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Abstract 12 

A new model coupling scheme with remote sensing data assimilation was developed for 13 

estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a 14 

physically based model to estimate ET from a water balance, and an event driven phenology 15 

model (EDPM), where the EDPM is an empirically derived crop specific model capable of 16 

producing seasonal trajectories of canopy attributes. In this experiment, the scheme was 17 

deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The 18 

evaluation was carried out using 2007-2009 land surface forcing data from the North American 19 

Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of 20 

NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy 21 

parameters produced by the phenology model with normalized difference vegetation index 22 



(NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function 23 

(BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in 24 

prognostic mode were met, producing determination coefficient (r2) of 0.8 ±0.15. Model 25 

estimates of NDVI yielded root mean square error (RMSE) of 0.1 ±0.035 for the entire study 26 

area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down 27 

to just below 10% of observed data range. The ET estimates produced by the coupled scheme 28 

were compared with ones from the MODIS land product suite.  The expected r2=0.7 ±0.15 and 29 

RMSE = 11.2 ±4 mm per 8 days were met and even exceeded by the coupling scheme 30 

functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and 31 

VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries 32 

of the study area and attributed to the insufficient EDPM training and to spatially varying 33 

accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and 34 

robustness of the EDPM and VegET coupling scheme, assuring its potential for spatially explicit 35 

applications. 36 

1. Introduction. 37 

There is growing consensus in the climate science community that the ability to precisely 38 

partition energy and matter fluxes on the land surface is key to improving our understanding of 39 

mesoscale atmospheric dynamics, ecosystem, responses to climate change, and interactions with 40 

human activities and institutions  [Pitman, 2003; Ibanez et al., 2010]. Since Manabe [1969], land 41 

surface modules (LSM) have become increasingly complex modules within most general 42 

circulation models (GCMs). The complexities of LSMs have grown substantially as scientists 43 

ask questions about the pace and consequences of climate change that require more precise 44 

answers. In pursuit of these answers, researchers have been coupling global and regional climate 45 



models with a spectrum of modules detailing interactions between the land surface and the 46 

lowest level of the atmospheric boundary layer. Modules range from a set of simplified surface 47 

energy and water balance procedures to more detailed interactive systems like dynamic soil and 48 

vegetation modules, complete with light transfer, photosynthesis, and hydrological schemes. 49 

Computational resources often limit the level of detail in LSMs especially in regional studies that 50 

require finer spatial resolution. Also, there is a trade-off between the number of land surface 51 

characteristics that can be tracked and the greater spatial detail often needed for regional to local 52 

projects [Stensrud, 2007]. 53 

Applications of land surface models in regional studies were often focused on just a few 54 

variables of interest. In many instances, this narrower focus has led to the use of simplified 55 

schemes of land surface processes. Numerous local impact studies are turning to empirical 56 

methods based on relationships of modeled land surface characteristics to net radiation, 57 

precipitation, air temperature and other variables [Nagler et al., 2005; Godfrey et al., 2007; 58 

Senay et al., 2007; Abramowitz et al., 2008; Jang et al., 2009; Gao et al., 2010]. However, being 59 

developed on microclimatological data, empirical models were often unable to predict well when 60 

transferred to a different location, even under similar conditions [Li et al., 2009]. Yet, 61 

deployment of  process-based LSMs to address local questions are often hindered by  62 

computational  expense and a lack of appropriate ground level data to calibrate and validate at 63 

the level of spatial detail required.  Also, several studies have expressed concerns about model 64 

assumptions,  process parameterizations,  and a limited range of parameters available for tuning 65 

[Sabater et al., 2007; Kiniry et al., 2008; Kang et al., 2009; Stancalie et al., 2010], all of which 66 

increase doubts about the likelihood of successful deployment of LSMs in regional to local 67 

studies.  Alternatives solutions are needed to provide robust schemes capable of replacing 68 



complex LSMs in finer spatial resolution studies. This paper presents a recent development in 69 

land surface modeling combining both physics-based and empirical approaches to take 70 

advantage of the strengths of each approach while yielding results on an appropriately fine scale.   71 

Our research focuses on how potential futures for rainfed agricultural production in the Northern 72 

Great Plains may affect regional hydrometeorology. Actual evapotranspiration (ETa) was the key 73 

flux of interest.  We chose to use a simplified simulator of ETa called VegET [Senay 2008]. 74 

Similar to Godfrey et al. [2007], Kang et al. [2009] and Yuan et al. [2010], Senay’s scheme relies 75 

on the Penman-Monteith equation [Monteith, 1964] to calculate reference ET (ET0) and handles 76 

the influences of soil water status  and canopy phenology through the two coefficients:  Ks for 77 

soil water status and Kcp, for canopy phenology. The Penman-Monteith method is a physics-78 

based one source model of evapotranspiration in cereal crops with fully developed canopies, 79 

used extensively by FAO [Allen et al., 1998]. A key innovation of VegET is the modulation of 80 

ETa by a canopy phenology coefficient using a climatology of the normalized difference 81 

vegetation index (NDVI) as observed from spaceborne sensors [Senay, 2008]. 82 

The original implementation of VegET, however, could not serve our purpose because we were 83 

seeking how ETa would change in response to both interannual variability and changes in the 84 

crop area. Since they were derived from averages of past observations, a static retrospective  85 

climatology for Kcp  would not reflect changes in growing conditions [Godfrey et al., 2007; 86 

Wegehenkel, 2009] or in the extent of cultivation  [Kovalskyy and Henebry, 2011b]. Therefore, 87 

we replaced a static phenological parameterization with an interactive vegetation growth module. 88 

The use of fully functional crop growing modules with energy balance models in point based 89 

studies has been common practice [Maruyama and Kuwagata, 2010; Sancalie et al., 2010]. 90 

However, our study case required spatially explicit ETa estimates that would entail additional 91 



parameterization, tuning and running time for the models like ALMANAC [Kiniry et al., 2008], 92 

CERES [Mearns et al., 1999], CROPWAT [Sancalie et al., 2010] or MODWht [Kang et al., 93 

2009]. Moreover, these specific crop models did not have freely available versions capable of 94 

working with raster inputs and producing spatially explicit estimates. Conversely, the vegetation 95 

growth modules in global LSMs were developed to deliver spatially explicit results [Dickinson et 96 

al., 1998; Foley et al., 2000; Bondeau et al., 2007; Campo et al., 2009]. Even the most advanced 97 

modules do not provide crop specific canopy behavior; instead, they were designed to mimic 98 

seasonal patterns of very broad classes of vegetation functional types [Bonan et al., 2003; 99 

Lawrence and Chase, 2007]. 100 

Here we have used the Event Driven Phenology Model (EDPM), which was recently developed  101 

as a phenology model that can simulate seasonal dynamics of canopy properties (e.g., in terms of 102 

a vegetation index) [Kovalskyy and Henebry, 2011a, 2011b]. The model was shown to capture 103 

fine temporal details of canopy behavior [Kovalskyy and Henebry, 2011a, 2011b] which has 104 

been called “crucial” for ET and other surface fluxes [ Dickinson et al. 1998; Foley et al. 2000; 105 

