

Airframe Noise Reduction Status and Plans

Mehdi R. Khorrami AT Noise Reduction Element Lead Environmentally Responsible Aviation Integrated Systems Research Program

AIAA Aero Sciences Meeting January 4-7, 2011

- Non-propulsive
- Most important during approach
- Broadband and noncompact
- Under-carriage and high-lift devices are prominent airframe noise sources
- Potentially large payoff from reducing airframe noise

Objectives

- Mitigate radiated airframe noise during aircraft landing
- Develop effective noise reduction (NR) concepts applicable to current and future generations of civil transport

Execution Plan

- Utilize flight tests, wind-tunnel experiments, and computational simulations to generate a comprehensive aerodynamic and acoustic database to:
 - » Identify and quantify the prominent airframe noise sources
 - » Better understand the principles of airframe noise generation
 - » Improve airframe noise prediction tools
 - » Establish Reynolds number, geometric fidelity, and installation effects
 - » Develop efficient noise reduction concepts
- Evaluate the most promising noise reduction concepts in a realistic environment

NASA-Gulfstream Airframe Noise Flight Test (2006)

Main Gear and Flaps only

Main Gear only

Nose Landing Gear

Acoustic Flight Test (2006)

Nose Gear only

Unsteady Simulations (ongoing)

Acoustic measurements University of Florida

Semi-Span G550 Model

- High fidelity model
 - 18% of full-scale
 - Geometric details captured
 - Fully metric
- Heavily instrumented
 - 750 steady pressure ports
 - 68 unsteady pressure sensors
 - 14 accelerometers
- Model delivered on 9-24-10

First Entry in Langley 14x22 Tunnel: Aerodynamic Test

First entry was focused on Global forces (Lift and drag) Steady and unsteady surface pressures Overall aerodynamic characteristics Full analysis of measured data ongoing ປັ 8-2

Aerodynamic testing began on 10-13-10

Testing ended on 11-18-10

High-Fidelity Computational Simulations

- Provide insight on the nature of noise sources
- Guide physics based noise source modeling
- Advance airframe noise prediction capability
- Develop and evaluate noise reduction concepts

Noise Reduction Effort (Flap)

- FLEXible Side-Edge Link (FLEXSEL)
- FLEXSEL is different than Continuous Moldline Link
- Concept developed by a multi-disciplinary team at NASA Langley
- Effectiveness of concept to be validated/evaluated via simulations and testing

Noise Reduction Effort (Flap)

- Additional concepts to be tested:
 - Various shapes of FLEXSEL
 - Porous tip
 - Extended or locally reacting liners
 - Metallic rods
 - Others

Noise Reduction Effort (Main Landing Gear)

A GENERAL DYNAMICS COMPANY

Noise Reduction Effort (Main Landing Gear)

- Collective effort (NASA, Goodrich, Gulfstream, and Exa)
- Use of high-fidelity simulations as a design tool
- Concept development and refinement solely based on simulations
- NASA is to build and instrument the quiet gear design with funding from Goodrich (under way)
- Isolated quiet main gear design to be tested at VA Tech during April-May 2011 (validation of design methodology)
- Quiet main gear to be installed on the 18% G550 model and tested in Langley 14x22 tunnel during September 2011 (validation of concept in a relevant environment)

Planned Tests in 2011

NASA

- Aerodynamic flight test (G550 aircraft)
 - To be executed during spring 2011
 - Acquire steady surface pressures on wing and flap
 - Acquire unsteady surface pressures at flap edges, nose and main landing gear
 - Establish Reynolds number, geometric, and installation effects

Planned Tests in 2011

- Second entry in Langley 14x22 tunnel
- This entry is dedicated to:
 - Limited repetition of aerodynamic measurements
 - Acoustic: Microphone array and free-field microphones
 - Off-surface flow: PIV
- Extensive evaluation of noise reduction concepts
 - Flap side-edges
 - Main landing gear
 - Gear-flap interaction

Closed Walls vs Open Walls Aerodynamics

40 60 X/C [%]

Future Tests Beyond 2011

- Acoustic flight test: to be conducted during 2013 or 2014
- Down-select the most promising noise reduction technologies from 18% model tests and computational aeroacoustic analysis for flight testing
 - Which concepts to be tested based on collective decision by partners and available funding
 - Conduct flyover noise tests similar to 2006 airframe noise tests at Wallops
 - Determine the efficacy of the developed concepts in suppressing airframe noise

- An ambitious partnership program focused on airframe noise research has been established and is being executed systematically
- The aim of the partnership effort is to generate/acquire a high-quality airframe noise database that would guide the development of
 - Better noise source models
 - Efficient computational tools with predictive capabilities
 - Viable noise reduction concepts
- Delivery and aerodynamic testing of the 18% semi-span G550 model constitute the initial critical steps toward achieving these goals

• Insert text here