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Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or 
angular momentum that the wheels can provide. For an n-wheel configuration, the torque or 
momentum envelope can be obtained by projecting the n-dimensional hypercube, 
representing the domain boundary of individual wheel torques or momenta, into three
dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the 
projected hypercube are discussed, and algorithms aloe proposed for determining this 
maximal torque or momentum envelope for general wheel configurations. Practical 
strategies for distributing a prescribed torque or momentum among the n wheels are 
presented, with special emphasis on configurations offour, five, and six wheels. 

I. Introduction 

Many spacecraft employ more than three wheels for attitude control, both for redundancy and for the additional 
maneuvering or momentum storage capability of the extra wheels. The Swift Gamma Ray Burst Explorer, for 
example, employs six reaction wheels for rapid slewing to enable observation of the initial stages of ephemeral 
gamma ray burst events [1], and the James Webb Space Telescope (JWST) will employ a similar reaction wheel 
configuration [2]. In order to employ these wheels effectively, it is necessary to characterize the maximum torque 
and momentum available in any direction from the reaction wheels. This knowledge is also important in designing 
momentum unloading strategies. For brevity of exposition, we will emphasize angular momentum in the following. 
Fortunately, the mathematical analysis required to identifY the maximum torque capability is identical to that 
required for angular momentum. This analysis is the subject of this paper. Previous work on the optimal use of more 
than three reaction wheels has largely been limited to the four-wheel case [3, 4]. This paper is an extension of an 
earlier conference presentation [5]. 
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In the most common case of nominally identical wheels with equal capabilities for both rotation directions, the 
available angular momenta fill the interior of an n-dimensional hypercube centered on the origin in reaction wheel 
angular momentum space. If the angular momentum capabilities vary from wheel to wheel, the angular momenta fill 
the interior of an n-dimensional rectangular parallelepiped in this space, where each side has length equal to twice 
the magnitude of the maximum angular momentum that a given wheel can provide. We will refer to this figure as a 
hypercube for brevity, at the expense of precision, since the case of equal wheel capabilities is the most common in 
practice. 

The available angular momenta in three-dimensional space fill a polyhedron given by the mapping of this 

hypercube by the 3xn reaction wheel torque distribution matrix, whose columns are the unit vectors parallel to the 
reaction wheel axes in three-dimensional space. We will only consider "non-defective" reaction wheel 
configurations, by which we mean that no three of the reaction wheel spin axis directions are coplanar. As shown 
below, this polyhedron is the convex hull of the mapping of the vertices of the n-dimensional hypercube, which are 

the points at which all n wheels are saturated in the positive or negative direction. The exterior vertices of the three
dimensional envelope are connected by edges that are the boundaries of the two-dimensional facets that form the 
envelope. 

We have developed algorithms for defining the envelope and for finding the maximum angular momentum in a 
given direction. These algorithms are also adapted to determine a distribution of an arbitrary angular momentum 
among the wheels that minimizes the maximum of the wheel momentum magnitudes. In this minimax distribution 
n-2 wheels have the same maximum angular momentum magnitude, which means that the momenta lie on a scaled 
copy of the enveloping polyhedron whose size is determined by the required maximum wheel angular momentum 
magnitude rather than by the maximum wheel capability. The distribution algorithm incorporates a simple inner 
product test to determine which facet of the envelope gives the minimax magnitUde, and hence which n-2 wheels 

have the maximum magnitude. It is then straightforward to find the momenta of all the wheels necessary to produce 
the desired net angular momentum. We consider the specific examples of configurations of three, four, five, and six 
reaction wheels. 

II. Geometry of the Envelope 

The angular momenta of an n-wheel system can be represented by an n-dimensional vector 

T 
Hwheels =[HI H2 '" Hnl (I) 

These angular momenta fill the interior of an n-dimensional hypercube, where the length of the side along the ith 

axis is two times the maximum angular momentum magnitude Hmax I of the wheel along that axis. This can be the 

absolute maximum that the wheel can provide, or it can be some desired limiting momentum. The vertices of the 
hypercube are points where all wheels are saturated, i.e., they supply either their positive or negative maximum 
angular momenta. Each edge has all but one wheel saturated and is parallel to the axis of the unsaturated wheel. The 
facets of the hypercube have all but two wheels saturated. 

