gg
Sh = Sgl(P# g&nex{ELs g)) if h=F g
Sh = (NeX{(ELgy ))&(SglPgr o) if h = 67 g
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Since we reason directly over the temporal subformulat ¢fnd not overXg for
temporal subformulg as in CGH), the transition relation associates elementary f
mulas with matching elements of our characteristic functiginally, we generate our
symbolic TGBA, here is our SMV modé:

MODULE main
VAR /*declare a boolean variable for each atomic proposition in f*/
a : boolean;

VAR /*declare a new variable for each elementary formula*/
EL_f : boolean; /*f is the input LTL formula*/
EL_gl : boolean; /*g is an X-, F-, U-, or GF-formula*/

DEFINE /*characteristic function definition*/
S_g=...

TRANS /*for each EL-var, generate a line here*/
( EL_gl =S_g1) & /*a line for every EL variable*/

FAIRNESS (!P_gl) /*fairness constraint for each promise variable*/

FAIRNESS TRUE /*only needed if there are no promise variables*/
SPEC ! (EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas becabhsenodel checker
tries to guess a sequence of values for each of the promiisdies to satisfy the subfor-
mulas, which does not work for negati¢é-formulas. (This is also the case for explicit
state model checking; SPOT also requires NNF for TGBA enupfi2].) Consider the
formulaf = —=(aU b) and the tracea=1,b=0, a=1,b=1, ... Clearly, @U b) holds

in the trace, sd fails in the trace. If, however, we choBeaUb to be false at time 0,
thenEL_aUb is false at time 0, which means thfholds at time 0. The correctness of
our construction is summarized by the following theorem.

Theorem 3 Let M; be the SMV program made by the TGBA encoding for LTL formula
f. Then M does not satisfy the specificatioteL_f & EG true) iff f is satisfiable.

The proof of this theorem appears in Appendix D.

4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four componenjdN@tmal Form: BNF or
NNF, described above, (2) Automaton Form: GBA or TGBA, dist above, (3) Tran-
sition Form: fussy or sloppy, described below, and (4) aeaOrder: default, naive,
LEXP, LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings,
since BNF can only be used with fussy-encoded GBAs, as exqudielow. CGH cor-
responds to BNFussyGBA; we encode this combination with all six variable orders

Automaton FormAs discussed earlier, CGH is based on GBA, in combinatioh wit

BNF. We can combine, however, GBA also with NNF. For this, weecdto expand the

characteristic function for symbolic GBAs in order to forhet from NNF formulas:
Sy = Sgl& ng if h= 01 AQ2 Sh = Sg& Sx(gg) if h= gg

Sh = 892&(891|S/\’(91R g2)) if h= O1 R 02 Sh= SQ|SX(¢g) if h= (f-g
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Since our focus here is on symbolic encoding, PANDA, unlikeléceSMV, does
not apply formula rewriting and related optimizations;het PANDAs symbolic au-
tomata are created directly from the given normal form offtivenula. Formula rewrit-
ing may lead to further improvement in PANDA's performance.

Sloppy Encoding: A Novel Transition For@GH employs fi-transitions, of the form
TRANS (EL_g=(S_g)).We refer to this afussyencoding. For formulas in NNF, we can
use only-if transitions of the formRANS (EL_g->(S-g)), which we refer to asloppy
encoding. A similar idea was shown to be useful in the coréxnodal satisfiability
solving [29]. Sloppy encoding increases the level of notedrinism, yielding a looser,
less constrained encoding of symbolic automata, which inyncases results in smaller
BDDs. A side-by-side example of thefiirences between GBA and TGBA encodings
(demonstrating the sloppy transition form) for formdle: ((Xa)&(b U (1a))) is given

in Figures 1-2.