Pitman, 2003; Gorfrey et al. 2007; Prihodko et al. 2008; Rosero et al. 2009; Rötzer et al. 2010; 106 

Zha et al. 2010]. The EDPM uses virtually the same set of forcings as the Penman-Monteith 107 

equation to build seasonal trajectories of canopy properties. Essentially, the model provides a 108 

computationally inexpensive replacement for a dynamic vegetation model with a phenology sub-109 

module. The model also has an option of  a simple,  fast 1D data assimilation scheme for satellite 110 

observations which is a great advantage for spatially explicit simulation studies. The  EDPM has 111 

been coupled with VegET and evaluated against flux tower observations of ETa [Kovalskyy and 112 

Henebry, 2011b], where it performed better or comparable to the results obtained by Nagler et 113 

al. [2005] and Abramowitz et al. [2008].  114 



This paper presents an assessment of the performance of the EDPM on its own and also in 115 

conjunction with VegET within a spatially explicit application. Our task was to select 116 

appropriate sources of scientifically sound data products that would enable pixelwise 117 

comparisons of daily canopy states and ETa estimates. We were looking to assess two aspects of 118 

the coupled model performance.  First and foremost, we focused on temporal and spatial 119 

behavior of differences between our estimates and reference data. Analyzing the results from the 120 

three years (2007-2009) within the study region delimited by croplands of Northern Great Plains, 121 

we tried to capture both inter-annual and intra-annual variability of residuals as well as 122 

correlation between reference data and estimates produced by our model. Second, we looked at 123 

the ability of the EDPM to capture the key dates of the three growing seasons. We contrasted 124 

phenological dates reported to National Agricultural Statistics Service (NASS) by farmers with 125 

the dates produced by the EDPMs phenophase control module. Specifically, the Start of Season 126 

(SoS), End of Season (EoS), and Length of Season (LoS) became the main criteria for the 127 

evaluation. We also tried to incorporate spatial and temporal variability of phenological metrics 128 

into the evaluation process. This assessment helped us to identify the strong points of the EDPM 129 

and to prioritize directions for  model improvement.    130 

2. Methods and materials.  131 

2.1 Study area. 132 

The study area includes Nebraska, Iowa, Minnesota, North and South Dakota entirely and parts 133 

of Illinois and Indiana. Together these states have more than half of the nation’s maize and 134 

soybean crops and comprise the major part of the US corn and soybean belts. There strong 135 

gradients of ET across the region. The northern tier has only 600 mm ET annually; whereas at 136 

the southern end, the annual ET can reach 1000 mm, but only 400 mm at the western extreme. 137 



Maize and soybean are the most prevalent crops across the region. Farmers use different genetic 138 

varieties of these crops to match the growing conditions of their farms [Ransom et al., 2004]. 139 

The green-up of the area starts in early May on the southeast end but for the northwestern part of 140 

the region it can happen as late as mid-June if spring comes late. The length of the growing cycle 141 

also varies greatly; it can last almost five months in the south and barely more than three months 142 

in the north.  143 

 144 

Figure 1. The study area (dark gray) depicted as at least 50% corn/soybean crop cover 145 

during 2007-2009. 146 

2.2 Coupling the VegET and the EDPM in a spatially explicit manner. 147 

The idea motivating the development of VegET was the use the time series of remotely sensed 148 

vegetation indices to drive the canopy factor that modifies ET0 as calculated by the Penman-149 

Monteith model. The original design of VegET [Senay, 2008] used very simple empirical 150 

transformations from the normalized difference vegetation index (NDVI) to phenology driven 151 

coefficients based on thresholds and the observed variability in NDVI climatologies derived 152 

from long-term AVHRR observations. However, Kovalskyy and Henebry [2011b] demonstrated 153 



the use of an interactive event driven phenology model [Kovalskyy and Henebry, 2011a] to 154 

replace the climatologies in the VegET for point-based estimation of daily ETa. The coupling 155 

scheme was shown to account for contemporaneous fluctuations in the canopy component of 156 

evapotranspiration 157 

The experiment described here evaluates the performance of the EDPM and the VegET after the 158 

coupled models were extended for deployment in a spatially explicit manner.  In addition to 159 

simulating the temporal dynamics of maize and soybean over the three year period (2007-2009), 160 

the EDPM was also providing seasonal canopy trajectories for a third vegetation type: grassland. 161 

Using  weather forcing from the North American Land Data Assimilation System (NLDAS), the 162 

EDPM transformed the data in to events (rain, heat stress, frost, insufficient insolation, adequate 163 

insolation, and growing degree-days) and further produced daily values of Tower NDVI 164 

[Huemmrich et al., 1999],  The model simultaneously estimated phenological transition dates in 165 

the three growing seasons for each vegetation type (Fig. 2). The TNDVI trajectories were mixed 166 

linearly based on the proportion of their cover within areal units (0.05 degree pixels) and later 167 

transformed into phenology coefficients as described in Kovalskyy and Henebry [2011b]. The 168 

percentages of cover for each crop and grassland were taken from MODIS based crop maps 169 

products [Chen et al., 2007] and aggregated into standard 0.05 degree (~5km) pixels that form 170 

the  spatial unit of analysis for this investigation. 171 



 172 

 173 

Figure 2. Data processing scheme for the experiment. Rounded boxes are modeling and 174 

data preparation procedures; stacks are image time series (ITS) of data; squared boxes are 175 

maps of results.  176 

Using the workflow shown in Figure 2 the coupled scheme was tested in the prognostic mode 177 

(running the forcing only) and the diagnostic mode (involving data assimilation scheme with 178 

MODIS NDVI observations). The use of data assimilation techniques is becoming increasingly 179 

popular in evapotranspiration studies [Meng et al., 2009; Anderson et al., 2010; Miralles et al., 180 

2010; Godfrey and Stensrud, 2010]. Most of these projects relied on remotely sensed data to 181 

improve their estimates of ET addressing the spatial variability of land surface. While bringing 182 

improvements in performance, these techniques have been criticized as being temporally 183 

constrained and scene dependent [Li et al., 2010]. Our study took  a more general approach to 184 

data assimilation using an unambiguous relationship between Tower NDVI and  MODIS NDVI  185 



established previously [Kovalskyy et al., 2011]. Relying on this relationship Kovalskyy and 186 

Henebry [2011a] presented a one-dimensional Kalman filter (1DKF) data assimilation scheme in 187 

which  the EDPM used MODIS NBAR NDVI to adjust its estimates of canopy states.       188 

2.2.1 Differences from point based deployment of the EDPM. 189 

Several features in the EDPM model were added and modified so that the model could represent 190 

spatial variability of canopy development during growing season. First of all, the model received 191 

the ability to represent pixels with mixed vegetation cover. The Figure 2 shows the linear mixing 192 

procedure  used to derive values of vegetation index in a pixel with partial covers of grassland 193 

and the two crops. Direct linear mixing of NDVI values based on their share of pixel area has 194 

been criticized in the literature due to its impact on outcomes [Settle and Campbell, 1998; Roy, 195 