Denoting the wheel spin axis unit vectors by {WI w2 ... wn }, the angular momentum vector In three

dimensional space is 

H WHwheels (2) 

where 
W =[w

l 
w

7 
••• W ] _ n (3) 

is the angular momentum distribution matrix. The available angular momenta in three-dimensional space fill a 
polyhedron specified by the mapping of the n-dimensional hypercube by Eq. (2). The vertices, edges, and facets of 
the polyhedron in three-dimensional space are mappings of the vertices, edges, and facets of the hypercube. 
However, this mapping is not 1: 1, since some of the vertices, edges, and facets of the hypercube will map to the 
interior of the polyhedron in three-dimensional space. Thus the vertices of the available polyhedron in three
dimensional space are points where all wheels are saturated. The edges of the polyhedron have all but one wheel 



saturated, and an edge with wheel i unsaturated is parallel to that wheel's spin axis Wi and has length 2H . The 
maxI 

facets have all but two wheels saturated, and a facet with wheels i and} unsaturated is a parallelogram with sides 
parallel to Wi and W j and with normal vector in the direction of the cross product Wi x W j' 

We can identify the bounding planes of the polyhedron, and thus determine the envelope, by considering all 

pairs i,} of wheels in turn. There are n(n-l )/2 such pairs for an n-wheel configuration. The i,} pair defines a set of 

facets of the hypercube in the n-dimensional reaction wheel command space. Each facet corresponds to a 

saturated command for the n-2 wheels other than wheels i and}, and with the angular momentum commands for 

wheels i and} varying over their full range over the facet. Under the transformation into three-dimensional space 

specified by Eq. (2), these facets map onto 2n
-

2 parallel planes with normal vector 

nlJ =(w, x w)//w, x wJ (4) 

On each of these planes, the wheel angular momentum in the direction of the normal to the plane is 

n 

H· nu = 2: Hk(wk . nil) = 2: 0kHmaxk(wk ' n,), 
k~l . k"',j . 

(5) 

where Ok ±l specifies the direction of saturation of the angular momentum on wheel k. Wheels i and} can clearly 

be omitted from the sum, since they don't contribute to the angular momentum perpendicular to the plane. This is 

indicated algebraically by the vanishing of the triple product wk' (Wi X w) for k = i or} . This triple product does 

not vanish for any other k, since we have assumed a "non-defective" reaction wheel configuration, for which no 

three of the reaction wheel spin axis directions are coplanar. 

The planes with the maximum and minimum angular momentum in the direction of the normal are the planes 

for which 

(6a) 

or 

(6b) 

for all k other than i and j. It is clear that these two planes and only these of the 2n
-

2 parallel planes for the i,} pair 

form part of the angular momentum envelope. On each of these bounding facets HI and ~ vary over the range 

between ±Hmaxi and ±Hmaxj, respectively. Saturation of HI and ~ give the four corners of a parallelogram, so we can 

identify eight of the vertices of the envelope for each i,} pair, corresponding to the two signs each for saturated HI 
and~, and the overall sign of the other saturated wheel angular momenta given by Eq. (6a) or (6b). 

Carrying out the above procedure over all pairs i,} will produce a total of 4n(n-l) vertices. These aren't all 

distinct, however, for each vertex will be identified once for each bounding plane of the envelope that intersects 

there. This is useful information about the "structure" of the envelope, where "structure" denotes the number of 

vertices of the envelope, and the number of planes and edges that intersect at each vertex, as well as the specific 

information about which wheels are saturated in which direction at each vertex. It is interesting that this structure 

depends only on the unit vectors through their triple products Wk' (W i X w), and not on the maximum angular 

momentum capabilities of the wheels. If this angular momentum capability is changed, the shape of the envelope 

will change, but not the structure as defined here. It is obvious that the envelope has an inversion symmetry; for each 

point on the envelope with angular momentum H there is a corresponding point with angular momentum -H 
obtained by reversing all the wheel momenta. 

We will assume for the remainder of the paper that all the Hmaxi are equal, so we can omit the subscript i on 

Hmax. We also avoid the use ofEq. (6b) by distinguishing between the ij facet and the}; facet and always using Eq. 