MODULE main
/*formula: ((X (@ )) & ((b)HU (1 (ad))*/
VAR /*a Boolean var for each prop in f*/
a : boolean;
b : boolean;
VAR /*a var EL_X_g for each formula (X g) in
el _list w/primary op X, U, R, G, or F*/

EL_X_a : boolean;
EL_X__b_U_NOT_a : boolean;
DEFINE

/*each S_h in the characteristic function*/
S__X_a__AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a);
S__b_U_NOT_a :=
('a)) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/
( EL_X_a -> (next(a) ) ) &
( EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a) ))

FAIRNESS
SPEC

(!S__b_U_NOT_a | (!(a )))
1 (S__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 1. NNF/sloppyGBA encoding for CadenceSMV

MODULE main

/*formula: ((X (a ))& ((b DU (!(a ))*/

VAR /*a Boolean var for each prop in f*/

a : boolean;
b : boolean;

VAR /*a var for each EL_var in el_list*/
EL__X_a__AND__b_U_NOT_a : boolean;
P__b_U_NOT_a: boolean;

EL__b_U_NOT_a : boolean;

DEFINE

/*each S_h in the characteristic function*/
S__X_a__AND__b_U_NOT_a :=

(S_X_a) & (EL__b_U_NOT_a);
S_X_a := (next(a));
S__b_U_NOT_a := ( ((!(a)))
| (b& P__b_U_NOT_a & (next(EL__b_U_NOT_a))));

TRANS /*a line for each EL_var in el_list*/

( EL__X_a__AND__b_U_NOT_a —>
(S__X_a__AND__b_U_NOT_a) ) &
( EL__b_U_NOT_a -> (S__b_U_NOT_a) )

FAIRNESS (!P__b_U_NOT_a)

SPEC I'(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Fig. 2. NNF/sloppyTGBA encoding for CadenceSMV

A New Way of Choosing BDD Variable Orde&ymbolic model checkers search for
a fair trace in the model-automaton product using a BDD-thdispoint algorithm, a
process whosefiecacy is highly sensitive to variable order [5]. Finding aniomal BDD
variable order is NP-hard, and good heuristics for variatiering are crucial.

Recall that we define state variables in the symbolic modebidy certain subfor-
mulas:p € AP, EL_g, andP_g for some subformulag. We form the variable graph by

identifying nodes in the input-formula parse tree that espond to the primary opera-
tors of those subformulas. Since we declaféetlent variables for the GBA and TGBA
encodings, the variable graph for a formulanay vary depending on the automaton
form we choose. Figure 3 displays the GBA and TGBA variabsgpbs for an example
formula, overlaid on the parse tree for this formula. We cextreach variable-labeled
vertex to its closest variable-labeled vertex descendgarekipping over vertices in the
parse tree that do not correspond to state variables in dangion construction. We
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EL(xa)a® u -a))

ELx(b u -a)) EL@u o) = P u -a)

., N
(a) GBA variable graph (b) TGBA variable graph
Fig. 3. Graphs in (a) and (b) were both formed from the parse tred ter((Xa) A (b U —a)).

create one node per subformula variable, irrespectiveehtimber of occurrences of
the subformula; for example, we create only one node for tbpgsitiona in Figure 3.

We implement five variable ordering schemes, all of whiclettide variable graph
as input. We compare these to thefaultheuristic of CadenceSMV. Theivevariable
order is formed directly from a pre-order, depth-first tresad of the variable graph. We
derive four additional variable-ordering heuristics bpueposing node-ordering algo-
rithms designed for graph triangulation [26JVe use two variants of a lexicographic
breadth-first search algorithm: variamterfect(LEXP) andminimal (LEXM). LEXP labels
each vertex in the variable graph with its already-orderewjmbors; the unordered
vertex with the lexicographic largest label is selectedtriexhe variable ordenLexm
operates similarly, but labels unordered vertices withlibeir neighbors and also all
vertices that can be reached by a path of unordered vertithssmaller labels. The
maximum-cardinality searchI(S) variable ordering schemeftrs in the vertex selec-
tion criterion, selecting the vertex in the variable graplpaent to the highest number
of already ordered vertices next. We seed MCS with an invéatex, chosen either to
have themaximum(McS-MAX) or minimum(MCS-MIN) degree.

5 Experimental Methodology

Test MethodsEach test was performed in two steps. First, we applied oonbsyic
encodings to the input formula. Second, each symbolic aatomand variable order
file pair was checked by CadenceSMV. Since encoding time fsnmal and heavily
dominated by model-analysis time (the time to check the rhfimeronemptiness to
determine LTL satisfiability) we focus exclusively on théda here.

Platform We ran all tests on Shared University Grid at Rice (SUG@R)néel Xeon
compute clustet. SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 1&G&\M per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Eachwastrun with exclusive
access to one node. Times were measured using theddmixcommand.

