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Materials

Reactive Additives for Phenylethynyl-Containing Resins
Processability is improved.
Langley Research Center, Hampton, Virginia

Phenylethynyl-containing reactive ad-
ditive (PERA) compounds and mixtures
have been found to be useful for improv-
ing the processability of oligomers, poly-
mers, co-oligomers, and copolymers that

contain phenylethynyl groups. The addi-
tives can be incorporated in different
forms:
• A solution of an amide acid or an

imide of a PERA can be added to a 

solution of phenylethynyl-containing
oligomer, polymer, co-oligomer, or
copolymer; or

• An imide powder of a PERA can be
mixed with a dry powder of a phenyl-

Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings 
Thermal conductivities are reduced while maximum use temperatures are increased. 
John H. Glenn Research Center, Cleveland, Ohio 

Multicomponent, rare-earth-doped,
perovskite-type thermal-barrier coating
materials have been developed in an effort
to obtain lower thermal conductivity,
greater phase stability, and greater high-
temperature capability, relative to those of
the prior thermal-barrier coating material
of choice, which is yttria-partially stabilized
zirconia. As used here, “thermal-barrier
coatings” (TBCs) denotes thin ceramic lay-
ers used to insulate air-cooled metallic
components of heat engines (e.g., gas tur-
bines) from hot gases. These layers are
generally fabricated by plasma spraying or
physical vapor deposition of the TBC ma-
terials onto the metal components. 

A TBC as deposited has some porosity,
which is desirable in that it reduces the
thermal conductivity below the intrinsic
thermal conductivity of the fully dense
form of the material. Undesirably, the
thermal conductivity gradually increases
because the porosity gradually decreases as
a consequence of sintering during high-
temperature service. Because of these and
other considerations such as phase trans-
formations, the maximum allowable serv-
ice temperature for yttria-partially stabi-
lized zirconia TBCs lies in the range of
about 1,200 to 1,300 °C. In contrast, the
present multicomponent, rare-earth-
doped, perovskite-type TBCs can with-
stand higher temperatures. 

A material of this type comprises the fol-
lowing ingredients: 
• The base material is a high-melting-tem-

perature perovskite oxide — a com-
pound having the chemical formula
ABO3, where A is a metal cation having a
valence of +2 and B is a metal cation hav-

ing a valence of +4. Examples of A in-
clude Sr, Ba, Ca, and variable valence
rare-earth and transition metals; exam-
ples of B include Zr and Hf. 

• The base material is doped with a pair
or multiple pairs of highly stable oxides
of general chemical formula M2O3,
where M is a metal cation of valence +3.
The pairing of the oxides is such that
they are related as electron donor and
acceptor, respectively. The paired ox-
ides can be divided into two groups, de-
noted I and II. Group I comprises scan-
dia and ytterbia. The radii of their
trivalent cations are smaller than those
of zirconia and hafnia. The group-I
cations are believed to typically become
incorporated into B sites, where they
are further believed to act as electron
acceptors.  Group II comprises
neodymia, samaria, gadolinia, and lan-
thania. The radii of their trivalent
cations are larger than that of yttria.
The group-II cations are believed to
typically become incorporated into A
sites, where they are further believed to
act as electron donors. The incorpora-
tion of the dopant trivalent cations into
A and B sites enhances the stability of
the base material phase and promotes
the formation of significantly higher
concentrations of immobile extended
defects and clusters of defects, thereby
greatly reducing the intrinsic thermal
conductivity and the rate of sintering.

• Yttria can be included as a phase stabi-
lizer in addition to, or instead of, the
aforementioned dopant oxides. 
In a preferred composition, the total

concentration of yttria and/or the other

phase-stabilizing oxides lies between 4
and 30 mole percent. Ytterbia is favored
over scandia as the group-I oxide be-
cause of the high cost of scandia. Alter-
natively, scandia in a concentration of as
much as 20 percent of that of yttria can
be employed to overdope the group-I
oxide. Other alternative formulations
are also possible. 