(6a). Then on the ij facet of the polyhedron the wheel momentum is 

(7) 



where 

L wksign(wk · fiij)' 
k""',j 

The wheel momentum in the direction of the normal to the facet is 

where 

H· fi 
ij 

H (v.·fi)=H d. 
max iJ iJ max if' 

v ·fi 
lJ iJ 

(8) 

(9) 

(10) 

If the vector H fi ends at a point on the bounding polyhedron, then H. is the minimum angular momentum 
iJ if ij 

capability on that facet. This is not guaranteed to be the case, however, as we will show at the end of Section III.B of 

this paper. It is always true, though, that the minimum value of H. over all the facets is the minimum angular 
if 

momentum capability of the reaction wheel configuration. 

III. Optimizing the Angular Momentum Commands 

A. Optimality Criterion 

Optimal use of the angular momentum capability of a wheel configuration requires that equal demands be made 

on all wheels. In the case of wheels with identical capacities, this is accomplished by minimizing the maximum 
value, or 40 norm, of the set of individual wheel angular momenta that will produce the desired net angular 

momentum. This minimax value Ho, which must be determined, determines the angular momentum envelope, as in 

the previous section, and the required angular momentum commands; it clearly cannot exceed the wheel capability 

of any wheel. The generalization to wheel assemblies with varying capabilities is straightforward, but we will not 

consider this uncommon case. 

B. Numerical Algorithm For Finding The 40 Momentum Distribution 

Finding the Lx momentum distribution requires identifYing the facet of the wheel envelope that contains a point 

along the desired angular momentum axis. Assuming that we have found this to be facet ij, we write Eq. (7) as 

H (11 ) 

where Hmax' the maximum allowed momentum, has been replaced by Ho' the maximum momentum for this 

particular value of H. Equation (11) can be solved to give the wheel momenta as 

H, = [v iJ ·(w, x w)rl[(w, x viJ)·H] (12a) 

H [v . (w x W .) r 1 
[( V X W ). H] 

j lJ 'j if' 

where 

Note that the vectors v
J
' and w

J
! are not unit vectors, and that vji= viJ and wji 

angular momenta for k;;r. i,j are 

(l2b) 

(l2c) 

(13) 

w ij • The individual wheel 

(14) 



The equations relating Hwheels to H are linear, so the mapping for facet ij can equivalently be written in matrix 

form as 

Hwheels w,; H . (15) 

Each matrix W,; is a right inverse of W, meaning that their product is the 3x3 identity matrix; WWi; 13x3 ' These 

matrices can be pre-computed, and inspection of Eqs. (12)-(14) reveals that W; Wj: ' so it is only necessary to 

compute and store one matrix for each pair of parallel facets in this formulation. 

If spacecraft computer memory limitations preclude storing the Wi; matrices, computations equivalent to Eqs. 

(12)-(14) must be performed onboard. We can avoid cross-product computations by using the identity 

Iw, x wJ v If = [\V,' v" (w,' w)(w, . vlj)]w, + [wJ . Vlj (W,' w)(w, . VIj)]W, + [(w, x w). Vlj](W' x w) (16) 

to rewrite Eqs. (12a) and (12b) as 

H, = Iw, X wJ2 [w,·H -(w,' w)(w, ·H)]- gljHO (l7a) 

H
J 

IWi x wJ2 [w,.H -(w,' W)(Wi ·H)]+ gjiHO' (17b) 

\vhere 

g Iw xw 1-2 [w .. v-(w.w )(w ·v)] Iw xw 1-1u .. (v xw). (18) lj I) Ilj "Jlj ',lj If ) 

Storing the vectors W If and the scalars Iw, x W, 1-2 
and glj for all the facets onboard along with the wheel axis unit 

vectors reduces the wheel angular momentum computations to only dot products, multiplications, and additions. 

The ij facet is a parallelogram with sides parallel to Wi and W j • This is a subset of an infinite plane, defined by 

the conditions that IHil::; Ho and IHj I::; Ho . The point on this extended plane closest to the origin is the point 

where an angular momentum normal to the plane would lie. We want to find out whether this point lies on the facet, 

which we noted below Eq. (10) to not always be the case. Equations (l7a) and (l7b) show that Hi -gljHO and 

H
J 

gj,HO if H is normal to the plane. Thus the normal point lies on the facet if and only if Igul::; 1 and Iglll::; 1 . 

