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Executive Summary

The 45th Weather Squadron (45 WS) Commander's morning weather briefing includes an assessment of the
likelihood of local convective severe weather for the day. This forecast is provided in order to enhance protection of
personnel and material assets of the 45th Space Wing, Cape Canaveral Air Force Station (CCAFS), and Kennedy
Space Center (KSC). The severe weather elements produced by thunderstorms include tornadoes, strong surface
winds and/or large hail. Forecasting the occurrence and timing of these phenomena during the warm season (May
September) is challenging for 45 WS operational personnel.

In the first phase of the task, the Applied Meteorology Unit (AMU) analyzed stability parameters and synoptic
patterns from east-central Florida severe weather days during the warm season in the years 1989-2003 to determine
which were important to severe weather development. A HyperText Markup Language (HTML)-based tool was
created that helped determine the probability of issuing severe weather watches and warnings for the day by
assigning weights to the important parameters and patterns based on their threat value. A Meteorological Interactive
Data Display System (MIDDS)-based Graphical User Interface (GUI) replaced the HTML tool in a follow-on task.
The new tool retrieved stability parameters and other information from MIDDS automatically, minimizing the
forecaster's interaction with the tool. Later, the AMU updated the severe weather database with data from the years
2004-2009, re-analyzed the data to determine the important parameters, made appropriate adjustments to the index
weights depending on the results of the analysis, and updated the MIDDS GUI.

For this task, the 45 WS requested the AMU upgrade the severe weather database by adding weather
observations from the 20 I0 warm season, update the verification dataset with results from the summer of 20 I0, use
statistical logistic regression analysis on the database and develop a new forecast tool, and update the MIDDS GUI
with the new tool if it outperforms the current tool. The added data increased the period of record (PaR) from 21 to
22 years. With this update, the datasets included reported severe weather events, sounding stability parameters, and
surface weather patterns and the upper jet patterns identified from surface and upper air maps.

The AMU analyzed seven stability parameters that showed the possibility of providing guidance in forecasting
the occurrence of severe weather for the 2010 season, calculated verification statistics for the Total Threat Score
(TTS) in the 20 I0 season, and calculated warm season verification statistics. Analysis of the seven stability
parameters indicate that adding the 2010 data had little effect on the tool's overall severe weather predicting
capability. On days that severe weather was reported, the TTS ranged from -II to +20 compared to the 2006
summer season verification in which the TTS was never below 0 on days when severe weather was reported.
Finally, the Severe Weather Worksheet TTS did not verify well in the 2010 warm season, with a high False Alarm
Rate (FAR) and low values for Probability of Detection (POD), Critical Success Index (CSI), and Heidke Skill
Score (HSS).

The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The
candidate predictors included the flow regimes from the Florida rawinsondes, the placement of the upper-level jet,
and seven stability parameters calculated from the XMR rawinsonde. The data were stratified into equation
development and verification datasets and one equation for the warm season was developed. A process called
screening regression was used to determine which candidate predictors to include in the equation in which an
iterative technique was used to test each predictor's ability to explain the variance in the predictand iridividually and
in combination with other predictors. Four predictors were chosen for the warm season logistic regression equation.

Four equation performance tests were conducted. The results indicated that the logistic regression equation did
not show an increase in skill over the previously developed TTS. The equation showed less accuracy than the TTS at
predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse
standard categorical accuracy measures and skill scores over TIS. The results showed that the equation had some
skill in predicting non-severe events, but no skill in predicting severe events.

Based on the findings of this study and after reviewing the results with the 45 WS, a new tool was not
developed based on the performance of the logistic regression equation. The previously developed TTS and MIDDS
GUI were not updated due to the inability of the 2010 severe weather season data to help improve the tool.
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1. Introduction

The 45th Weather Squadron (45 WS) Commander's morning weather briefing includes an assessment of the
likelihood of local convective severe weather for the day. This forecast is provided in order to enhance protection of
personnel and material assets of the 45th Space Wing, Cape Canaveral Air Force Station (CCAFS), and Kennedy
Space Center (KSC). The severe weather elements produced by thunderstorms include tornadoes, convective surface
winds ~ 50 knots, and/or hail with a diameter ~ I inch. Forecasting the occurrence and timing of these phenomena
during the warm season (May - September) is challenging for 45 WS operational personnel.

In the fITst phase of the task, the Applied Meteorology Unit (AMU) analyzed stability parameters and synoptic
patterns from east-central Florida severe weather days during the warm season in the years 1989-2003 to determine
which were important to severe weather development. The AMU then created a HyperText Markup Language
(HTML)-based tool using the important parameters and patterns to help determine the probability of issuing severe
weather watches and warnings for the day. The HTML tool was replaced with a Meteorological Interactive Data
Display System (MIDDS)-based Graphical User Interface (GUI) in a follow-on task that retrieved stability
parameters and other information from MIDDS automatically, minimizing the forecaster's interaction with the tool.
Later, the AMU updated the severe weather database with data from the years 2004-2009, re-analyzed the data to
determine the important parameters, made appropriate adjustments to the index weights based on the results of the
analysis, and updated the MIDDS GUI.

