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Applications

Aft Segment Insulation

Forward 

Facing 

Inhibitors

Segment Insulation

Internal Insulation

Nozzle Insulation

Re-entry Thermal Protection Systems

External Insulation
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Phenomena
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In-Depth Modeling

• Mass balance (gas phase)

– Solid to gas conversion (pyrolysis)

– Gas advection (permeation)

– Storage (in the internal pores)

• Momentum balance

– Balances friction with pressure 

gradient (Darcy’s model)

• Energy balance

– Conduction (in solid phase)

– Storage (in solid and gas phases)

– Pyrolysis energy

– Advected energy (heat exchange 

with pyrolysis gases)
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Control-volume for mass balance

Control-volume for energy balance
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In-Depth Modeling

• Pyrolysis

• Mass/Momentum Equation

– Neglected storage (quasi-steady)

– 1-D simplification (with neglected storage)

• Energy Equation
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rate of solid density 

change overall pyrolysis rateoverall versus component 

extent-of-reaction 

Arrhenius model for component 

extent-of-reaction 

generation advection (permeation) storage
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pyrolysis energy advection conductionstorage

Solution of M/M 

equation primarily 

needed for solution 

of energy equation.  

Analyst can choose 

level of fidelity.
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Surface Modeling
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Control-surface for elemental balance Control-surface for energy balance

• Unity Lewis number

• Unequal diffusion coefficients

• Equal diffusion coefficients

• Surface ablation rate
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Thermochemistry 

(“b-prime”) tables 

from ACE code
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ITRAC

• 1-D (planar, cylindrical, and spherical) 

• Variable-grid finite-volume method

• Heat transfer, material pyrolysis, pore pressure, thermochemical ablation

• Various mechanical erosion models

• User-defined dynamic link libraries (DLLs)

• Ignition model
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Hero (Heat Transfer and Erosion Analysis Program)

• Multi-D 

• Variable-grid finite-element (hierarchical) method

• Heat transfer, material pyrolysis, pore pressure, 
thermochemical ablation, radiosity, structural

• Fluid-thermal-structural interaction (FTSI) 
capabilities (FEM Builder)

• Adaptive refinement

• Parallel processing

FTI Nozzle Analysis

Hero Adaptive Refinement 

Run-Time Improvement with Parallel Processing
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Modeling of Complex Ablation Scenario Nozzle Thermal Analysis Results

Radiosity with Solar Effects

Hero (Heat Transfer and Erosion Analysis Program)
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Material Properties for In-depth Models
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rate of solid density 

change overall pyrolysis rateoverall versus component 

extent-of-reaction 

Arrhenius model for component 

extent-of-reaction 

generation advection (permeation) storage
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pyrolysis energy advection conductionstorage

Insulator Properties

•Virgin and char specific heat

•Pyrolysis kinetics parameters

•Virgin and char densities

•Virgin and char conductivity

• Pyrolysis Properties

• Mass/Momentum Equation

– Neglected storage (quasi-steady)

– 1-D simplification (with neglected storage)

• Energy Equation
•Elemental compositions (v & c)

•Heats of formation
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Boundary Conditions

Input for Surface Modeling
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•Transport coefficient

•Incident radiation heat flux

Propellant Properties

•Stanton number ratio

•Elemental composition

Surface Product Properties

•Elemental composition

•Enthalpy of products

Insulator Properties

•Char enthalpy (specific heat) 

and pyrolysis gas enthalpy

•Radiation properties 

(emissivity and absorptivity)

•Enthalpy (recovery and frozen)
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Property Summary

Pyrolysis kinetic parameters

Density

• Virgin and char

Specific heat

• Virgin and char

• Versus temperature

Thermal conductivity

• Virgin and char

• Versus temperature

Elemental compositions

• Virgin and char

• Pyrolysis gas calculated

Heats-of-formation

• Virgin and char

• Pyrolysis gas value calculated

• Used to calculate heat-of-pyrolysis

• Used in surface thermochemistry

Radiation properties

• Emissivity and absorptivity

For pore pressure

• Porosity

• Permeability

• Pyrolysis gas molecular weight

• Pyrolysis gas viscosity
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Structural Modeling

Structural modeling is often required for accurate assessment of structural integrity 

(including phenomena such as pocketing, ply-lifting, wedge-outs, and delamination)

• Phenomena can have significant impact on thermal protection

• Integrally tied to thermal responses

• Accurate modeling of heat transfer, material pyrolysis, pore pressure, thermochemical

ablation, etc. is critical
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Structural – High Temperature Issues

Pocketing involves the expulsion of carbon-cloth phenolic (CCP) material due to a 

combination of stresses from thermal expansion and pore pressure driven stresses

• Can significantly affect thermal protection
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Structural – High Temperature Issues

Ply lifting involves the lifting of a char cap of CCP material. Initial failure is caused 

by thermal expansion/contraction, lifting is caused by pore pressures
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Structural – High Temperature Issues

Ply lifting char caps can slough, causing loss of thermal protection
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Structural Dependent on Thermal

Structural modeling is dependent on thermal modeling, for example:

• Stiffness can be dependent on degree-of-char and presence of moisture

– Charring causes material changes that affect the magnitude of the modulus

– Moisture causes a plasticization of the matrix material

Strain

S
tr

e
s
s
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Structural Dependent on Thermal

Structural modeling is dependent on thermal modeling, for example:

• Structural behavior is also influenced by pressures 

• Pressure magnitudes are highly dependent on structural loading 

– Permeability is affected by load

– Pressure is affected by permeability

dx
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Property Summary

The following is a simple first principles equation that may be used for the structural 

model (complexity is usually added to address nonlinearities)

 Material properties summary (dependent on thermal state)

 Stiffness matrix (includes moduli and Poisson’s ratios) Sijkl

 Pressure stress coupling, hij

 Coefficient of thermal expansion, ij

 Moisture expansion coefficient, ij

 Decomposition coefficient, ij

 Failure criteria

 Conjugate models are required for accurate simulation of thermal and structural behavior

stress 

loading

pore 

pressures

thermal 

expansion

moisture 

swelling

decomposition

cijijijij

m

klijklij vMTPS  h
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On-going Work

Thermal

• 3-D surface ablation in Hero

• General thermal contact in Hero

• Advanced surface thermochemistry code (ACE replacement)

– Alumina impingement

– Chemical kinetics

• Material properties

• Comprehensive validations against historical nozzle data

Flow modeling

Advanced carbon-cloth phenolic CCP modeling

• Moisture

• Structural coupling
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