Humidity Steady State Low Voltage Testing of MLCCs (Based on NESC Technical Assessment Report)

Mike Sampson*, Jay Brusse**, Alexander Teverovsky**

*NASA/GSFC, **Dell Perot Systems
alexander.a.teverovsky@nasa.gov

Purpose of NESC* Task

Review of the low voltage reduced Insulation
Resistance (IR) failure phenomenon in MLCCs and
NASA approaches to contend with this risk.

1. Analyze published materials on root cause mechanisms.
2. Investigate suitability of current test methods to assess MLCC lots for susceptibility.
3. Review current NASA parts selection and application guidelines in consideration of benefits vs. disadvantages.
*NESC = NASA Engineering and Safety Center

Team List

Name		
Discipline		Organization/Location Team
Mitch Davis		
NASA Technical Fellow for Avionics		
Mike Sampson	Capacitor Specialist	GSFC
Jay Brusse	Capacitor Specialist	GSFC
Henning Leidecker	Chief Parts Engineer	GSFC/Dell Perot Systems
Norman Helmold	Failure Analyst/Physicist	GSFC
Raymond Wade	Electrical Components	GRC
Tom Duffy	Capacitor Specialist	GSFC/Dell Perot Systems
Alexander Teverovsky	Failure Analyst/Physicist	GSFC/Dell Perot Systems
Jocelyn Siplon	Capacitor Specialist	The Aerospace Corporation
Michael Cozzolino	Capacitor Specialist	Raytheon
Terry Dowdy	Hybrid Specialist	Naval Surface Warfare Center
Alan Devoe	Capacitor Manufacturer Representative	Presidio Components
Joseph Dougherty	Consultant	Pennsylvania State University
Robert Stevenson	Senior Scientist	Greatbatch (Medical)
Michael Azarian	Department of Mechanical Engineering	University of Maryland
Leon Hamiter	Consultant	CTI, Inc.
Gary Ewell	Consultant	Consulting Engineering
Administrative Support		
Tricia Johnson	MTSO Program Analyst	LaRC
Linda Burgess	Planner and Control Analyst	LaRC, ATK
Pamela Sparks	Project Coordinator	LaRC, ATK
Christina Williams	Technical Writer	LaRC, ATK

MLCC Usage

\square Multilayer ceramic capacitors (MLCCs) are among the most commonly used electronic components in electronic systems.
\square MLCC components are used on every electrical assembly with quantities usually in the thousands.
\square Majority of the parts are used in low-voltage (compared to rated voltage, VR) applications. =>
Importance of low-voltage failure (LVF) phenomena for reliability assurance.

History of MLCC Problems in Low Voltage Applications

1978: -Brennan (Sperry) first to document MLCC LVFs.
1981: -NASA-MSFC issues GIDEP describing LVFs.
1980s: -MLCC LVF experiences are at their peak. -NASA contracts Hughes to study MLCC LVF. -Bulk of industry research is conducted.
-NASA risk reduction strategies are developed.
-MIL-C-123A space-level MLCCs features LVF avoidance.
1980s-90s: -Sporadic MLCC LVFs reported.
2000s: -Continued need for MLCC LVF guidelines questioned.
\square Historically, LVFs were attributed to lots with large proportion of manufacturing defects.
\square Currently, LVFs are more likely to be caused by cracking due to soldering and handling.

Description of LVF Phenomena for MLCCs

\square LVF are phenomena which produce insulation resistance (IR) degradation below the device limits at voltage bias well below MLCC ratings.

- Typical IR limits are in $G \Omega$ range.
- LVF can be from $\sim 0.1 \mathrm{k} \Omega$ to $>1 \mathrm{M} \Omega$.
\square IR recovery may occur through application of voltage higher than that resulting in the original failure.
\square Two main categories of LVF:
- Low impedance circuit failures.
o Tend to be catastrophic, PWB damage possible.
- High impedance circuit failures.
o Can be intermittent or persistent.
o May not cause circuit failure unless sensitive to IR degradation.

NASA Guidelines to Reduce Risk of MLCC LVF

Basic approaches involve combination of the following:

- Procure MIL-PRF-123 parts and use as-is;

Otherwise NASA Guidance Suggests: Drives selection to

- Restrict MLCC Selections larger parts; more prone to handling damage
- 100 V ratings or higher
- Minimum dielectric thickness (0.8 mil for VR=50V)
\square Destructive Physical Analysis (DPA) to specialty standard EIA-469
\square Humidity, Steady-State, Low Voltage (HSSLV) Lot Acceptance Test (aka "Low Volt 85/85")

NESC Team Approach

1. Conduct literature review.
2. Survey the industry for recent LVF experiences.
3. Review past and current NASA and industry guidelines for LVF risk reduction.
4. Review current and historical results from screening and lot acceptance testing.

- Discussion of HSSLV is emphasized since this has been one key element of NASA's MLCC LVF risk reduction strategy since the 1980s.

5. Consider future NASA evaluation of alternative test methods.

Mechanisms of IR Degradation

Charge instability in the dielectric (migration of oxygen vacancies).

- Graceful increase in DCL.
- Activated by T and V.
- Can be revealed during HALT.
- Can be mitigated by derating.

1 uF 50 V at 180 C 200 V

Formation of conductive path via mechanical defects .

- Erratic behavior.
- Activated by moisture.
- Effect of T and V is not clear.
- No effective screens to reveal.
- Derating does not help.

Fractured 1uF 50V capacitors at 5V RT

Mechanical Defects in MLCCs

Mechanical Defects in MLCCs, Cont.