For this task, the 45 WS requested the AMU to:

• Add severe weather reports and indices for the warm season May-September 2010 to increase the period of
record to 22 years,

• Use the daily severe weather forecast threat scores from 2009 and 2010 as the verification data of the tool,

• Use logistic regression to determine the best predictors and provide a probability forecast, and then compare
the performance ofthe logistic regression equations with the previous tool, and

• Update the MIDDS GUI implementation of the tool with the new results if the logistic regression equations
are successful.

2. Previous Work

In the initial Severe Weather Forecast Decision Aid task (Bauman et al. 2005), the AMU completed a 15-year
climatological study of severe weather events and related severe weather atmospheric parameters. The period of
record (POR) for the analysis was May-September, 1989-2003. Data sources included stability parameters derived
from archived sounding data, local forecast rules used to set threat assessment thresholds, Cloud-to-Ground
Lightning Surveillance System (CGLSS) used to differentiate between lightning and non-lightning days, surface and
upper air maps, and two severe weather event databases covering east-central Florida used to identify reported
severe weather. These datasets provided the foundation for analyzing stability parameters and synoptic patterns with
the goal of developing an objective tool to aid in forecasting severe weather events. Based on the results from the
analyses, an interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by
providing a level of objective guidance based on the stability parameters from the CCAFS morning sounding,
CGLSS data, and synoptic-scale dynamics. The tool outputs the Total Threat Score (TTS), which is a measure of the
level of severe weather threat. The higher (lower) the TTS, the greater (lesser) the chance of severe weather
occurring.

In a follow-on study (Wheeler 2009), the functionality of the web-based tool was migrated to MIDDS. A
MIDDS GUI worksheet was created using Tool Command Language and its associated Tool Kit (Tcl/Tk). The GUI
retrieves and calculates most of the daily sounding stability indices needed by the worksheet when opened. The
forecaster is required to answer a few more subjective questions before the TTS is calculated and displayed.

In the final follow-on study (Wheeler 20 I0), the AMU updated the existing severe weather tool by adding data
from May-September, 2004-2009, creating a 21-year severe weather database. Data sources included local forecast
rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east
central Florida. The new POR for the analysis was May-September, 1989-2009. Results from this study showed a
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greater ability to predict severe weather in the added years as compared to the original study. The MIDDS GUI was
also updated and mouse-over help was added to allow the forecaster to quickly compute and analyze the daily TTS.

3. Database

For this work, the AMU updated the severe weather database with data from the 2010 warm season, increasing
from a 21- to a 22-year climatological study of atmospheric stability indices and severe events from 1989-2010. To
be consistent with previous work, the AMU collected the same data types and parameters used to update the severe
weather database. Severe weather reports during 2010 were collected from the Storm Prediction Center (2009, SPC)
and data from severe weather days in that period from the National Climatic Data Center (2010, NCDC) database.
The sounding stability parameters were calculated from the 1000 UTC CCAFS soundings available from the
National Oceanic and Atmospheric Administration's (NOAA)/Earth System Research Laboratory (ESRL) and from
the objective portion of the daily Severe Weather Worksheet in MIDDS. Also, the 200 mb charts were analyzed to
identify the placement and characteristics of the upper-level jet. With this update, the datasets included reported
severe weather events, sounding stability parameters, and surface weather patterns and the upper jet patterns
identified from surface and upper air maps. Each data type proved to have some relevance to forecasting the threat
of convection in east-central Florida and at KSC/CCAFS.

3.1 Severe Weather Events

Severe weather events for this study included tornadoes, convective surface winds ~ 50 knots (~ 26 m S-I),
and/or hail with a diameter ~ I inch (~ 2.54 cm) that were observed in east-central Florida. The previous studies
used a ~ % inch diameter criterion for hail, however, the National Weather Service changed the minimum size for
severe hail from 314" to I" in January 2010. Therefore, the POR prior to the 2010 summer season reflected the %"
criterion and the new 1" hail criterion was used for the 2010 summer season. The 2010 database contained 16 days
with reported severe weather, which included three tornadoes, six hail events, and 15 high wind events.

It is important to note that the database contains only those severe weather events reported by human observers.
Severe weather events can only be recorded when observed by people in the vicinity, and then only if the proper
authorities are notified. Therefore, severe weather days are more accurately described as "reported" severe weather
days. To determine relationships between the data and severe weather occurrence for this and previous studies, the
AMU had to assume that severe weather only occurred on reported severe weather days.

3.2 Sounding Parameters

A thorough analysis of atmospheric stability based on a local upper air sounding is needed for any convective
forecast. A listing of the sounding stability indices (bold) and additional calculated parameters from MIDDS used in
the TTS calculation is shown in Table 1. These sounding parameters are calculated in MIDDS from the CCAFS
rawinsonde and are readily available.

3.3 Synoptic Weather Patterns

The synoptic weather patterns investigated by the AMU included the position of the upper-level jet streak if one
existed and the position of the surface high pressure ridge axis over east-central Florida. It is commonly known that
upper-level divergence and/or the left-exit and, to a lesser degree, right-entrance quadrant of a jet streak in the
vicinity of convective systems can help produce severe weather. The 45 WS forecasters often analyze the position of
the surface high pressure ridge axis protruding westward from the Bermuda high pressure center as an indicator for
convection occurrence. It is generally known that if the surface ridge is south of the KSC/CCAFS area the
probability for convection is increased due to the low-level convergence generated from the southwesterly flow
around the ridge interacting with the east coast sea breeze off the Atlantic Ocean and the west coast sea breeze off
the Gulf of Mexico.
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Table 1. The eight stability parameters (in bold font) that showed the possibility of providing guidance in
forecasting severe weather and the six other sounding parameters in the severe weather database and the
equations used in their calculation.