2000; Busetto et al., 2008]. Since the NDVI is not a linear function of red and near infrared 196 

reflectances, linear mixing should be performed on reflectances first so that “unbiased” NDVI 197 

values can be obtained later. However, a relatively small impact from direct linear mixing 198 

(DLM) of NDVI values may not be entirely prohibitive since the reflectances coming from 199 

MODIS products have their own errors of the estimate [Roy et al., 2005]. If the differences 200 

between the DLM NDVI and the NDVI derived from reflectances can be kept within the margin 201 

of error propagated into the unbiased NDVI, then one can successfully perform linear mixing 202 

directly using NDVI values. The magnitude of differences with true values depends on the 203 

number of endmembers used in linear mixing and varies greatly across space and time. We 204 

evaluated a real (empirical) example to demonstrate how the direct linear mixing procedure 205 

impacts the resulting values of NDVI. 206 

First we took a 1000 by 1000 pixel subset from the MODIS Nadir Bi-directional Reflectance 207 

Distribution Function (BRDF) Adjusted Reflectance (NBAR) MOD43A4 [Schaaf et al., 2002]  208 



version product covering the central part of the study area. We screened for snow and clouds and 209 

based on averages aggregated the 500m reflectance values from MODIS bands 1 and 2 to 210 

produce image time series with 1000 m by 1000 m, 2500 m by 2500 m, 2500 m by 5000 m 211 

(rectangular shape pixel) and 5000 m by 5000 m pixel sizes. For each time series less than 25 212 

km2 in size, we calculated NDVI [1] that was later mixed directly into 5000 m pixels. 213 

Correspondingly, the four sets of results represented 100, 25, 4, and 2 endmember mixing. Out of 214 

5000 m reflectance data we calculated “true” NDVI [1] and expected error [2] propagated from 215 

reflectances: 0.004 for band 1 and 0.015 for band 2 [Roy et al., 2005].     216 
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where ρN and ρR are the reflectance values of near infrared and red bands respectively,  and σ2
N 219 

and σ2
R are the associated variances. In this setup where all resolutions of NDVI data were nested 220 

within 5000 m pixels, we expected to see the difference coming just from linear mixing without 221 

other effects such as re-projection or resampling that may otherwise contribute to the difference 222 

[Roy, 2000]. Figure 3 demonstrates the temporal dynamics of average differences between true 223 

NDVI and the four DLM NDVI sets coming from linear mixing with different number of 224 

endmembers. 225 



 226 

Figure 3. Consequences of linear mixing – an observation based example. Difference NDVI = Mixed 227 

NDVI minus “unbiased” NDVI.  228 

It is seen clearly from the figure above that the impacts (differences) from linear mixing increase 229 

as the number of endmembers grows. The differences become significant when the number of 230 

mixing endmembers reaches 4. In our study we used only 3 endmembers (maize, soybeans and 231 

grassland) to be mixed into 0.05 by 0.05 degree pixel representing the trajectory of Tower NDVI 232 

values. Considering the magnitude of errors from demonstrated direct linear mixing examples it 233 

was safe for us to assume that 3 endmember linear mixing did not make a significant impact on 234 

the seasonal trajectories of TNDVI produced by the EDPM. We also have to point out here that 235 

the minor impacts from linear mixing appeared to be negligible (20 times smaller) compare to 236 

the estimate errors of the EDPM reported in Kovalskyy and Henebry [2011a].  In this context, the 237 

impacts from direct linear mixing could hardly make a difference for comparisons undertaken in 238 

this experiment.   239 



Next, the transformation of mixed TNDVI into phenology driven coefficient Kcp had to be 240 

generalized (unified). In the prior point based studies we found TNDVI and Kcp relationships to 241 

be different for crops and grassland [Kovalskyy and Henebry 2011b]. For the later land cover 242 

type, the linear model carried substantial noise that we tried to compensate with modeling of 243 

residuals through their relationship with vapor pressure deficit. We did not find the same 244 

relationship in residuals for crops assuming the bias in grassland was due to differences in 245 

equipment calibration. Therefore, we used a single linear model with the slope of 1.22 and offset 246 

of 0.01 to transform modeled TNDVI into Kcp in this spatially explicit experiment. This 247 

relationship was derived on observations of TNDVI and Kcp on crops and proved its efficacy in 248 

Kovalskyy and Henebry [2011b]. 249 

Finally, the spatially explicit application of the event driven phenology model required some 250 

amendments in the functioning of the phenological phase control module described in Kovalskyy 251 

and Henebry [2011a]. Trained on specific locations and tested on locations with similar climatic 252 

conditions, the EDPM required a supplementary mechanism to match the variability of the 253 

growing season dates within a much wider range of conditions than in the initial testing studies. 254 

Latitudinal gradients for the emergence of vegetated cover which marks the start of the season 255 

were applied to the two controlling variables: thermal time and elapsed days since January 1.  256 

For the elapsed days we applied a 4 days per degree northward gradient suggested by Hopkins 257 

[1918]. The thermal time triggers for the onset of greening was also modified with the latitude 258 

using slopes and intercepts tuned for three vegetation types following the phenological transfer 259 

functions described in Henebry [2010]. To deal with the southward increase in the duration of 260 

the growing seasons, we adjusted the dynamic triggering for transitions between phenological 261 

phases. The adjustment made the transition probability threshold vary inversely with the latitude. 262 



This helped to postpone transitions between phenological phases for locations to the South of 263 

training sites, while accelerating the transitions to the North. 264 

2.3 Data sources and preparations for the experiment 265 

The experiments conducted within this investigation had to use various data sources to reach 266 

their goals: (1) running the EDPM plus VegET coupling scheme required weather forcing data; 267 

(2) percent crop cover data were necessary for the EDPM to produce seasonal canopy trajectories 268 

of pixels with mixed vegetation cover; (3) NDVI observations were needed to verify the 269 

EDPM’s prognosis of seasonal canopy trajectories and later to produce retrospective outcomes; 270 

(4) observations of actual ET were needed to evaluate the quality of estimates produced by the 271 

EDPM plus VegET coupling scheme; and (5) crop progress reports were crucial for assessment 272 

of the EDPM module responsible for estimating dates of phenological transitions.  273 

The meteorological forcings for the EDPM and the VegET were supplied by the North American 274 

Land Data Assimilation System (NLDAS) in native GRIB1 format (1 hour temporal and 0.125 275 

degree spatial resolutions). The choice of NLDAS [Mitchell et al., 2004] was based in part on the 276 

fact that these forcings were validated on the southern Great Plains adjacent to our study region 277 

[Luo et al., 2003].  The original time series of weather data were aggregated into daily image 278 

time series and resampled into 0.05 degree grid using nearest neighbor procedure to match the 279 