C. Finding the Correct Facet 

If the computations of Eq. (12) yield a solution with either HI or HI having magnitude greater than Ho' it 

means that the ij facet is not the facet that gives the minimax momentum distribution. We now demonstrate a simple 
dot product test for finding the correct facet before performing these computations. Suppose the momentum vector 

H points to facet f,,, as shown in Figure 1. The normal vector ulJ to the facet f,j and the momentum vector H, and 

thus the triangle OAG, lie in the plane of the figure. Consider any other facetfil whose normal is less than 90° from 
H. The normal vector U

kl 
to this facet is not in the plane of the figure in general, and thus only the edge OF of the 

triangle OFE is guaranteed to be in the plane of the figure. The lengths iOAI and lOBI are given by 

1
0AI=H =H d IJ max U 

1
0BI=u ·H 

IJ ' 

(l9a) 

(l9b) 

using Eq. (9) for Hlj' the distance offacetf,} from the origin. The convexity of the momentum polyhedron means that 
10Fl2: 10GI and therefore 

·H uk,'H OD OC OC =--= = :s: 
Hmax Hkl 10EI 10F! /OGI 

OB = _ll_1f _. H_ = 
10AI H" 

(20) 



Equation (13) has been used for the outer terms in this inequality, which show that the correct facet is the one with 

the maximum value of wij . H. The equality of W,; and W)~ means that we only have to identify the correct pair 

of parallel facets, and the relation w)l W If tells us that this is equivalent to finding the maximum value of 

IWI/.HI· 
D. Lz Alternative 

For comparative purposes, we consider the L2 alternative to the Lx analysis emphasized in this paper. The L2 

norm minimizes the sum of the squares of the wheel momenta, rather than the maximum wheel momentum. It is 
well known that the wheel momentum distribution minimizing the L2 norm is given by [6] 

Hwheels W+ H , (21) 

where W+ is the Moore-Penrose pseudo inverse of W, which is given in this case by 

(22) 

Equation (21) will almost always result in the momentum of at of least one wheel having a greater magnitude than 

would result from Eq. (15). 

IV. Specific Cases 

We will consider four specific cases. The first three are symmetric configurations of three, four, and six wheels, 
respectively, with the wheel spin axes all at an angle 1] from the yz plane, and uniformly distributed in azimuth about 
the x axis. The fourth case we will consider is the asymmetrical five-wheel case resulting from deletion of one wheel 
from the six-wheel configuration. The momentum envelopes for these four configurations are shown for comparison 
in Figures 2-5. The unit of length in these figures is the maximum angular momentum capability of a single wheel. 
The torque envelope, scaled to the maximum torque capability of a single wheel, is identical. Since the figures 
represent both envelopes, they are labeled Envelope, rather than Torque Envelope or Momentum Envelope. They all 
have the same elevation angle 1] = 35.26° , which was chosen because it results in the largest minimum dimension of 
each of the envelopes, i.e. closest to spherical shape, as we will show algebraically below. For purpose of 
comparison, the four figures are all drawn to the same scale, viewed from the same vantage point, and have the same 
illumination sources. In a practical case for a specific mission, the choice of the angle IJ is based on some 
compromise among convenience of fabrication, expected momentum accumulation, slewing requirements, and 
spacecraft inertia properties. 

A. 3-Wheel Configuration 

First consider the easy case of three wheels, with 

s s s 

W= 0 e e 
2 2 

(23) 

e -Ie -Ie 
2 2 

where S!E sin 1] and e!E cos 1]. In this case, there is no distinction between the Lx and L2 norms. The wheel 

momenta are given uniquely by the relation 

H W-IH, 
wheels (24) 

which of necessity minimizes both norms. The structure of the envelope is that of a cube, with three planes meeting 
at each vertex. Thus each vertex will be identified three times by the procedure described above, and the number of 
distinct vertices is 4'3'(3-1)/3 8, the correct number of vertices ofa cube. 



The maximum storage capacity on the 12 facet is found by computing 

c 
(25) 

2 

and 

(26) 

The storage on all the other facets is the same in this simple case. The storage as a function of 1] is maximized for 

(27) 

which gives d12 = 1. For this value of I}, the axes are all perpendicular, so the momentum or torque envelope has the 

form of a tilted cube, as illustrated in Figure 2. It is not surprising that the minimum storage capacity for orthogonal 
wheel axes is the capacity of one wheel. It would be more common practice to orient three wheel axes along the 
spacecraft axes, in which case the wheel distribution matrix W would be the 3x3 identity matrix and the cube edges 
would be parallel to the x, y, and z axes. The magnitude of the minimum momentum or torque capability does not 
depend on the orientation of the cube. 