Index Acronym Definition

LI Lifted Index = (T500 - T*)

T* = Temperature ofa parcel characterized by the mean Td in the lowest 3000 ft and
the forecast maximum surface temperature if it were lifted dry adiabatically to
saturation and then moist adiabatically to 500 mb.

KI K Index = (T8S0 - Tsoo) + Td8S0 - (T700 - Td700)

TT Total Totals = (T8S0 - T500) + (Td850 - T500)

SSI Showalter Stability = Index (Tsoo - T*)

T* = Temperature a parcel characterized by the T850 and Td850 would have if it were
lifted dry-adiabatically to the LCL and then moist-adiabatically to 500 mb.

CT Cross Totals = (Td850 - T500)

TI Thompson Index = KI - LI

PW Precipitable water in mm in the layer from the surface to 500 mb

CAPE FMaxT CAPE calculated using the forecast maximum temperature (FMaxT) for the day
instead of the surface temperature in the morning

10070RH Average Relative Humidity in percent (%) from 1000-700 mb

LLJ Low Level Jet below 5000 ft (Wind direction and speed)

INY Height of Inversion below 8000 ft

T850 The sounding temperature at 850 mb

TDif The difference between forecast maximum and convective temperatures

MDPI Microburst Day Potential Index

4. Data Analysis Results

The AMU gathered severe weather reports for 2010 from SPC and data for those severe weather days from
NCDC. The 200 mb charts were analyzed to identify placement and characteristics of any jet streaks overhead. The
Florida flow regime patterns that identified the position of the surface high pressure ridge axis over east-central
Florida were also added to the severe weather database. The datasets were integrated and compared to the severe
weather reports of hail, high wind, and tornadoes to determine what the parameter values were on each of the severe
weather event days.

The AMU analyzed seven of the eight stability parameters that showed the possibility of providing guidance in
forecasting the occurrence of severe weather in the first phase of this task (Bauman et al. 2005). The parameter
CAPE FMaxT was not calculated for the years 2004-2009 and was therefore not analyzed in this phase of the task.
The parameters TT, KI, LI, TI, CT, SSI and PW were analyzed to determine if they increased the severe weather
forecast capability of the tool in the 20 I0 data and in all 22 years (1989-2010) combined. Results indicate that
adding the 2010 data had no effect on the forecast capability of the tool for TT, KI, PW, SSI, and CT. The forecast
capability decreased when adding the 2010 LI and TI data. Overall, there was minimal change in the tool's overall
severe weather predicting capability. The relationship between each stability parameter and threshold criteria for the
severe weather threat was calculated for severe and non-severe days. The results for each of these seven parameters
are detailed below.
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4.1 Total Totals (TT)

The TT thresholds specify a low threat for severe weather when TT :s 45, a medium threat when 46 :s TT :s 48,
and a high threat when TT > 48. When TT was> 48, a severe weather event was reported in 13% of the 2010 warm
season days. This slightly decreased the 21-year value of 34%. The 22-year value decreased to 33%. Figure I
displays the threat levels of Low, Medium and High with the occurrence/non-occurrence of severe weather for the
22-year POR, while Figure 2 displays the same data, but shows the individual TT values for each day. It is evident
that TT poorly discerns severe from non-severe weather for our POR.

Total Totals

- Severe _ Non-Severe

100%

~
90%

f 80%

~
70%

60%

0 50%, 40%

30%

~ 20%

10%

0%

Low(= 45) Med (46 to 48) High (> 48)

Threat

Figure I. Stacked column graph of TT thresholds. The number of severe/non-severe occurrences for
the Low, Medium and High threat thresholds for all 22 years in the severe weather database.
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Figure 2. Scatter plot of probability of occurrence vs. TT for both the non-severe and severe days for
all 22 years in the severe weather database.
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4.2 K-Index (KI)

The KI thresholds values indicate a low threat for severe weather when KI < 26, a medium threat when 26 ~ KI
~ 28, and a high threat when KI > 28. When KI was> 28, a severe weather event was reported in 16% of the 2010
days. This did not alter the 21-year value of 18%. The 22-year value remained at 18%. Figure 3 displays the threat
levels of Low, Medium and High with the occurrence/non-occurrence of severe weather for the 22year POR, while
Figure 4 displays the same data, but shows the individual Kl values for each day. It is evident that Kl poorly
discerns severe from non-severe weather for our POR.

K-Index
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Figure 3. Same as Figure 1 except for KI.
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Figure 4. Same as Figure 2, except for KI.
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4.3 Lifted Index (LI)

The Ll thresholds values indicate a low threat for severe weather when Ll ~ -2, a medium threat when-3 ~ Ll ~
-5, and a high threat when Ll < -5. The Ll was never < -5 in the 2010 dataset and, therefore, slightly decreased the
percentage of severe weather in the 22-year POR from 31 % to 30%. Figure 5shows the LI Low, Medium and High
threat distribution for all years in the severe weather database, while Figure 6 displays the same data, but shows the
individual LI values for each day. LI also poorly discerns severe from non-severe weather for our POR.