MODIS Climate Modeling Grid (CMG) projection. The last transformation preserved most of 280 

the original data and allowed for the fusion of MODIS NDVI data with the EDPM produced 281 

seasonal canopy trajectories and later calculation of the ETa at 0.05 degree resolution. The list of 282 

forcing variables included: 2 meter air temperature [K]; 2 meter specific humidity [kg/kg]; 283 

surface pressure [Pa]; U wind component [m/s]; V wind component [m/s]; downward shortwave 284 

radiation [W/m2]; downward longwave radiation [W/m2]; total precipitation [kg/m2]. The forcing 285 



dataset and LSM simulations of NASA’s Mosaic model from NLDAS Phase 2 were obtained 286 

from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) at: 287 

http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings. 288 

Land cover data came in the form of MODIS based crop maps for 2007 through 2009. The 0.5 289 

km resolution maps were provided directly by members of the product development team 290 

[Chang et al, 2007]. The procedures for deriving the percent covers of maize and soybeans were 291 

based on decision tree techniques applied on level 2 MODIS reflectance in seven bands covering 292 

visible and infrared portions of the electromagnetic spectrum. Additional metrics capturing the 293 

temporal development of land surface properties relevant to the vegetation were also fused into 294 

the procedure. The 2007 paper reported drawbacks in using the universal sampling approach in 295 

the development of their decision tree model which were related mostly to the differences in 296 

cropping timing and radiometric properties of underlying soils in different areas of CONUS. As 297 

an alternative, they proposed a single state based modeling of percent crop type cover which 298 

significantly improved the performance of the procedure in independent tests.  299 

Here we were able to use the latest versions of crop cover maps derived from state based 300 

decision tree models of Nebraska, Iowa, Minnesota, North and South Dakota, where the most 301 

variability was captured in the least amount of training. Some adjacent areas of other states were 302 

combined in the final areal compositing procedure. Within delineated study area where each 303 

pixel had at least 50% crop cover, the proportion of grassland was assumed to be the remainder 304 

of a pixel cover. This assumption was based on the NLDAS land cover scheme that considered 305 

grassland as the second most abundant land cover within our region [Luo et al., 2003]. We also 306 

masked out all non-grassland or non-cropland land covers from our study area based on the 307 



MODIS land cover product (MCD12C1, IGBP classification type available at 308 

ftp://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.005).    309 

Verifying the estimated canopy states and actual evapotranspiration on a spatially explicit basis 310 

posed some difficulties only because there are so  few observational datasets available for such 311 

analyses. One such comparison was the TNDVI time series generated by the EDPM in 312 

prognostic mode with the MODIS NDVI time series. The reference NDVI image time series 313 

were produced from MODIS NBAR data (MCD43C4 version) available at 314 

ftp://e4ftl01.cr.usgs.gov/MOTA/MCD43C4.005. First, bands 1 and 2 of NBAR data in CMG 315 

projection were extracted and screened for insufficient quality records using QA bits.  Then, the 316 

NDVI [1] was computed out of screened red and near infrared reflectance data and organized 317 

into image time series.   318 

Potentially, daily ETa estimates from the EDPM plus VegET scheme had several sources of 319 

reference data since at the time of our study two ET monitoring products were on their way to 320 

public release [Mu et al., 2007; Anderson et al., 2010]. However, only the MODIS 321 

evapotranspiration product (MOD16) data had become publically accessible [Mu et al., 2009].  322 

Therefore the MOD16 product had become our first choice for reference when assessing the 323 

quality of results from the coupled EDPM+VegET scheme.  This product presents estimates of 8 324 

day sums of actual and reference ET modeled from weather forcings and remotely sensed 325 

properties of the land surface [Mu et al., 2007]. Standard HDF files were obtained from 326 

ftp.ntsg.umt.edu/pub/MODIS/Mirror/MOD16/MOD16A2.105_MERRAGMAO/. The original 327 

actual ET layers of MOD16A2 version of the product with 1 km resolution were spatially 328 

aggregated and then resampled into 0.05 degree grid again to match the MODIS CMG projection 329 

adopted as the basis for this experiment.  330 



The MOD16 product has been closely approaching the in situ measured ETa with each 331 

improvement to its procedures [Mu et al., 2009, 2011], yet it is still a product with varying 332 

degree of spatial and temporal uncertainty. Therefore, we retained an alternative set of ETa 333 

estimates with which to compare our results. We selected the outcomes of NASA’s Mosaic LSM 334 

[Koster and Suarez, 1994, 1996] from NLDAS as an alternative reference point for comparison 335 

based on the validation studies of Mosaic LSM [Koster and Suarez, 2003; Koster et al., 2004]. 336 

To match the formatting of the first reference product (MOD16), the daily ETa estimates from the 337 

coupled EDPM + VegET scheme and from Mosaic LSM were each temporally aggregated into 8 338 

day ETa totals.      339 

The accuracy in estimating phenological dates has always been a subject of point based 340 

validation studies [Menzel et al., 2006; Schwartz et al., 2006; Richardson et al., 2009; Zhang et 341 

al., 2009; White et al., 2009; Dufour and Morin, 2010]. In the search of reference data we 342 

examined  the National Agricultural Statistics Service (NASS) weekly Crop Progress  reports on 343 

the percentages of crops achieving  crop specific phenophases. From this source we could only 344 

obtain information about growing season progress on the state level since the county level 345 

reports were inconsistent. Therefore, we reorganized the pixel based EDPM reports into the daily 346 

state level growing season progression time series to see the parallels between reported and 347 

observed dates. These dates were compared with two available years (2008, 2009) of state level 348 

crop progress reports obtained for the five states (Nebraska, Iowa, Minnesota, North and South 349 

Dakota) from the NASS archives:  350 

http://www.nass.usda.gov/Data_and_Statistics/Quick_Stats_1.0/index.asp  351 

Considering the spatial mismatch, temporal precision differences, and the differences in 352 

biogeophysical meaning between reported events and dates estimated by the EDPM, we have 353 



chosen to rely mostly on the midpoints of distributions in phenological metrics for our 354 

comparison. Therefore in the analysis we used midpoint dates (when 50% of crops went through 355 

start of season [SoS] or end of season [EoS] ) and their inter-quartile range (IRQ) as a measure of 356 

data variability. Based on SoS and EoS dates we also calculated the lengths of seasons (LOS) 357 

together with their inter-quartile ranges. The LoS values from  the NASS reports were calculated 358 

by subtracting the 50% EoS date from 50% EoS date and the IQR 75% EoS date minus 25% EoS 359 

date and 25% EoS date minus 75% EoS date. The IQR in the LoS data generated during our 360 

experiment were collected directly from the EDPM reported pixel phenology dates. 361 

2.4 Road map for analysis. 362 

Resulting test runs of the EDPM and the coupled scheme with VegET produced several sets of 363 

results for the evaluation. First, the image time series of TNDVI estimated by the EDPM in 364 

prognostic mode were compared with MODIS NBAR NDVI data. Despite the discrepancy in 365 

temporal resolution (8 day for MODIS products and daily for our estimates), the comparison 366 

could give a good idea of how close our predictions were to the observations.  In preparation for 367 

such comparison, the EDPM outcomes went through the transformation into MODIS NDVI 368 

using the relationship developed in Kovalskyy and Henebry [2011a] and confirmed in Kovalskyy 369 

et al. [2011]. Avoiding the comparison of data beyond the growing season where the EDPM 370 

cannot produce TNDVI, we allocated only the results and reference data representing the period 371 

from early March (97th day of the year) to late October (305th day of the year). In addition to that, 372 

only the dates matching the beginnings of 8 day compositing periods of MODIS products (not 373 

the averages over compositing period) were selected for comparison.  374 

In diagnostic mode the EDPM used the former reference--MODIS NBAR NDVI data—to 375 

correct its outcomes via the built-in data assimilation scheme [Kovalskyy and Henebry, 2011a]. 376 