Input Formulas We employed a widely-used [7, 14, 23, 35] collection of benaltk

formulas, established by [35]. All encodings were testadgithree types of scalable

formulas: random, counter, and pattern. Definitions of éhfesmulas are repeated for

convenience in Appendix B. Our test set includes 4 countgBgmattern formula varia-

tions, each of which scales to a large number of variables68r000 random formulas.
3 Graph triangulation implementation coded by the Kavrak BaRice University.
4http://rcsg.rice.edu/sugar/
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CorrectnessIn addition to proving the correctness of our algorithm, toerectness
of our implementation was established by comparing for y¥ermula in our large
benchmark suite, the results (either SAT or UNSAT) returbgall encodings studied
here, as well as the results returned by CadenceSMV for ahgthke same formula as
an LTL specification for the universal model. We never entered an inconsistency.

6 Experimental Results

Our experiments demonstrate that the novel encoding metlvedave introduced sig-
nificantly improve the translation of LTL formulas to symmoautomata, as measured
in time to check the resulting automata for nonemptinesdlamdize of the state space
we can check. No single encoding, however, consistentlyiates for all types of for-
mulas. Instead, we find thatftBrent encodings are better suited tfelient formulas.
Therefore, we recommend using a multi-encoding approactariant of the multi-
engine approach [33], of running all encodings in paralted &erminating when the
first job completes. We call our tool PANDA for “Portfolio Appach to Navigate the
Design of Automata.”

Seven configurations are not competitiwhile we can not predict the best encodings,
we can reliably predict the worst. The following encodingsrgvnever optimal for any
formulas in our test set. Thus, out of our 30 possible enaggxjiwe rule out these seven:

BNF/fussyGBA/LEXM (essentially CGH with.EXM)

— NNF/fussyGBA/LEXM — NNF/fussyTGBA/MCS-MAX
— NNF/fussyTGBA/LEXM — NNF/sloppy TGBA/MCS-MAX
— NNF/sloppyGBA/LEXM — NNF/sloppy TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the timdNF encodings were
always better for all counter and pattern formulas; seegfample, Figure 4. Figure 5
demonstrates the use of both normal forms in the optimal@ings chosen by PANDA
for random formulas. BNF encodings were occasionally $icgmtly better than NNF;

the solid point in Figure 5 corresponds to a formula for whilch best BNF encoding
was more than four times faster than the best NNF encodingdr. Wabk best much more
often than BNF, likely because using NNF has the added behafitit allows us to

employ our sloppy encoding and TGBAs, which often carry tlosvn performance
advantages.

No automaton form is besOur TGBA encodings dominated f&%, S, andU pattern
formulas and both types of 3-variable counter formulas.ifstance, the log-scale plot
in Figure 6 shows that PANDA's median model analysis timeRgpattern formulas
grows subexponentially as a function of the number of vdemlwhile CadenceSMV’s
median model analysis time for the same formulas grows expitelly. (The best of
PANDA's GBA encodings is also graphed for comparison.) GB&aings are better
for other pattern formulas, both types of 2-variable coufdemulas, and the majority
of random formulas; Figure 7 demonstrates this trend forl&8@th random formulas.
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the best BNF encoding.
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Fig.6. Ry(n) = (..(p1 R p2) R ...) R pn. Fig. 7. Best encodings of 500 3-variable, 180
PANDA's NNF/sloppyTGBA/LEXP encodingength random formulas.

scales better than the best GBA encod-

ing, NNFsloppyGBA/naive, and exponen-

tially better than CadenceSMV.

No transition form is besSloppy is the best transition form for all pattern formulasr
instance, the log-scale plot of Figure 8 illustrates thallPA's median model analysis
time forU pattern formulas grows subexponentially as a function efthmber of vari-
ables, while CadenceSMV’s median model analysis time ferstome formulas grows
exponentially. Fussy encoding is better for all countenfolas. The best encodings of
random formulas were split between fussy and sloppy. Fi@ulemonstrates this trend
for 140 length random formulas.