Lifted Index
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Figure 5. Same as Figure 1 except for LI.
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Figure 6. Same as Figure 2, except for LI.
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4.4 Thompson Index (Tn

The TI specifies a low threat when TI < 25, a medium threat when 25 :s TI :s 34, a high threat when 35 :s TI :s
39, and a very high threat when TI 2: 40. The TI value was> 40 on 4 days in the 2010 season and severe weather
was not reported on any of those days. The percent occurrence decreased to 25% for the 22-year POR over the
previous 21-year value of 26%. Figure 7 shows the severe weather threat distribution for all years in the severe
weather database, while Figure 8 displays the same data, but shows the individual TI values for each day. As above,
TI poorly discerns severe from non-severe weather in our POR.

Thompson Index
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100%

90%
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Threat

Figure 7. Same as Figure 1 except for TI and the fourth threat category Very High.
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Figure 8. Same as for Figure 2, except for TI.
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4.5 Cross Totals (CT)

The CT thresholds indicate a low threat when CT ~ 19, a medium threat when 20 ~ CT ~ 21, a high threat when
22 ~ CT ~ 23, and a very high threat when CT 2: 24. When CT was 2: 24, a severe weather event was reported in
20% of the 2010 days. This did not alter the 21-year value of 31 %. The overall 22-year value remained at 31 %.
Figure 9 displays the threat levels of Low, Medium, High, and Very High with the occurrence/non-occurrence of
severe weather for the 22-year POR, while Figure 10 displays the same data, but shows the individual CT values for
each day. It is evident that CT poorly discerns severe from non-severe weather for our POR.
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Figure 9. Same as Figure 7 except for CT.
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Figure 10. Same as Figure 2, except for CT.



4.6 Showalter Stability Index (SSI)

The SSI thresholds indicate a low threat when SSI 2: 3, a medium threat when 2 2: SSI 2: -2, and a high threat
when SSI < -2. The 2010 severe weather database confIrmed that SSI is a good severe weather predictor. When SSI
< -2, severe weather was reported in central Florida 33% of the time. The 22-year POR value remained the same as
the previous work at 37%. Figure II shows the SSI Low, Medium and High threat distribution for all years in the
severe weather database, while Figure 12 displays the same data, but shows the individual SSI values for each. SSI
poorly discerns severe from non-severe weather for our POR.
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Figure 11. Same as Figure I except for SSI.
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Figure 12. Same as Figure 2, except for SSI.
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4.7 Precipitable Water (PW)

The PW thresholds indicate a low threat when PW < 1.0 in, a medium threat when 1.0 in :S PW :S 1.75 in, and a
high threat when CT > 1.75 in. When PW was> 1.75, a severe weather event was reported in 13% ofthe 2010 days.
This did not alter the 21-year value of 15%. The overall 22-year value remained at 15%. Figure 13 displays the
threat levels of Low, Medium, and High with the occurrence/non-occurrence of severe weather for the 22-year POR,
while Figure 14 displays the same data, but shows the individual PW values for each day. As above, PW does not
discern severe from non-severe weather in our POR.
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Figure 13. Same as Figure 1 except for PW.
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Figure 14. Same as Figure 2, except for PW.
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5. 2010 Verification Results

The TTS used for verification was developed from the first severe weather study (Bauman et al. 2005). The
AMU calculated verification statistics for the TTS from an independent dataset created by the 45 WS forecasters and
AMU personnel during the 2010 warm season. When the 45 WS forecasters/AMU personnel completed the Severe
Weather Worksheet GUI and computed the daily TTS, a text file was saved that contained their answers to the
subjective questions and the sounding stability parameters for the day. This allowed a comparison of the daily TTS
with reported severe weather events in 2010.

From 3 May to 30 September 2010, the AMU and 45 WS forecasters completed 132 worksheets. Total Threat
Scores ranged from -23 to 20. Severe weather was reported in east-central Florida on 16 of the 153 days. Figure 15
shows the TTS values color-coded for reported severe weather. On days that severe weather occurred, the TTS
ranged from -II to 20. During the 2006 warm season verification (Bauman 2006), the TTS was never below 0 on
days when severe weather was reported.

The 2010 warm season was one of the hottest and driest summers on record across east-central Florida. This
was due to the placement and strength of the surface Atlantic ridge and high pressure ridge aloft. This resulted in
few severe weather reports during the 20 I0 summer season and may account for the wide range of TTS values when
severe weather was reported over the 20 I0 season.

Total Threat Score versus Reported Severe Weather
May - September 2010

- No Severe Reported _ Severe Reported
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~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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Date

Figure 15. Total Threat Score versus date from I May - 30 September 2010. Red lines represent days with reported
severe weather, blue lines represent days with no reported severe weather.