Therefore, to assess the model performance in diagnostic mode, we had to rely on error 377 

propagation to infer the accuracy of the assimilation-enhanced EDPM estimates of TNDVI. 378 

Prognostic and diagnostic versions of the EDPM outcomes were used to parameterize VegET to 379 

produce corresponding ETa outcomes.  Aggregated into 8 day totals to match the format of first 380 

reference data, the ETa estimates from both prognostic and diagnostic runs of the scheme were 381 

compared with the temporally matching image time series of actual evapotranspiration from 382 

MOD16 product validated by Mu et al. [2009] and Mosaic LSM validated by Luo et al. [2003]. 383 

Only the time series of ETa from early March to late October were used in the comparisons.  384 

In our assessment we relied generally on the two most common measures of performance: 385 

coefficient of determination (r2) and root mean square error (RMSE). The first measure showed 386 

the ability of produced estimates to follow the observed developments of the modeled variable. 387 

RMSE showed the overall level of departure of modeled TNDVI and ETa from what we assumed 388 

to be the reality (reference datasets). Based on the results received in Kovalskyy and Henebry 389 

[2011a] and Kovalskyy and Henebry [2011b], the expected performance levels for the canopy 390 

state estimates (viz., NDVI) simulated by the EDPM were r2=0.8 ±0.1 and RMSE = 0.1 ±0.025. 391 

For ETa, the expected performance levels  were r2=0.7 ±0.15 and RMSE = 1.4 ±0.5 mm per day, 392 

but transformed into 8 day values by simple multiplication yields RMSE = 11.2 ±4 mm per 8 393 

days. Additionally, the results were examined for the presence of biases in the residuals. 394 

Analyzing differences with reference data, we aimed to assess both temporal and spatial aspects 395 

of their distributions to receive clear contrasts between sets of our modeling results and reference 396 

data. 397 

In its collection, the NASS archive offered emergence and maturity dates for maize as well as 398 

emergence and leaf drop dates for soybeans. We assumed these phenological turn points to be 399 



closely related to the SoS and EoS dates produced by the EDPM. Comparing phenological data 400 

we plotted our estimates against references expecting to see connections between plant 401 

physiological events and their manifestation in the temporal dynamics of optical properties of the 402 

vegetated surface. 403 

3. Results. 404 

3.1 Contrasting the EDPM derived NDVI against MODIS product.  405 

The maps representing performance measures for each year were produced to show how the 406 

ability of the EDPM to represent the canopy conditions varies in space. We also included the 407 

maps of average seasonal propagated errors into Figure 4 from results received after the data 408 

assimilation (retrospective mode) to contrast those with RMSE obtained during uncorrected 409 

(prognostic) estimation. 410 
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Figure 4. Comparison of the EDPM produced vegetation index against MODIS NDVI 412 

within the study area. (a) Coefficient of determination (r2); (b) Root mean square error; (c) 413 

Seasonally averaged  propagated daily NDVI error after assimilation of MODIS NDVI 414 

observations.   415 

The figure above clearly demonstrates that the EDPM was well fit for to the task of following the 416 

dynamics of observed MODIS NDVI. Maps in the left column are dominated by dark color 417 

representing r2 of 0.8 and higher. The r2 values had a tendency to decrease toward the borders of 418 

the study area and whereas 2007 was the year with the worst performance, 2008 the best. The 419 

same conclusion was supported by the RMSE maps in Figure 4. The overall level of error 420 

reached 0.18 for 2007, but dropped to just above 0.11 for 2008. The right column of Figure 4 421 

shows the uniform distribution of average seasonal propagated errors throughout the study area 422 

after EDPM predictions were updated with MODIS NDVI observations. The general level of 423 

propagated errors was very close for all three years and constituted slightly less than 0.1.  424 



 425 

Figure 5. Spatial distributions of residuals (NDVIEDPM – NDVIMODIS): (a) seasonal means of 426 

residuals; (b) standard deviations of residuals.  427 

Figure 5 above reveals that the EDPM was mostly underestimating the value of NDVI. Again the 428 

picture changed for different years and the character of bias reversed towards the peripheral areas 429 

of the study region. The year of 2007 came out as the most biased having the mean of residuals -430 

0.2 to -0.3 spread along the western Iowa and Minnesota borders. For 2008 and 2009, most of 431 

the seasonally averaged differences between observed and modeled NDVI varied between -0.2 432 

and 0.1. The variability of the residuals grew from the center towards the borders for each year. 433 



However, similar absolute values of RMSE (Fig. 4b) and mean residuals (Fig.5a) point that the 434 

bias was rather uniform in time for most of the study area. 435 

A closer look into intra-annual dynamics of residuals (Fig.6) reveals similarities in developments 436 

seen in both the mean difference with observations and the standard deviation of residuals within 437 

the three growing seasons.      438 

 439 

Figure 6. Temporal dynamics of residuals (NDVIEDPM - NDVIMODIS) during the 2007-2009 440 

growing seasons. Light grey squares represent season of 2007; darker grey diamonds are 441 

2008; and black triangles are 2009. 442 

The trajectories in Figure 6 represent temporal dynamics of residuals averaged over the entire 443 

study region (18.7k pixels). It is seen clearly that the biases from different years went through 444 

similar seasonal patterns. The graphs show that the EDPM in prognostic mode was starting up 445 

seasons with minor underestimation and kept it at this level till the growing season started for 446 



maize and soybeans. The mean of residuals was dropping at every phenological transition point 447 

which constitutes a source of performance problems in the EDPM [Kovalskyy and Henebry, 448 

2011a, 2011b]. After the change of the phenological phase, the differences with observations 449 

came back to the initial level. This pattern means that corrections of the model outcomes during 450 

phase change were needed to decrease the bias and make the bias more stable. Overall, the 451 

analysis of the EDPM performance suggests that although the errors from EDPM were higher, 452 

they were still within the expected range based on prior performance. However, the results from 453 

the EDPM can be found reasonably accurate for prognosis or retrospective temporal gap filling 454 

in observations, considering the fact that the NDVI from EDPM carries the uncertainty from 455 

transformation to MODIS NDVI (standard error of the slope of 0.11[Kovalskyy and Henebry, 456 

2011a]), and the uncertainties of the crop maps proliferated through the mixing process.   457 

3.2 Contrasting ETa estimates from the EDPM+VegET scheme against MOD16 product.   458 

Before comparing the results from the EDPM+VegET with references, it is important to note that 459 

the gaps between the two reference datasets were substantial. Plot (a) in Figure 7 clearly shows 460 

that compared with MOD16 product, Mosaic ETa first overestimated and then brought bias close 461 

to 0 in the middle of the growing season, but later it returned to overestimation. The two versions 462 

of the EDPM+VegET estimates representing ETa derived with and without assimilation via 463 