\square Cracks are difficult to observe even using a high power microscope. Some failures might be not identified properly.
\square Vicinal illumination is an effective method for revealing cracks.
S. Hull/NASA, "Nondestructive Detection of Cracks in Ceramics Using Vicinal Illumination", ASM International, Nov. 1999, ISBN 0-87170-646-6

Revealing Mechanical Defects in MLCCs

Origin	Defect	Screen IQual	Comment
Manufacturing	-Void -Delamination -Crack	-Electrical: DWV, IR - Acoustic Microscopy -DPA -HSSLV	Effectiveness of these tests needs to be evaluated.
Solderingrelated thermal shock	-Delamination -Crack	-Thermal shock -Resistance to Soldering Heat	Effectiveness of these tests is currently being evaluated by NEPP.
Board handling (flex cracking)	-Delamination -Crack	-Flex crack testing	Mfr. standards; AEC-Q200-005; A need for NASA?

NESC task was focused on the effectiveness of the Humidity Steady State Low Voltage Testing

Is Soldering-Induced Cracking Parts or Workmanship Issue?

They are both:
\square Assuring that capacitors are robust enough and can withstand normal level stresses associated with soldering and handling is a part issue.

This is a manufacturer responsibility and should be achieved by adequate screening and qualification procedures.
\square Assuring that soldering and handling conditions are in compliance with the
 existing guidelines and requirements is a workmanship issue.

This is a user responsibility and should be achieved by developing adequate assembly guidelines and process control.

HSSLV Test Conditions per MIL-PRF-123

Statistical Significance of HSSLV

\square Consider two HSSLV test results:

- Lot A
0 / 12 failures
- Lot B
$\mathrm{m} / 12$ failures
\square Fisher exact test determines if Lot A and B are statistically different.
- Difference in test results is significant if the calculated P-value is less than 0.05
\square Fisher exact test shows that Lot A (0 failures) and Lot B (1 failure) are not statistically different.
\square A "failed" lot can be considered different from the "passed" lot if $m>5$.

Fisher exact test

P-values for comparison of test results for lot A having 0 failures out of 12 samples and lot B having from 1 to 8 failures out of 12 samples.

What sample size is necessary to assure low probability of defects in a lot?

Sample-Based Acceptance Testing

\square Purpose of sample-basis screening/lot acceptance testing.
\square What is the necessary SS to assure $p_{f}<0.1 \%$?
\square Zero Defect/Failure Sampling: SS that must be tested without failure to prove maximum probability of failure $\left(p_{f}\right)$ at a certain level of confidence (c.l.):

$$
n\left(p_{f}\right)=\frac{\ln (1-c . l .)}{\ln \left(1-p_{f}\right)} \approx \frac{-\ln (1-c . l .)}{p_{f}}
$$

If statistics requires 1,000 samples does it make sense to test 10 samples?

MIL vs. New Technology/SCD Parts

Assumed:

o Consistent quality.
o History of testing.
o SS justified by heritage.
o FR can be calculated based on cumulative data.

Mature Technology: Sample
Size $=n\left(p_{f}\right) /($ number of lots)
Good news:
a relatively small SS might be sufficient for mature technologies. Bad news:
new technologies are not mature.
Note: commercial technology can be mature.

Findings (1 of 3)

\square No MLCC LVF was identified in NASA flight systems for at least the past 15 years
\square For the last 10 years there has been a low incidence rate of field failures of high and established reliability MLCCs due to reduced IR in low voltage circuit applications. Only 7 potentially relevant LVF cases were identified during the time period from 1999 to 2009.
\square Most of the literature regarding MLCC LVF is more than 20 years old and this subject seems to have attracted little attention since then.

Findings (2 of 3)

\square The literature identifies several degradation mechanisms which could produce LVF in MLCCs. These include metal migration, ionic conduction paths, and semiconductive phases in the dielectric.
\square The hybrid manufacturers that responded to the NESC survey were unaware of any MLCC LVF problems in their products and most were unfamiliar with the phenomenon.
\square The HSSLV testing on military grade MLCCs has generated zero failures in the last eight years.
\square For MIL grade MLCCs the HSSLV test as currently specified is ineffective to reveal lots with less than 6\% of flawed MLCCs due to inadequate sample size.

Findings (3 of 3)

\square MLCC manufacturers have reported success and recommend using HSSLV testing (with large sample sizes) as an evaluation tool during development of new MLCC materials, processes and designs.
\square No justification was found for continuing NASA's current recommendation to use MLCCs rated at 100 V or greater to mitigate low voltage failure phenomenon.
\square Technological advances in manufacturing processes and controls have produced much more uniform dielectric structure, thickness, and low porosity MLCCs.
\square Some circuit applications can tolerate MLCCs having reduced insulation resistance which may have obscured instances of failure.

Observations

\square Recent failures have been attributed to cracking during installation (especially hand soldering practices and PWB flexure). Larger MLCCs tend to be more prone to thermomechanical damage.

\square Flexible termination may reduce the propensity for MLCC flex cracking. However, susceptibility to LVF may be enhanced by end termination structures which could provide a preferred diffusion for moisture.
\square Reduced IR failures are sometimes caused by external conductive paths (e.g., metal dendrite formation) resulting from surface contamination.

Recommendations

\square NASA guidelines should be amended to remove requirements to perform HSSLV test as an add-on lot acceptance test for MIL QPL MLCCs.
\square Add a NASA guideline to perform a HSSLV test with increased sample size and optimized test conditions on new technology, commercial/industrial grade MLCCs for qualification and lot acceptance.
\square NASA guidelines should be amended to remove restrictions on MLCCs rated at less than 100 V when used in low voltage applications.
\square During failure analysis of MLCCs NASA parts analysis laboratories should include low-voltage characterization of the failure in order to reduce the likelihood of destroying evidence of the failure site.