Compositions tested to date include
SrZrO3 + yttria (up to 6 mole percent) +
group-I oxide (ytterbia) up to 2 mole
percent + group-II oxide (gadolinia) up
to 2 mole percent. Pre-sintering thermal
conductivities, as determined by a laser
heat-flux test at an initial surface temper-
ature of about 3,000 °F (about 1,650 °C),
have ranged between 0.6 and 0.8 W/m⋅K.
Test data have also indicated that sinter-
ing essentially ceases after 20 hours. The
thermal conductivities in the cases of
compositions that include the paired
doping oxides have been found to range
from about a third to half of the thermal
conductivities of undoped SrZrO3 and of
SrZrO3 doped with yttria only. Excellent
durability has also been demonstrated in
the sintering and thermal-cycling tests at
temperatures up to about 3,000 °F
(about 1,650 °C). 

This work was done by Robert A. Miller of
Glenn Research Center and Dongming Zhu
of the U.S. Army Research Laboratory. Further in-
formation is contained in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed to
NASA Glenn Research Center, Innovative Part-
nerships Office, Attn: Steve Fedor, Mail Stop
4–8, 21000 Brookpark Road, Cleveland, Ohio
44135. Refer to LEW-17432-1.
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ethynyl-containing oligomer, polymer,
co-oligomer, or copolymer.
The effect of a given PERA on the

processability and other properties of the
resin system depends on whether the
PERA is used in the amide acid or an
imide form. With proper formulation,
the PERA reduces the melt viscosity of the
resin and thereby reduces the 
processing pressures needed to form the
adhesive bonds, consolidate filled or un-
filled moldings, or fabricate fiber-rein-
forced composite laminates. During ther-
mal cure, a PERA reacts with itself as well
as with the phenylethynyl-containing host
resin and thereby becomes chemically in-
corporated into the resin system.

The effects of the PERA on mechani-
cal properties, relative to those of the
host resin, depend on the amount of
PERA used. Typically, the incorporation
of the PERA results in (1) increases in
the glass-transition temperature (Tg),
modulus of elasticity, and parameters
that characterize behavior under com-
pression, and (2) greater retention of
the aforementioned mechanical proper-
ties at elevated temperatures without (3)
significant reduction of toughness or
damage tolerance.

Of the formulations tested thus far,
the ones found to yield the best overall
results were those for which the host
resin was the amide acid form of a

phenylethynyl-terminated imide (PETI)
co-oligomer having a molecular weight
of 5,000 g/mole [hence, designated
PETI-5] and a PERA denoted as PERA-1.
PETI-5 was made from 3,3′,4′4′-biphenyl-
tetracarboxylic dianhydride, 3,4′-oxydi-
aniline (3,4′-ODA), 1,3-bis(3-ami-
nophenoxy) benzene (1,3-APB), and
4-phenylethynylphthalic anhydride
(PEPA). PERA-1 was made from 3,5-di-
amino-4′-phenylethynylbenzophenon
and equimolar amounts of phthalic an-
hydride and PEPA. To make PERA-1 in
the imide form, the aforementioned in-
gredients were processed by refluxing in
glacial acetic acid. To make the amide
form of PERA-1, the ingredients were re-
acted in N-methyl-2-pyrrolidinone
(NMP) under nitrogen at a temperature
of 23 °C (see figure).

On the basis of the processability and
other properties, a blend comprising 20
weight percent of PERA-1 and 80 weight
percent PETI-5 was selected for further
evaluation. Relative to neat PETI-5, the
blend exhibited an increase in Tg; im-
proved processability; and comparable
values of shear strength in adhesion to ti-
tanium panels, open-hole compressive
properties, compression properties after
impact, and resistance to microcracking.

This work was done by John W. Connell,
Joseph G. Smith, Jr., and Paul M. Hergenrother
of Langley Research Center, and Monica
L. Rommel of Northrop Grumman Corp.
Further information is contained in a TSP
(see page 1).

This invention has been patented by NASA
(U.S. Patent No. 6,441,099 B1). Inquiries
concerning nonexclusive or exclusive license
for its commercial development should be ad-
dressed to the Patent Counsel, Langley Re-
search Center, at (757) 864-3521. Refer to
LAR-15543.
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PERA-1 Is a Mixture of either amide acids or imides, depending upon which synthesis route is  followed.