1DKF scheme also had their differences shown in plot (b) of the figure 7. Following the 464 

previously noted pattern of underestimation of canopy properties by the EDPM working in 465 

prognostic mode, the prognosis of ETa values was lower than ETa produced in diagnostic mode 466 

(with 1DKF). The variability of residuals in Figure 7b exhibited similar temporal behavior to the 467 

one found in the bottom plot of Figure 6.  468 



 469 

Figure 7. Temporal dynamics of ETa residuals during the 2007-2009 growing seasons. (a) 470 

ETa Mosaic – ETa MOD16; (b) ETa EDPM +VegET – ETa EDPM with 1DKF +VegET ; (c) ETa EDPM +VegET  - 471 

ETa Mosaic; (d) ETa EDPM +VegET  - ETa MOD16; (e) ETa EDPM with 1DKF +VegET - ETa Mosaic;  (f) ETa 472 



EDPM with 1DKF +VegET - ETa MOD16. Light grey squares represent season of 2007; darker grey 473 

diamonds are2008; and black triangles are 2009. 474 

Retaining the main features from plots a and b, the remaining graphics of Figure 7 show the 475 

temporal dynamics of differences between two reference datasets and the two sets of 8 day ETa 476 

estimates from the EDPM+VegET scheme. In prognostic mode the EDPM+VegET results were 477 

starting growing seasons with underestimation of 15 mm per 8 days compare to ETa produced by 478 

Mosaic. In the midseason the difference came close to zero, but later a smaller (~10 mm per 8 479 

days) underestimation prevailed again (Fig. 7c). Meanwhile compared to the ETa from MOD16, 480 

the prognosis from the EDPM+VegET showed close to 0 difference for most of the season with 481 

slight overestimation in early June (up to 7 mm per 8 days)  and underestimation of the same 482 

magnitude in late August (Fig. 7d). The variability of residuals for prognostic ETa estimates 483 

remained high and had a clear temporal pattern driven by phenology.  484 

The estimates of ETa obtained with the EDPM+VegET working in diagnostic mode (with 1DKF) 485 

exhibited similar behavior of residuals when compared to reference datasets. Differences with 486 

Mosaic were negative at the beginnings of growing seasons (Fig. 7e), but in the mid-season the 487 

curves drifted toward slight (up 5 mm per 8 days) overestimation which later changed back to the 488 

underestimation of 15 mm per 8 days again (Fig. 7e). Compared with MOD16 the 489 

EDPM+VegET diagnostic estimates produced residuals that signal slight overestimation early in 490 

the growing season. Later, however, the residuals came close to 0 and remained there till the end 491 

of growing season indicating good match (Fig. 7f). The variability of residuals for retrospective/ 492 

diagnostic ETa estimates from EDPM+VegET dropped quite dramatically in both comparisons 493 

(Fig. 7e,f) showing the relative efficacy of data assimilation for this method of ETa estimation.  494 



Overall, the EDPM+VegET scheme showed closer temporal resemblance with MOD16 product 495 

and therefore further we present figures representing the spatial particularities of the coupled 496 

model performance compared to the MODIS product. (Analogous figures showing the 497 

comparison with Mosaic can be found in Appendix A.)     498 

 499 



 500 

Figure 8. Comparison of MOD16 ETa  with the ETa produced by EDPM+VegET working 501 

in (A) prognostic mode and (B) diagnostic mode involving 1DKF assimilation. (i) 502 

Coefficient of determination (r2); (ii) Root mean square error (mm per 8 days).  503 

Both parts of figure 8 show that EDPM+VegET scheme was able to follow the dynamics of ETa 504 

in the reference dataset and produced high values of determination coefficient exceeding the 505 

expectations set in previous section. Average coefficient of determination was above 0.8 level 506 

for the scheme working in both prognostic and diagnostic modes. In 2008, however, the average 507 

value of r2 dropped to the expected 0.7 level for both versions of derived ETa (Fig. 8A and B). 508 

The distribution of r2 values within the study area was more even in the results from the coupled 509 



scheme working in diagnostic mode involving 1DKF assimilation with MODIS NDVI data (Fig. 510 

8A). In both modes the EDPM+VegET scheme showed lower r2 in the western peripheral 511 

regions where the accuracy of crop cover maps was lower. Correspondingly, the RMSE values in 512 

those regions were higher especially in the results of the scheme working in prognostic mode. In 513 

the results from diagnostic mode RMSE had more uniform distribution and constituted around 6 514 

mm per 8 days on average which is half of what was expected. The average RMSE for 515 

EDPM+VegET outcomes derived in prognostic mode was about 8 mm per 8 days. Transformed 516 

into corresponding units, this performance would be comparable to Nagler et al. [2005] or 517 

Abramowitz et al. [2008], if the ETa data from MOD16 product approximated the reality with the 518 

accuracy of flux tower instruments [Mu et al., 2009]. A point based flux tower validation study 519 

has shown that the scheme can approximate daily ETa in crops with similar accuracy [Kovalskyy 520 

and Henebry, 2011b].   521 



 522 



   523 

Figure 9.  Spatial distributions of residuals (A) ETa EDPM+VegET – ETa MOD16 (B) ETa EDPM with 524 

1DKF +VegET – ETa MOD16. (i) annual mean of residuals (mm per 8 days) ; (ii) standard 525 

deviation of residuals (mm per 8 days).  526 

The contrast between the two sets of ETa estimates from the EDPM+VegET scheme can be 527 

easily depicted from the Figure 9 (A and B). In the left column (i) of panel A of Figure 9, the 528 

prognoses of ETa had mostly negative bias changing to overestimation in the peripheral areas of 529 

the study region (both east and west). The magnitudes of the mean residuals deviated not too far 530 

from 0 giving a peak of up to 12 mm per 8 days in 2007 in the central part of the study region. 531 

Left column (ii) of Figure 9A shows uneven distribution of variability in residuals revealing 532 



clusters of instability in performance coming from EDPM+VegET scheme working in prognostic 533 

mode.  Panel B of the Figure 9 shows that performance of the EDPM+VegET scheme was more 534 

stable during the work in diagnostic mode. The bias in the left column of the Figure 9A was 535 

mostly positive fluctuating no more than 9 mm per 8 days. There was less contrast between years 536 

and also less difference between various parts of the study region. Smaller and more 537 

homogenously distributed standard deviations of residuals (Fig. 9B column ii) also indicated a 538 

greater stability in performance compare to prognostic mode (Fig. 9A column ii).       539 

Contrasted with the ETa estimates from Mosaic (Appendix A) the results from the 540 

EDPM+VegET scheme were less correlated and had greater spatial variability in RMSE and 541 

residuals. Figures in Appendix A clearly demonstrate the problem in the central part of the study 542 

area (especially during 2007 growing season) that came from numerous differences in 543 

approaches to the ETa modeling and the associated assumptions made about the parameter 544 

datasets e.g. land cover types, soil types, LAI, etc [Koster and Suarez, 1996; Mitchell et al., 545 

