
Software Testing and Verification in Climate Model Development

Thomas L. Clune NASA Goddard Space Flight Center

Richard 8. Rood University of Michigan Atmospheric, Oceanic and Space Sciences

Abstract:

Over the past 30 years most climate models have grown from relatively simple representations of
a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure
over that period has gone from punch card mainframes to modem parallel clusters. Model
implementations have become complex, brittle, and increasingly difficult to extend and maintain.
Existing verification processes for model implementations rely almost exclusively upon some
combination of detailed analysis of output from full climate simulations and system-level
regression tests. In additional to being quite costly in terms of developer time and computing
resources, these testing methodologies are limited in terms of the types of defects that can be
detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with
finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the
commercial software sector, recent advances in tools and methodology have led to a renaissance
for systematic fine-grained testing. We discuss the availability of analogous tools for scientific
software and examine benefits that similar testing methodologies could bring to climate
modeling software. We describe the unique challenges faced when testing complex numerical
algorithms and suggest techniques to minimize and/or eliminate the difficulties.

Introduction

Testing, verification, evaluation and validation are vital aspects of the construction of climate
models. However, these processes are ingrained into the cultures of modeling centers and are
often not specifically recognized. [lJ Here, we distinguish validation and verification as in Post
and Kendall [2J where validation refers to comparison with observations and verification refers to
comparison with analytic test cases and computational products. Testing and evaluation are more
generic and will be defined more concretely below.

From a software-focused perspective, our community is dominated by software developed by
scientists as opposed to software engineers. [3J The community invests heavily in system-level
testing which exercises most portions of the underlying code base with realistic inputs. These
system-level tests verifY that multiple configurations of the model run stably for modest time
intervals as well as certain key invariants such as parallel reproducibility and checkpoint restart.
Contrariwise, the routine application of fine-grained, low-level tests (unit tests) is nearly
nonexistent. Notable exceptions are limited to "infrastructure" software such as that of the Earth
System Modeling Framework (ESMF). Infrastructure is typified by its role in supporting data
organization and movement such as for parallelism, lIO, and transferring information from, for
example, ocean grid to atmosphere grid. [4J

The lack of use of unit tests in climate model development is in stark contrast to the practices of
commercially developed software. Many reasons can be posited for this situation, but we argue

that the fundamental reasons are a lack of awareness of the benefits of pervasive unit testing as
well as strong misconceptions about the nature and difficulty of implementing unit tests. We
argue here that analysis of the model evaluation process reveals the elements of the ingrained
culture of testing and evaluation. This allows the definition of a more comprehensive approach to
software testing. Among the benefits of a more formal approach to testing are improved software
quality, reliability and productivity of model developers.

Climate Model Practice

In simplistic terms the process of model development can be conceived as a 2-phase cycle that
alternates between development and evaluation. During development the programmer extends
the capabilities of the model by producing new code. Then, during evaluation the programmer
seeks to verify whether those changes achieve the desired results without breaking other aspects
of the implementation. Different scales of code changes warrant different types of verification,
and all successful verifications are tentative as later verifications may reveal flaws.

A key observation about the above process is that developers naturally scale the magnitude of the
verification phase to match computational resources and time required for the process. For
example, if the verification technique requires lengthy simulations, then developers are unlikely
to perform verification upon each new line of source code. Rather, they are likely to spend one or
more days programming prior to submitting a verification run. Likewise, if the verification
process is merely to ensure no compilation errors, developers may perform the verification
frequently throughout the day.

Our focus is ultimately on model evaluation processes that are not comparisons with
observations, i.e. validation. However, it is useful to disentangle testing, verification and
validation more thorou~hly. Validation is a controversial issue in climate modeling centers.
Indeed, Oreskes at al. [1 argued that formal validation of geophysical models of complex natural
systems is "impossible." More recent papers studying the philosophy and social science of the
culture of climate and weather modeling suggest that the extensive com~arison with observations
and the extensive review of climate assessments do stand as validation. 61

Because offormal programmatic requirements the Data Assimilation Office (DAO now the
Global Modeling and Assimilation Office) at NASA's Goddard Space Flight Center was required
to produce a formal validation plan. [71 In the DAO validation plan the strategy was taken to
define a quantitative baseline of model performance for a set of geophysical phenomena. These
phenomena were broadly studied and simulated well enough that they described a credibility
threshold for system performance. Important aspects of this validation approach were that it is
defined by a specific application suite, formally separated validation from development, and
relied on both quantitative and qualitative analysis.

In this paper we are focused on the testing and evaluation that are specific to the software itself.
That is, testing and evaluation that should be completed prior to the submission of the system for
validation. Numerous studies have demonstrated that the cost of fixing a software defect is
substantially less if detected early. 8 A primary verification mechanism is a short-duration run of
the full modeling system. Even when such tests can be performed in a matter of minutes, they are

often too crude to detect all but the most basic sorts of errors. Defects, therefore, fester until
more thorough runs are performed and detailed analyses of the results are examined. When
possible, finer-grained tests which directly verify the specific changes being attempted not only
execute faster, but also have a higher probability of detecting undesired behavior earlier.
Professional software engineers have recognized these characteristics of software development
and have generally moved towards development processes which provide very rapid cycling
between coding and verification.