The AMU computed verification statistics for the 2010 warm season. The standard 2x2 contingency table
shown in Table 2 was used to calculate the statistics and scores described in the last row of Table 2:

• The False Alarm Rate (FAR) is the fraction of 'yes' forecasts that are incorrect,

• Probability of Detection (POD) is the fraction of 'yes' forecasts that are correct,

• Critical Success Index (CSl) measures the fraction of observed or forecast events that were correctly
predicted,

• Heidke Skill Score (HSS) is the probability of a correct 'yes' forecast by random chance, and

• True Skill Statistic (TSS) measures how well the forecast separated the 'yes' events from the 'no' events
compared to random chance, but with an assumption of an unbiased forecast.
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Table 2. The standard contingency table Observed Event

used for forecast verification. Yes No

Yes a b
Forecast Event

No c d

N=a+b+c+d Critical Success Index (CSI) = a/(a+b+c)

False Alarm Rate (FAR) = b/(a+b) Heidke Skill Score (HSS) = [ (a+d) - E ]/( N-E )

Probability of Detection (POD) = a/(a+c) E = [(a+c)(a+b)+(b+d)(c+d)]/N, N=a+b+c+d

True Skill Statistic (TSS) =a/(a+c) - b/(b+d)

Table 3. Warm season 2010 Observed Severe FAR 0.46
TTS Verification Statistics

Yes No POD 0.44

Forecast Yes 7 6 CSI 0.32

Severe No 9 110 HSS 0.42

TSS 0.39

Gulf
of

Ml"xi<"O

Figure 16. Map of Florida showing the six counties (shaded in yellow) included in the
severe weather events database. The location of KSC and CCAFS are shown on the map.



Table 3 shows the contingency table statistics for the 20 10 warm season. The TTS forecast threshold value for
the contingency table was chosen based on the results of the 2006 summer season verification. If the TTS was < 5 it
was considered a No forecast and if ~ 5 it was a Yes forecast. The east-central Florida severe weather verification
area (Figure 16) included three coastal counties (Brevard, Volusia, Indian River) and three inland counties
(Seminole, Orange, Osceola), all of which are typically in the same large-scale air mass as KSC/CCAFS on most
warm season days. If severe weather was reported in these Florida counties, that was classified as observed Yes. The
Severe Weather Worksheet TTS did not verify well in the 2010 warm season, with a high FAR and low values for
POD, CSI and HSS. However, it should be noted again that the 2010 warm season was atypical being much warmer
and drier with much less severe weather than normal.

Figure 17 displays a scatter plot of probability of occurrence/non occurrence of severe weather vs. the TTS for
both the 2009 and 2010 summer seasons. There were 36 severe weather and 186 non-severe weather days for which
the TTS was calculated. The results show that ITS was a fairly good indicator of severe weather, particularly when
the value was ~5. When TTS was ~5, the occurrence of non-severe weather was 1% or less. Based on these results
and those from Section 4, it is evident that the fmal daily value of the TTS is driven by the subjective questions that
the forecaster is required to answer as the daily stability indices poorly differentiated severe from non-severe
weather.
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Figure 17. Scatter plot of probability of occurrence vs. TTS for both the non-severe and severe days
for the 2009 and 2010 seasons in the severe weather database.
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6. Logistic Regression Analysis

The AMU was tasked to perform statistical logistic regression analysis on the 22-year severe weather database
and possibly develop a new forecast tool. There were three major steps in this portion of the task:

• Determine the elements of the equation,

• Develop the logistic regression equation, and

• Determine the equation performance.

To accomplish this, the AMU followed procedures outlined by Lambert and Wheeler (2005).

6.1 Elements of the Logistic Regression Equation

The necessary elements to create the logistic regression equation include a predictand and candidate predictors.
The predictand is the element to be predicted. The SPC and NCDC severe weather reports provided the occurrence
of severe weather in the area and were used to create the predictand. The predictand value was set to "1" if severe
weather occurred within the six east-central Florida counties on a specific day and set to "0" if no severe weather
occurred. As mentioned previously, an assumption had to be made that severe weather only occurred on reported
severe weather days. The candidate predictors included the flow regimes from the Florida rawinsondes, the
placement of the upper-level jet, and seven stability parameters calculated from the XMR rawinsonde.

6.1.1 Flow Regime Probabilities

Probabilities of severe weather occurrence based on flow regime pattern for each day were calculated using the
severe weather binary predictand. The number of days each regime occurred was compared to the severe weather
predictand to see how many of those days reported severe weather. The probability was calculated by dividing the
number of severe weather days within a particular regime by the total number of days the regime occurred.

6.1.2 Upper-level Jet Probabilities

Probabilities of severe weather occurrence based on the placement of the upper-level jet were calculated in the
same manner as the flow regime probabilities. The number of days each jet pattern occurred was compared to the
severe weather predictand to see how many of those days reported severe weather. The probability was calculated
by dividing the number of severe weather days with a particular jet pattern by the total number of days the particular
pattern occurred.

6.1.3 Stability Index Parameters

The stability indices chosen as candidate predictors were based on the results from the previous phases of this
work. All seven indices showed some skill in predicting severe weather. The stability indices were calculated for
each day in the database from the 1000 UTC XMR sounding and are available to the forecasters through MIDDS.
The stability index candidate predictors included the

• Total Totals (TT),

• Cross Totals (CT),

• K-Index (KI),

• Lifted Index (LI),

• Thompson Index (TI),

• Showalter Stability Index (SSI), and

• Precipitable water (PW).

6.2 Development of the Logistic Regression Equation

The amount of data available for equation development was critical to the reliability of the new equation. Data
had to be stratified into equation development and verification datasets, which limited the amount of data available
for equation development. Therefore, the amount of available data was determined before development began. After
determining that an appropriate amount of data was available, one equation for the warm season was developed.
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6.2.1 Data Availability

The World Meteorological Organization (1992, WMO) states that there should be at least 250 events in the
dataset in order to derive stable statistical relationships. There are 153 days in the warm season, which equates to
3366 days over the 22-year POR. However, sounding data were not available for every day in the POR. Data were
available for 3192 days or 95% of the time. Of these days, there were 422 reported severe weather days. This was
sufficient to satisfy the WMO standard after stratifying the full dataset into development and verification datasets.