2004]. Nevertheless, the expected performance of r2=0.7 ±0.15 and RMSE = 11.2 ±4 mm per 8 546 

days were achieved by the coupled models working only in retrospective/diagnostic mode using 547 

MODIS observations for correction of simulated TNDVI trajectories.   548 

3.3 Comparison of growing season parameters.  549 

The need to evaluate the performance of the phenological control module in the EDPM was well 550 

motivated by the patterns in residuals seen in Figures 6 and 7. Therefore, we highlight the 551 

contrasts between the EDPM estimated and in situ start of season [SoS] and end of season [EoS] 552 

dates reported to NASS.    553 



 554 

Figure 10. Contrasting start and end dates of the growing season for the two crops and two 555 

years. 556 

Figure 10 shows fairly good agreement between observed and estimated parameters of the two 557 

growing seasons. It also reveals the persisting delays in SoS for maize crops within all five 558 

states. Nevertheless, the 2 weeks delays in SoS prognoses were comparable with errors 559 

encountered in retrospective analyses by Fisher et al. [2006] Zhang et al. [2009] and Kovalskyy 560 

et al. [2011]. Meanwhile, the estimates of both SoS and EoS for soybeans were even more 561 

precise and consistent.  Figure 10, however, does not show the variability of the start and end of 562 

season dates where dramatic differences arise between NASS reports and the EDPM. To 563 

condense the graphical information, we brought the variability measure, the interquartile range 564 



(IQR)  into Figure 11, which also shows the scatterplots in length of season (LoS). Similar 565 

patterns occur in the variability of SoS and EoS (data not shown). 566 

  567 

Figure 11. Contrasts between the EDPM estimates and NASS reports in the length of 568 

season and its variability for the two crops and two years. 569 

The most apparent feature of Figure 11 is the error bars showing the inter-quartile range of the 570 

length of the season. The contrast between NASS and the EDPM dates went to the edge of the 571 

anticipated differences due to disparities between compared datasets.  We expected the 572 

variability in LoS to be driven by gradients in some climatic factors such as rain, temperatures, 573 

duration of daylight etc. What we found in NASS reports was that the states with more 574 

variability in seasonal precipitation (viz., Nebraska and the Dakotas) had more variability in 575 



phenological timing. The EDPM did not have the precipitation in the list of phenological 576 

controls [Kovalskyy and Henebry, 2011a] and, therefore, the vast difference between observed 577 

and estimated IQRs in LoS came as a result of limitations in number of factors considered as 578 

drivers of phenological timing. Moreover, the EDPM could not take into account the progress of 579 

agricultural work in spring as well as other anthropogenic factors affecting the development of 580 

crops. Nevertheless, the central tendencies were captured quite well for soybeans. The SoS 581 

delays in maize became the reason for underestimation of LoS for this crop. Yet, with all the 582 

shortcomings, the EDPM estimates of phenological dates for all crops and years managed to stay 583 

within the range of state reports from NASS. 584 

4. Discussion.  585 

Planned as a validation study this experiment took the form of a comparison between products 586 

while still providing insight on the performance of the EDPM +VegET scheme. In this context 587 

the discrepancies between estimates found in this study have to be considered just as relative 588 

indicators of better or worse performance. Lacking the actual spatially explicit observations, we 589 

managed to obtain the reference points for the future application studies where the results will 590 

receive interpretation. It is clear now that the outcomes of this experiment helped reaching the 591 

goal of this investigation, yet they raised a number of other issues that need to be clarified. In 592 

each of the three sets of comparisons we presented spatial and temporal dynamics of error 593 

measures but we did not talk in details about the structure of uncertainties or about the reasons 594 

behind the observed patterns. Many of these issues are interconnected, and therefore we kept 595 

them for this section where the linkages can be explained. Every issue here is discussed in terms 596 

of its impact on the abilities of the EDPM alone and the EDPM plus VegET scheme to meet 597 

nominal performance expectations.  We also present ideas about how these impacts can be 598 



mediated at this point and draw perspectives on possible corrections of the problems in future 599 

versions of the event driven phenology model.  600 

Comparison between the MODIS NDVI and the vegetation index produced by the EDPM had 601 

both temporal and spatial issues in performance. High r2 was definitely a plus to the EDPM, but 602 

the RMSE and bias of 2007 in prognostic mode pushed the performance to the edge of what was 603 

expected of the model. Introduction of noise from the NDVI-TNDVI relationship could not be 604 

the reason for this error jump since such noise should have been present constantly and not just 605 

during late season drought on just about one-fifth of the study area. Apparently, the reaction of 606 

the EDPM to this development was too strong (residuals dropped to -0.25), most likely due to 607 

inability to account for irrigation. An appropriate solution for the 2007 error spike problem 608 

would be extra training of the EDPM on irrigated flux tower sites during the drought years. 609 

During other years, the bias appeared to be quite consistent throughout the area and could be 610 

arithmetically removed from the results. Possibly, the bias can be corrected by obtaining better 611 

estimates of background vegetation-free TNDVI values for growing season initiation as 612 

suggested by Zhang at al., [2003]. This correction would, most probably, draw the overall 613 

RMSE close to 0.1 level. This performance mark was also achieved through the data 614 

assimilation.  615 

Patterns in temporal dynamics of residuals constitute a problem that cannot be corrected with a 616 

simple transformation. It requires collecting new data for parameterization of phenophase control 617 

module in the EDPM. Inclusion of precipitation as a control variable for phase transitions should 618 

help to address the issue of temporal variability in PTPs within states in addition to increasing 619 

the overall accuracy of the phenophase control procedures. With the current level of accuracy, 620 

we should refrain from interpreting the results based on uncorrected (prognostic) daily NDVI 621 



data in places where the variability of residuals goes beyond the level of two seasonal standard 622 

deviations. This warning, however, would be less applicable for time averaged (weekly or 623 

monthly) or composited prognoses. Meanwhile, the NDVI outcomes received from the EDPM's 624 

data assimilation scheme carried significantly smaller traces of phase control errors. Therefore 625 

further analysis can be conducted on the retrospective 1DKF corrected daily VI records and 626 

interpretations would be valid throughout the study region. The issues with temporal stability in 627 

performance also came out in the ETa estimates produced by the EDPM+VegET scheme. 628 

Exceeding the expectation in r2 and RMSE in comparison with MOD16 product, the results from 629 

prognostic mode exhibited a small bump and a dip of similar magnitude in temporal dynamics of 630 

the residuals. These fluctuations appeared exactly in the times of phenological transitions from 631 

green-up to reproductive phase and then from reproductive phase to senescence respectively. 632 

Present in results from all three years, the features indicated a systematic problem in 633 

phenological control module of the EDPM that, if removed, could further increase the 634 

performance of the coupling scheme. In retrospective mode the results still had the issue of the 635 

early season overestimation. This indicates that while decreasing the level of variability in 636 

residuals the assimilation of MODIS NDVI could not completely suppress all the setbacks for 637 

the EDPM+VegET scheme. Improvements in the functioning and parameterization of 638 

phenological phase control module requires further training on long term flux tower records that 639 

will be undertaken in the future. However, all observed magnitudes of the deviations in temporal 640 

pattern would not pose a significant obstacle for the use of these results in further analyses.   641 