B. 4-Wheel Configuration 

We next consider the often-employed case of four reaction wheels oriented in a tetrahedral configuration around 

the x axis. The angular momentum distribution matrix is 

s s s 

~;l· W= 0 c 0 (28) 

c 0 -c 

This four-wheel configuration has an envelope with 14 vertices. Six of the vertices are defined by the intersection of 
four facets each and 8 by three facets each. The torque or momentum envelope for this configuration, again 
assuming identical wheels, is shown in Figure 3. This envelope has a fourfold rotational symmetry about the x axis, 
which is the vertical axis in the figure. 

We now want to determine the storage capacity of the four-wheel configuration. In this case, there are only two 
different types offacet. Consider first the 12 facet. 

so 

s 

s 

c 

dj2 4cs/~1+i. 
The coefficients d'j for facets 23, 34, 41, 21, 32, 43, and 14 are the same. 

Now consider the 13 facet. 

Wj XW3 =2Csl ~ 
l 0 

so 

(29) 

(30) 

(31 ) 

(32) 



The coefficients dlj for facets 24, 31, and 42 are the same. The storage as a function of 17 is maximized at the angle 

that gives dl2 = dl3 ' which is 7] 35.26° , the same value that maximizes storage in the three-wheel case. For this 

value of 1], the ratio of the minimum momentum storage to the capacity of a single wheel is 

dJ2 dl3 Ji!3 1.633 . 

The g" coefficients defined by Eq. (18) are 

gl2 =g23 =g34 =g41=-g2J =-g32 =-g43 =-gI4 =(1-3i)/(1+s2) 

g14 = g25 = g36 = g41 =g52 = g63 = 0 . 

(33a) 

(33b) 

None of the g" coefficients in this four-wheel configuration has magnitude greater than unity for any wheel spin 

axis elevation angle, so every the facet contains its normal point. 

C. 6-Wheel Configuration 

The next case we consider has the wheels oriented with hexagonal symmetry around the x axis. The angular 
momentum distribution matrix is 

s s s s s s 

w= 0 fie Ji e 0 _fie _Ji e (34) 
2 2 2 2 

e Ie Ie -e -Ie Ie 
2 2 2 2 

This six-wheel configuration has an envelope with 32 vertices. Two of the vertices are defined by the intersection of 
six facets each, 18 by four facets each, and 12 by three facets each. Figure 4 illustrates the torque or momentum 
envelope for six wheels with identical capabilities in this configuration. This envelope has a sixfold rotational 
symmetry about the x axis. This is the reaction wheel configuration on the Swift or JWST spacecraft, except that the 
symmetry axis of the JWST wheel configuration is the z axis rather than the x axis. 

We now want to look at the special six-wheel instance of the general vector relations derived above. As we have 
seen, there are only three different types of facet. Consider first the 12 facet. 

e 
(35) 

2 

so 

(36) 

The coefficients dlJ for facets 23, 34, 45, 56, 61, 21, 32, 43, 54, 65, and 16 are the same. 

Now consider the 13 facet. 

(37) 

so 

dJ3 8esl ~l + 3s2 . (38) 

The coefficients dij for facets 24, 35,46,51, 62, 31,42, 53, 64, 15, and 26 are the same. 



We finally consider the 14 facet. 

(39) 

so 

d14 2-13c. (40) 

The coefficients dlj for facets 25, 36, 41, 52, and 63 are the same. 

The minimum storage can be maximized by choosing T) to maximize d l3 . This maximum is at T) 35.26° in 

this case, as in the three and four-wheel cases, which gives d12 6/.f5 2.683, dI3 8/3 = 2.667, and 

d14 = 212 = 2.828 . The JWST angle T) = 30° gives dI2 2.4962, d13 2.6186, and dI4 3, providing about 

7% less capacity in the worst direction than is provided by T) = 35.26°. 