6.2.2 Development and Verification Datasets

The candidate predictors and predictand were stratified into development and verification datasets. The
development dataset was required to contain enough samples so that the resulting logistic regression equation was
stable. The verification dataset was needed for equation testing to ensure that the equation would perform
sufficiently in an operational setting. If the performance was much worse with the verification data, this would
indicate that the development dataset was too small or there were too many predictors and the equations were fit too
strongly to the development data.

The daily TTS values were archived for the years 2009 and 2010. Therefore, these two years were chosen as the
verification dataset in order to compare the accuracy of the equation vs. the TTS. This left 20 years of data (1989
2008) for the development dataset. The development dataset contained 380 severe weather events, while the
verification dataset contained 42.

6.2.3 Equation Development

The development of the logistic regression equation follows the procedure outlined in Lambert and Wheeler
(2005). One logistic regression equation was developed using candidate predictors determined from the previous
phases of this task.

6.2.3.1 Logistic Regression

Choosing the correct statistical regression method is essential when creating a reliable probability forecast tool.
Logistic regression is deemed most appropriate when using data with a predictand that is binary (Wilks 2006).
Logistic regression is represented by the equation

8(bO+ b1%1 ....·+blc"lc)

Y = 1+e(bo +b1%1. +..·+blc%rcJ'
(I)

where y is the predicted value, XI ... Xk are the set of predictors, and b l ... bk are the coefficients for the corresponding
predictors. For this task, y represents the probability of a severe weather event occurring and is bound between the
values 0 and I. The candidate predictors for XI ... Xk are those listed in Sections 6.1.1, 6.1.2, and 6.1.3 and the method
for determining the corresponding coefficients is outlined in Section 6.2.3.2. A detailed description of logistic
regression can be found in Section 4.2.1 of Lambert and Wheeler (2005).

6.2.3.2 Predictor Selection

Following Lambert and Wheeler (2005), predictor selection was conducted using the S-PLUS® statistical
software (Insightful Corporation 2005), which has a built-in logistic regression function. The software also
determines each predictor's contribution to the reduction in variance of the predictand, called the reduction in the
residual deviance. For logistic regression, the residual deviance is used to assess the fit of the overall model. The
smaller (larger) the deviance is the better (worse) the fit of the model. A detailed description of residual deviance
can be found in Section 4.2.2 of Lambert and Wheeler (2005).

A process called screening regression was used to determine which candidate predictors to include in the
logistic regression equation. In this approach, predictors were added to the equation one at a time. At each step, the
candidate predictor that created the biggest reduction in the residual deviance was chosen as the next predictor in the

("0)
equation. Selection began with the prediction equation y =~) (NULL model), where the only term in Equation

1+e\~11

(1) is the intercept. In the next step, each of the seven candidate predictors was added as a lone predictor in Equation
1 resulting in seven single predictor equations. The predictor that caused the largest reduction in the residual
deviance from the NULL model was chosen as the first predictor in the equation. At this stage, the prediction
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equation is y = (to +/1 .% ). Next, the other six candidate predictors were added individually to the equation
1+<1 0 1 1

creating a set of two-predictor equations. The second predictor that caused the largest reduction in residual deviance
was chosen as the second predictor. This continued for all candidate predictors. It is important to note that it is
generally not useful to include all potential predictors in a final equation since most predictor variables are mutually
correlated so that the full set of predictors includes redundant information (Wilks 2006). This could create
unrealistic results.

Figure 18 shows the percent reduction in residual deviance from the NULL model as each predictor was added.
The TT reduced the residual deviance by the most (-8%) and was chosen as the first predictor in the equation. The
second predictor was the flow regime probabilities, which brought the total reduction of residual deviance to -13%.
The LI and jet probabilities were the third and fourth predictors in the equation, respectively, producing the final
reduction in residual deviance of 15%.

There was no sufficient fifth predictor for the equation. In other words, no other candidate predictor reduced the
residual deviance by a significant amount, thereby not providing added value for predicting severe weather. The
regression coefficients for each predictor, b l •.• bk, should maintain the correct sign during each step described above.
A positive regression coefficient means that the predictor increases the probability of the outcome, while a negative
coefficient means that the predictor decreases the probability of that outcome. For this study, Kl, TI, CT, TI, PW,
flow regime probabilities, and jet probabilities should have positive coefficients indicating that larger (smaller)
values of each variable increase (decrease) the chance of severe weather. The variables LI and SSI should have
negative coefficients indicating that larger (smaller) values decrease (increase) the chance of severe weather. None
of the fifth candidate predictor coefficients had the correct sign, indicating that none of the predictors added value
for predicting severe weather.