From the comparison of the EDPM+VegET scheme outcomes with ETa estimates from Mosaic 642 

LSM, we received the diverse spatial dynamics in r2 and RMSE complemented with clear 643 

seasonal patterns in temporal dynamics of residuals.  These discrepancies persisted even after the 644 



assimilation of MODIS data into the EDPM and VegET results. In fact, the pattern became even 645 

more pronounced since the variability in residuals dropped. It is most likely that a better 646 

sensitivity of the EDPM to ongoing weather conditions contributed to the temporal dynamics of 647 

differences between two ETa estimates as the energy balance scheme in NASA’s Mosaic LSM 648 

[Koster and Suarez, 1996] uses static climatological trajectories of leaf area index as a 649 

phenology driven factor of canopy resistance. However, other patterns could not be explained 650 

entirely by the lack of sensitivity to contemporaneous vegetation development in the Mosaic 651 

model. It is also possible that numerous discrepancies came out as consequences of different 652 

assumptions about land cover on the 0.125-degree NLDAS grid and/or the ET flux partitioning 653 

between canopy and underlying soil.  654 

A unique feature of this study was the comparison of growing season metrics estimated by the 655 

EDPM with ones reported to NASS.  In our analysis, we were missing proper geographic and 656 

temporal precision in the NASS reports for each of the five states.  Nevertheless, we tried to 657 

preserve the temporal and spatial variability of growing season dates by organizing our SoS and 658 

EoS estimates to match the structure of reference data. We also kept in mind the fact that the 659 

transition points in NDVI dynamics and the actual phenological event for crops had different 660 

physical meanings. A good matching was achieved between reported and estimated state 661 

averaged SoS and EoS. Their variability, however, became problematic for the EDPM giving the 662 

ground to include more controlling variables into the automatic estimation of phenophase 663 

transition dates.   664 

Despite all the issues listed in this section the overall impression from the comparisons is quite 665 

positive for the VegET+EDPM coupling scheme. The scheme managed to keep the departures 666 

from references within nominal boundaries. The results matched and even exceeded most of the 667 



expected measures of model performance obtained on point based validations [Kovalskyy and 668 

Henebry, 2011a, 2011b]. The biggest problem for the  TNDVI trajectories estimated  by the 669 

EDPM was the model’s overreaction to late season drought in 2007 that accentuated  the usually 670 

small underestimation.  Meanwhile, the ETa estimates followed closely the reference records 671 

from MOD16 products. Even in the worst cases, the error measures in ETa were also comparable 672 

with those of Senay [2008], Mu et al. [2007], and Abramowitz et al. [2008]. Remarkably, this 673 

level of performance was achieved during the spatially explicit deployment of the coupled 674 

models. Plus, the results from the scheme were complemented with estimates of phenological 675 

metrics for grassland and crops that matched well the central tendencies of NASS reports. 676 

Combined with the ability of the scheme to produce daily estimates of vegetation index and 677 

actual evapotranspiration the performance characteristics of the VegET+EDPM coupling scheme 678 

justified its use in a real life application study.   679 

The lessons learned from this experiment will help to analyze and interpret the results of the 680 

greater investigation of recent shifts in the phenology and ET regime in the Northern Great 681 

Plains. After the undertaken comparisons we can confidently say that consistency of received 682 

errors still allows for the trend analysis especially after correcting with MODIS observations. 683 

The delays of season starts in maize will be accounted for in the assessment of inter-annual 684 

variability of growing season parameters.  Also, we intend to scale the variability in phenological 685 

dates from the EDPM to match the variability in NASS reports through inclusion of precipitation 686 

in the phenophase control mechanism. Special attention will be paid to the peripherals of the 687 

study region as those are most likely to carry land cover mapping errors. Finally, we will use 688 

appropriate testing methods and critical values when relating the shifts in ETa regime to crop 689 

cover change insuring a more conservative interpretation of their correlation.  690 



5. Conclusion 691 

The purpose of the experiment described in this paper was to provide the rationale for the use of 692 

the EDPM+VegET coupling scheme in a spatially explicit application. Such rationale was 693 

attained via assessing the performance of the scheme through comparison of modeled variables 694 

with reference data. First, we compared the image time series of vegetation index produced by 695 

the phenology model with MODIS NDVI derived from MCD43C4 product. The expectations of 696 

model performance in producing seasonal NDVI trajectories were met yielding r2 of 0.8 ±0.15 697 

and RMSE of 0.1 ±0.035 for the entire study area. Retrospective correction of canopy dynamics 698 

with MODIS NDVI brought the variability in errors closer to the 0.1 level. Estimation of 699 

growing season metrics by the EDPM matched the NASS reports with reasonable accuracy – up 700 

to 2 weeks of difference in key dates. The estimates of actual evapotranspiration produced by the 701 

coupled scheme were compared with ETa from NASA’s Mosaic model from NLDAS and with 702 

MOD16 data from MODIS land product suite.  In both comparisons, the expected r2=0.7 ±0.15 703 

and RMSE = 1.4 ±0.5 mm per day were met by the coupling scheme working in retrospective 704 

mode using MODIS observations for correcting  seasonal trajectories of canopy development.  705 

Minor issues of model performance were encountered during this experiment as well. The 706 

EDPM produced trajectories of vegetation index biased towards underestimation but the bias was 707 

relatively uniform in space and time and therefore removable. Actual ET estimates from the 708 

VegET+EDPM were closer to MOD16 product while producing greater differences with Mosaic 709 

LSM that also had persisting spatial and temporal patterns in them. While spatial patterns in 710 

differences could be attributed to distinct assumptions about land cover in Mosaic LSM [Mitchel 711 

et al., 2004], the seasonal profiles of differences between our estimates and reference data 712 

exhibited clear patterns driven by phenology. The impacts of these issues on performance of the 713 



EDPM and the VegET models, however, were relatively small and therefore they could not pose 714 

an obstacle for the analysis and interpretation of the outcomes. In general, this study provided 715 

sufficient assurance that the interpretations of future results derived the the planned spatially 716 

explicit application study will be valid and sound, provided that the detected issues are properly 717 

addressed in the analysis. 718 
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Appendix A. 901 

 902 



 903 

Figure A1. Comparison of ETa from Mosaic LSM with the ETa produced by EDPM plus 904 

VegET coupling scheme deployed in (A) prognostic mode and (B) diagnostic mode 905 

involving 1DKF assimilation. (i) Coefficient of determination (r2);  (ii) Root mean square 906 

error (mm per 8 days) .  907 

908 



 909 



 910 

Figure A2.  Spatial distributions of residuals (A) ETa EDPM+VegET – ETa Mosaic (B)ETa EDPM with 911 

1DKF +VegET – ETa Mosaic. (i) seasonal means of residuals (mm per 8 days) ; (ii) standard 912 

deviations of residuals (mm per 8 days) .  913 
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