The glj coefficients defined by Eq. (18) are 

gI2 =g23 =g34 =g45 =gs6 =g61=-g21 =-g32 =-g43 =-g54 =-g65 =-g16 =(3-11i)/(3+i) 

g13 =g24 =g35 =g46 =gSI =g62 =-gI3 =-g42 =-g53 =-g64 =-gI5 =-g26 =(3-7s
2
)/(l+3i) 

g14 = g25 = g36 = g41 =g52 = g63 = 0 . 

(41a) 

(41 b) 

(41c) 

Because all the glj coefficients of Eq. (41c) have magnitude less than unity, the six facets described by that 

equation all contain their normal points for any wheel elevation angle. The twelve facets described by Eq. (41 a) 

contain their normal points only if i s 3/5. The twelve facets described by Eq. (41 b) contain their normal points 

only if S2 <: 1/5. In the range 1/5 s S2 s 3/5 , or 26.565° s 11 s 50.768° , all the facets contain their normal points and 

all the vectors Hftlj end on the bounding polyhedron. 

D. 5-Wheel Configuration 

We will not consider a symmetric configuration of five wheels, but rather the asymmetric configuration 
resulting from the failure of one wheel from the symmetric six-wheel configuration. Figure 5 shows the torque or 
momentum envelope for the case where the angular momentum distribution matrix is obtained by deleting one 
column from the matrix ofEq. (34). 

There are six different types of facets in the failed wheel cases. We will only consider the case that wheel 6 has 
failed; the other cases can be found easily by permutation of indices. In this case 

d12 = d21 = d45 = d54 = 5.[3 cs/ ~3 + s2 (42a) 

d
13 

= d31 = d35 = d53 = 6cs/~1+3s2 

d14 = d41 = d25 = d52 = 3-13 c/2 
d23 = d32 = d34 = d43 = 4.[3 cs/ ~3+s2 

d15 = d51 =7cs/~I+3s2 

d24 = d42 = 5csl ~l + 3s
2 

(42b) 

(42c) 

(42d) 

(42e) 

(42f) 

For the wheel inclination angle that gives the maximum momentum storage in the worst direction, T) 35.26° , the 

smallest of these is d24 = d42 ' and it has just 5/8 of the smallest value for the full six-wheel configuration. 



The gu coefficients defined by Eq. (I 8) satisfy the equations 

g21 =-g45 =2-g12 =2+g54 =lOi/(3+i) 

g 32 = - g34 = 1 - g23 == 1 + g43 == 8 i /(3 + s2 ) 

g13 = -g53 = 1 g31 = 1 + g35 == 3c
2/(1 + 3i) 

2 / 1 g24 =-g42 =2(1-2s ) (1+3s~) 

g51 =-g15 =2(1-4s2)/(l+3i) 

g25 =-g41 =1+g52 =1-g14 =1/4. 

(43a) 

(43b) 

(43c) 

(43d) 

(43e) 

(43t) 

There is much less symmetry among these coefficients in the failed wheel case. Examination ofEq. (43a) shows that 
in this configuration, all of the vectors HU"IJ can end on the bounding polyhedron only if the spin axis elevation 

angle has the valuelJ = 35.26° , and the other equations show that this condition is sufficient. 

V. Avoiding Equal Wheel Speeds 

It is often undesirable to have multiple wheels running at the same speed, so in the case of n> 3 wheels we can 
use vectors in the (n-3)-dimensional null space of W to separate the wheels speeds. Angular momentum commands 
in the null space can also be used to drive a wheel's speed rapidly through zero or past the frequency of a flexible 
mode of the spacecraft structure without perturbing the pointing of the spacecraft. 

The null space is one-dimensional in four-wheel case, so all null vectors are multiples of 

(44) 

Even though there is only one null vector, the Loc algorithm assigns momenta on every facet with signs that enable 

this null vector to separate any equal wheel speeds. 