Reduction in Residual Deviance by Predictor
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Null n Flow Regime LI Jet

Figure 18. The total percent reduction in residual deviance from the NULL model as each predictor was added to the
equation using the development dataset.
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6.3 Logistic Regression Equation Performance

Forecast probabilities were produced using the four predictors from the verification dataset. These probabilities
were compared with the binary severe weather observations in the verification dataset using four tests that measure
forecast performance. The tests included

• Mean Squared Error, which evaluates equation performance,

• Brier Skill Score, which measures equation performance against other forecast methods,

• Distributions ofthe probability forecasts for days with and without severe weather, and

• Contingency table statistics.

6.3.1 Mean Squared Error

The Mean Squared Error (MSE) is the mean of the squared differences between the forecast probabilities and
the observations. The MSE is given by

(2)

where n is the number of forecast/observation pairs, Pi is the probability calculated from the equation, and 0i is the
corresponding binary severe weather observation (Wilks 2006). The MSE for a perfect forecast is 0, with larger
MSE indicating decreasing accuracy of the forecast.

The MSE was computed for the four-predictor equation using the development and verification datasets. The
MSE for the full development dataset was 0.10, which indicates skill in predicting severe weather. However, when
the data was split into severe and non-severe events, the MSE was 0.61 and 0.03, respectively. Similarly, the MSE
for the full verification dataset was 0.0 I, but 0.59 and 0.02 for severe and non-severe events, respectively. These
results indicate that the equation was biased towards predicting non-events and failed to adequately predict severe
weather events. The MSE was also computed for the TTS using the verification dataset. Based on previous work by
Bauman (2006) and Wheeler (2010), a TTS 2: 5 was used as the threshold for severe weather where a TTS < 5 was
assigned a 0 (a No forecast) and a TTS 2: 5 was assigned a I (a Yes forecast). The observation was subtracted from
the TTS forecast value, the result was squared, and then the final mean was taken of all the squared differences. The
MSE for the full verification dataset was 0.07 and was 0.26 and 0.03 for severe and non-severe events, respectively.
Based solely on MSE, the TTS was a better predictor of severe weather events than the logistic regression equation.

6.3.2 Brier Skill Score

The Brier Skill Score (BSS) measures the improvement in skill of the logistic regression equation against a
reference forecast. It is calculated using the MSE as

(
MSE rpo.-MSZ / )

BSS = • TO * 100, (Wdks2006
MSEpOT/RCr-MSEroj

(3)

where MSEeqn is the MSE of the equation being tested, MSEref is the MSE of the reference forecast method, and
MSEperfect is the MSE of a perfect forecast, which is always O. The BSS denotes a percent improvement
(degradation) in skill of the equation over the reference forecast when it is positive (negative). The calculated TTS
for the verification dataset was used for the reference forecast.

The BSS values for the verification dataset were -57% for the full dataset, -131 % for the severe weather events,
and 34% for non-severe weather. As with the MSE, these results indicate that the logistic regression equation is
biased towards predicting non-events as the percent improvement for the non-severe weather is large. However, the
percent degradation for predicting severe events is quite large, again indicating that TTS is a better tool for
predicting severe weather.
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6.3.3 Probability Distributions

The equation probability forecasts from the verification dataset were stratified by severe and non-severe
weather days. The distribution of the probability values was calculated for each stratification. Figure 19 shows the
probability distribution for severe days (red curve) and non-severe days (blue curve). If the equation performance
was considered "good", the red (blue) curve should have a minimum (maximum) in the lower probability values that
increase to a maximum (minimum) at the higher values.

The non-severe weather days have a peak frequency near 65% at probability values of 0.1 and then decrease to
near 0 at 0.6. It shows a high percentage of low probabilities for non-severe events and a low percentage of high
probabilities as expected for good performance. The severe weather days have a small peak near 30% at probability
values near 0.2 followed by a dip and then another small peak near 15% at probability values at 0.4. This indicates
that the equation performed poorly for severe weather days. The maximum at 0.2 and minimum at 0.6 suggests the
equation is under-forecasting severe weather events. It should be noted that forecast probabilities for both severe and
non-severe days were never greater than 0.7.

Forecast Probability Distributions for Severe and Non-Severe Weather Days
May-September 20OS-2010
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Figure 19. Forecast probability distributions for severe (red) and non-severe (blue) days in the verification data. The
y-axis values are the frequency of occurrence of each probability value, and the x-axis values are the forecast
probability values output by the equation.

6.3.4 Contingency Table Statistics

Contingency table statistics were computed for the verification dataset TTS and equation probabilities. As in
Section 5, the standard 2x2 contingency table shown in Table 2 was used to calculate the statistics and scores. The
contingency table statistics were computed using the same threshold values for TTS as in Section 5: if < 5 it was a
No forecast and if2 5 it was a Yes forecast. The procedure outlined by Wilks (2006) was used to choose the proper
threshold values for the equation probabilities. Figure 20 shows the CSI and Bias values for the equation
probabilities over a range of equation output probability values from 0.05 to 0.7 in increments of 0.05. The cutoff
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value that had the maximum value of CSI and a bias value closest to I (no bias) was chosen. The resulting
probability cutoff was 0.35 indicated by the vertical black line in Figure 20.

Table 4 and Table 5 show the contingency table statistics for the TTS and equation probabilities for the
verification dataset, respectively. The POD and CSI are I for a perfect forecast and 0 for no skil1, and vice versa for
FAR. The HSS and TSS are 1 for a perfect forecast, 0 for performance equal to a random forecast, and < 0 for
performance worse than that of a random forecast. It is evident that the TTS (Table 4) outperforms the equation
(Table 5) in every computed statistic.