No variable order is best, butexy is worst. The best encodings for our benchmark
formula set were split between five variable orders. Theaand default orders proved
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exponentially better than CadenceSMV. diagonal when sloppy encoding is best.

optimal for more random formulas than the other orders. FEdLlD demonstrates that
neither the naive order nor the default order is better thamther for random formulas.
The naive order was optimal f&, Q, R, U,, andS patternsMcs-Max is optimal for 2-
and 3-variable linear counters. Thexp variable order dominated fag,, C,, U, and

R, pattern formulas, as well as for 2- and 3-variable countenfdas, yet it was rarely
best for random formulas. Figure 11 demonstrates the matitBetence in scalability
provided by using theExpP order over running CadenceSMV on 3-variable counter
formulas. We can analyze much larger models with PANDA usixp than with the
native CadenceSMV encoding before memory-out. We neverddheLEXM order to

be the single best encoding for any formula.

Best encodings with naive vs default variable orders .
3-variable, 195 length random formulas 3-variable Counter Formulas

.
we 500000 PANDA-lexp

H
<
T

400000

300000

[

U
T
[m]

[m]

200000

g
T
a
q
[mm]
[m]
@
[m}

100000

Default Encodings Model Analysis Times (sec)
u}
Maximum State Space Analyzed

H
S

=2

<

L i il L |
10 10 10 10
Naive Encodings Model Analysis Times (sec)

CadenceSMV

Fig. 10. Best encodings of 500 3-variable, 18ky.11. Maximum states analyzed before

length random formulas. Points fall above 8gace-out. CadenceSMV quits at 10240 states.

diagonal when naive variable order is best. PANDA's NNF/fussyTGBA/LEXP scales to
491520 states.
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A formula class typically has a best encoding, but predictiare dificult While each
of our pattern and counter formulas had a best (or a pair df) esodings, which
remained consistent as we scaled the formulas, we foundataatould not reliably
predict the best encoding using any statistics gathered frarsing, such as operator
counts or ratios. For example, we found that the best engddina pattern formula
was not necessarily the best for a randomly-generated flaroamprised of the same
temporal operators. We surmise that the best encodingdstdighe structure of the
formula on a deeper level; developing an accurate heuisstaft to future work.

There is no single best encoding; a multi-encoding apprdadiearly superior We
implement a novel multi-encoding approach: our new PAND@! treates several en-
codings of a formula and uses a symbolic model checker takdheen for satisfiability
in parallel, terminating when the first check completes. @yrerimental data supports
this multi-encoding approach. Figures 4, 6, and 8 highltgbktsignificant decrease in
CadenceSMV model analysis time fler R, andU pattern formulas, while Figure 11
demonstrates increased scalability in terms of state spsiog counter formulas. Al-
together, we demonstrate that a multi-encoding approadfaisatically more scalable
than the current state-of-the-art. The increase in sdélaid dependant on the spe-
cific formula, though for some formulas PANDA's model an&time is exponentially
better than CadenceSMV'’s model analysis time for the saassaf formulas.

7 Discussion

This paper brought attention to the issue of scalable coctitn of symbolic automata
for LTL formulas in the context of LTL satisfiability checkin We defined novel en-

codings and novel BDD variable orders for accomplishing task. We explored the
impact of these encodings, comprised of combinations ofmabforms, automaton

forms, transition forms, and combined with variable ord&¥e showed that each can
have a significant impact on performance. At the same timeshweved that no single

encoding outperforms all others and showed that a multbeimg approach yields the
best result, consistently outperforming the native tratish of CadenceSMV.

We do not claim to have exhaustively covered the space ofildesencodings
of symbolic automata. Several papers on the automatasdtieapproach to LTL de-
scribe approaches that could be turned into alternativedings of symbolic automata,
cf. [4,18, 20, 37]. The advantage of the multi-encoding apph we introduced here is
its extensibility adding additional encodings is straightforward. The ireficoding
approach can also be combined witlifelient back ends. In this paper we used Ca-
denceSMV as a BDD-based back end; using another symbolicéyat (cf. [14]) or
a SAT-based back end (cf. [3]) would be an alternative apgrpas both BDD-based
and SAT-based back ends require symbolic automata. Sinceséives as the basis for
industrial languages such as PSL and SVA, the encoding itpobs studied here may
also serve as the basis for novel encodings of such languefgfs 9].

In this paper we examined our novel symbolic encodings of iflthe context
of satisfiability checking. An important flference between satisfiability checking and
model checking is that in the former we expect to have to leamdich larger formulas,
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since we need to consider the conjunction of propertieso Ats model checking the
size of the symbolic automata can be dwarfed by the size afnibeel under verifica-
tion. Thus, the issue of symbolic encoding of automata ircthrgext of model checking
deserves a separate investigation.
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