Several convenient null vectors in the six-wheel case are: 

U14 1[0 
2 

1-1 0 I-If' 
U25 

1[-1 
2 

0 1-1 

"36 1[1-1 
2 

0 1-1 

" = 1[0 I 6 
1-3 4 -3 

U2 
1[1 
6 

0 

" =1[4-3 4 6 

1-3 4 

o 

0 If 
of 

If 

3f' 

"5 1[-3 4 3 1 0 If' 
6 

(45a) 

(45b) 

(45c) 

(45d) 

(45e) 

(45t) 

(45g) 

(45h) 

(45i) 

(45j) 

The indices indicate the locations of zeros in the vectors. The normalization factors are chosen to give unit 
vectors, but they're really irrelevant because there's no requirement for the null space vectors to be normalized. Note 

that "14 + "25 + "36 0 and that "0 is orthogonal to "14' U25 , and "36' 



In the six-wheel case, Uo and any two of U14 ' U25 ' or U36 constitute a basis for the three-dimensional null 

space. The failed wheel cases are equally simple. In the case of a failed wheel 6, for example, u
6 

and u
36 

constitute 

an orthogonal basis for the two-dimensional null space. The other failed wheel cases are similar. 

An alternative method of avoiding wheels running at the same speed is to distribute the momenta according to a 
blend ofthe Lef) and L2 distribution laws, 

Hwheels (1 k)W' H..L kW+ H ij! , (46) 

where k is a scalar constant between 0 and l. Choosing the smallest value of k that gives an acceptable separation of 
wheel speeds maximizes the momentum storage capacity. This alternative is really a special case of using vectors in 

the null space to separate the wheel speeds, because all the columns of ~; -W+ lie in the null space. 

VI. Slews 

A slew can be executed under reaction wheel control by varying the total reaction wheel momentum vector in 

three-dimensional space according to some slew law specifying a torque ". The Lef) distribution of this torque 

among the reaction wheels is given in analogy with Eq. (15) by 

W*" 
If ' 

(47) 

where the ij facet is the one with the maximum value of w Ij . ". Note that this torque will not necessarily keep the 

reaction wheels in a state that minimizes the Loc norm of their momenta, because the facet on which w lj ." is 

maximized is not the same as the facet on which w lj . H is maximized, in general. This can be dealt with by setting 

up reaction wheel control loops to feedforward the Lw torque and then to use tachometer feedback to asymptotically 
drive the wheels to the Len momentum distribution. These loops can be incorporated into a wheel drag compensation 
loop as illustrated schematically in Figure 6. 

Another option is to maintain the Loo momentum distribution by commanding the wheel torques to be the 

derivatives of the momenta computed by Eq. (15). This protects against momentum saturation of the wheels and is 

easier to implement, but it gives discontinuous wheel torque commands when the momentum moves from one facet 

of the polyhedron to another, and it will generally result in larger wheel torque commands than those computed by 

Eq. (47). Spacecraft requirements differ, and the desire to minimize wheel momentum must be balanced against the 

desire to minimize wheel torques for any given application. Generally speaking, the time required to execute small 

slews tends to be dominated by the torque capability of the reaction wheels, and the time for large slews by the 

momentum capacity of the wheels. 

The L2 distribution law does not have this complication; taking the derivative Eq. (21) gives 

"wheeL, W+" , (48) 

because the pseudo inverse is a constant matrix. Thus applying torques distributed according to an L2 law will 
preserve an L2 momentum distribution. 

VII. Conclusions 

We have presented algorithms for determining the envelope of available torques and angular momenta in three
dimensional space for general configurations of n reaction wheels. These fill a polyhedron given by projection into 
three-dimensional space of an n-dimensional hypercube in reaction wheel space. This polyhedron is the convex hull 
of the projection of the vertices of the hypercube, the points at which all the wheels are saturated in the positive or 
negative direction. We have also presented an algorithm for finding the optimal angular momentum commands to 
produce any desired angular momentum. The optimality criterion is that these commands minimize the maximum 
value, or Lx norm, of the vector of individual wheel angular momenta. The algorithm also determines the maximum 



angular momentum available in any given direction. The exact solution algorithm is computationally feasible for 
onboard processing, especially if the necessary quantities for a specific wheel configuration are precomputed. The 
onboard computations could be further reduced by storing the maps of vector angular momentum or torque to 
individual wheels as a set of n x 3 matrices, one for each pair of opposite facets, at the cost of greater onboard 
computer storage. 
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Figure 1. Finding the Correct Facet 
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Figure 2. Three Orthogonal Wheel Configuration Envelope 
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Figure 3. Four Symmetric Wheel Configuration Envelope 



Figure 4. Six Symmetric Wheel Configuration Envelope 
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Figure 5. Envelope of Six-Wheel Configuration with One Wheel Failed 
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Figure 6. Combined Torque and Momentum Control Loops 