C51 and Bias for Varying Probability Cutoff Values
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Figure 20. Graph showing the CSI (blue) and bias (red) values for the equation probabilities over a range of equation
output probability values from 0.05 to 0.7 in increments of 0.05. The vertical black line shows the resulting
probability cutoff that had the maximum value ofCSl and a bias value closest to I.

Table 4. TTS Verification ()bserved Severe FAR 0.23

Dataset Statistics Yes No POD 0.73

Forecast Yes 30 9 CSI 0.60

Severe No 11 176 HSS 0.70

TSS 0.68

Table 5. Equation ()bserved Severe FAR 0.42
Probabilities Verification
Dataset Statistics Yes No POD 0.35

Forecast Yes 15 11 CSI 0.28

Severe No 28 238 HSS 0.36

TSS 0.30
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6.3.5 Equation Performance Summary

All four equation performance measures indicated that the logistic regression equation did not show an increase
in skill over the previously developed TTS. The equation showed less accuracy than the TTS at predicting severe
weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical
accuracy measures and skill scores over TTS. The MSE, BSS, and probability distributions show that the equation
had some skill in predicting non-severe events, but no skill in predicting severe events.

The overriding difference between the logistic regression equation and the TTS is the inclusion of subjective
questions and answers in computing the fmal value for the ITS. The logistic regression equation only takes into
account the objective stability parameter values. Bauman et al. (2005) found that persistence, squall line activity,
moisture boundaries, and sea breeze and boundary collisions were important for severe weather development and
included questions to account for these phenomena when calculating the TTS. The results of this analysis emphasize
the importance of these subjective factors.

7. Summary

This report presented a severe weather forecasting tool developed from a 22-year climatological study of severe
weather events and related severe weather atmospheric parameters. Data sources included archived sounding data
from the 1000 UTC XMR soundings, surface and upper air maps, and two severe weather event databases covering
east-central Florida. The NCDC and SPC severe weather events databases were used to identify days with reported
severe weather. These datasets provided the foundation for analyzing the stability parameters and synoptic patterns
that were used to develop the original objective tool to aid in forecasting severe weather events. The severe weather
database was upgraded by adding weather observations from May-September 2010. The new period of record for
the analysis was May-September, 1989-2010.

Stability parameter analysis results indicate that adding the 2010 data had a minimal effect on the severe
weather forecast potential of the tool. The AMU calculated verification statistics for the TTS values calculated by
the 45 WS forecasters and AMU personnel in the 2010 warm season. On days that severe weather occurred, the TTS
ranged from -11 to 20 compared to the 2006 summer season verification in which the TTS was never below 0 on
days when severe weather was reported. Standard contingency table statistics showed a high FAR and low POD,
CSI and HSS. The 2010 warm season was one of the hottest and driest summers on record across east-central
Florida due to the placement and strength of the surface Atlantic ridge and high pressure ridge aloft. This resulted in
few severe weather reports during the 2010 summer season and accounted for the wide range of TTS values when
severe weather was reported over the 2010 season.

The AMU created a logistic regression equation that predicted the probability of severe weather occurrence for
the day in east-central Florida. The equation was tested using four methods described in Section 6.3.1 - 6.3.4. The
results from the tests show a degradation in skill in predicting severe weather over the TTS. The equation also
showed less accuracy than the ITS at predicting severe weather, little ability to distinguish between severe and non
severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

Based on the fmdings of this study and after reviewing the results with the 45 WS, a new tool was not
developed based on the performance of the logistic regression equation. The previously developed ITS and MIDDS
GUI were not updated due to the inability of the 2010 severe weather season data to help improve the tool.
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List of Acronyms

lO070RH lOOO to 700 mb average Relative MDPl Microburst Day Potential Index
Humidity

MIDDS Meteorological Interactive Data
45 WS 45th Weather Squadron Display System

AMU Applied Meteorology Unit MSE Mean Squared Error

BSS Brier Skill Score NOAA National Oceanic and Atmospheric

CAPEFMaxT Cape using Maximum forecast
Administration

Temperature NCDC National Climatic Data Center

CCAFS Cape Canaveral Air Force Station POD ProbabiIity of Detection

CGLSS Cloud-to-Ground Lightning POR Period of Record
Surveillance System

PW Precipitable Water
CSI Critical Success Index

SPC Storm Prediction Center
CT Cross Totals

SSI Showalter Stability Index
ESRL Earth System Research Laboratory

TS50 Temperature at 850 mb
FAR False Alarm Rate

TcI/Tk Tool Command Language/Tool Kit
HTML HyperText Markup Language

TDif Forecast maximum temperature-
HSS Heidke Skill Score convective temperature

GUI Graphical User Interface TI Thompson Index

KSC Kennedy Space Center TSS True Skill Statistic

lNY Height of Inversion TT Total Totals Index

KI K-Index TTS Total Threat Score

Ll Lifted Index WMO World Meteorological Organization

LLJ Low Level Jet
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NOTICE

Mention of a copyrighted, trademarked or proprietary product, service, or document does not constitute endorsement
thereof by the author, ENSCO Inc., the AMU, the National Aeronautics and Space Administration, or the United
States Government. Any such mention is solely for the purpose of fully informing the reader of the resources used to
conduct the work reported herein.
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