Software Testing

Software testing can be applied at various levels within a climate model. Coarser-grained tests,
e.g. those that encompass large portions of the implementation, can be useful for detecting the
existence of defects, but are generally limited in their ability to isolate specific causes. In
contrast, fine-grained tests are better at isolating and diagnosing specific defects, but the number
of tests necessary to cover an entire application may be prohibitively expensive. Coarse-grained
tests of modem parallel climate models may also require substantial computational resources for
their application, whereas with appropriate care, fine-grained tests can be implemented to require
only minimal computational resources. In practice, coarse-grained tests are applied nightly or
weekly, while fine-grained tests are exercised more frequently to support ongoing development.
Projects must consider the relative costs and benefits of each category of testing when
formulating a testing plan. Below we define a categorization oftests.

System Tests

The coarsest level of testing is system testing, in that individual tests exercise all or nearly all of
the underlying implementation. Most system tests are in the form of regression tests -- i.e. the
tests aim to reveal errors that have been introduced to existing functionality. Regression tests
commonly used in climate modeling seek to answer questions such as:

• Do the primary model configurations run to completion?
• Are the results independent of parallel decomposition?
• Does the process of checkpoint/restart alter the results?
• Has the computational performance significantly changed?

Although the process of regression testing is similar to studying the consequences of scientific
changes to the model, the distinction is important. A regression test is objective and can be
automated. (9] A scientific change involves tradeoffs on subtle qualities of a model and requires a
variety of investigations into the model behavior.

One of the impediments to system testing in most, if not all, climate models is the large number
of configurations that could be tested. For example, models can be configured with and without
components such as an ocean, atmospheric chemistry, and aerosols, each of which may have
alternate implementations. The number of potentially supported combinations grows
exponentially with the number of components and can limit the extent to which the system is
thoroughly tested.

Despite the difficulties induced by the proliferation of model configurations, system level testing
is where climate models have the greatest investment and maturity. For example, GISS ModelE
(10] is developed with continuous iritegration, which allows nightly automated tests which
checkout the latest development branch and compile and execute -10 model configurations
under a variety of parallel decompositions. Alerts are emailed if a configuration fails to compile
or execute, or if the results are not strongly reproducible. Even when the test reports are ignored
in real time, experience shows that these tests often bound the dates on which a defect was
introduced and greatly reduce the effort to identifY and fix the problem. Other climate teams
typically have longer integration cycles, but can compensate by more intensive testing at those
boundaries.

Integration testing

Integration testing is the testing of software aggregates and is intermediate between system
testing and fine-grained unit testing. Although there is much to be said about integration testing,
the distinction is of little consequence to the arguments in this paper.

Unit testing

Unit tests are the finest granularity of testing and are used to verifY low level behaviors of an
implementation. Generally a unit test exercises a single unit (function or subroutine) by
comparing the output generated from a set of synthetic input values against the corresponding
output values. Some special unit testing concerns that arise for climate modeling include
parallelism, checkpoint/restart, and numerical computations. Automated fine-grained testing is
quite limited in current climate models, with the few counter examples generally associated with
infrastructure layers.

Unit testing frameworks

Until quite recently, software developers dreaded the process of creating unit tests. The level of
effort for producing tests was perceived to be high and a distraction from producing "real"
software. Two innovations have influenced this attitude. The first was the creation of language­
specific unit testing frameworks, e.g. JUnit, which reduce the difficulty of creating and executing
tests and reporting test results. The second innovation was the adoption oftest-driven
development (11] in which the conventional software development process is reversed with
developers creating tests prior to the software to be tested. The change in developer perception of
the role of unit tests is perhaps best typified by this quotation from Michael Feathers: "The main
thing that distinguishes legacy code from non-legacy code is tests, or rather a lack of tests." (12]

The implication is that the existence of a sufficiently robust suite of tests completely alters the
experience, productivity, and overall risk when working with a software system.

Spurred on by the success of JUnit, unit testing frameworks have been created for most modem
programming languages. There are at least three independent frameworks for Fortran, including
pFUnit, which also supports testing parallel implementations based upon MPL Although these
frameworks vary from language to language, their basic architectures are quite similar. Each
framework provides a suite of assertion routines, which can be used by the developer to express

the expected state of output variables after a call to the routine being tested. When an assertion
fails to hold, the framework logs the name of the test that fails along with the location of the
assertion and any accompanying user-provided messages for that assertion.

Test-Oriven Oevelopment (TOO)

Test-driven development (TOO) is a major element of agile development processes and consists
of a short development cycle that alternates between development of tests and development of
code which enables the tests to pass. First, the developer creates or extends a test which then fails
because the necessary functionality has not yet been created. Then the developer produces code
just sufficient to pass the test. Finally, the developer cleans up with an emphasis on removing
any incidental redundancy. The process encourages progress in the form of rapid, incremental
steps and is made practical through unit testing frameworks.

To better understand the TOO workflow and its application in the context of numerical software,
consider the process of developing a simple 10 linear interpolation procedure. The first step is
to create a test. Usually the first test is extremely simple and is primarily intended to specify the
desired interface for the procedure to be implemented, e.g.

assert(O == interpolate(x=[1,2],y=[O,O],at_x=1»

With this test in place, we begin to implement the interpolate procedure itself, but only so far as
to enable successful compilation and execution of the test. A trivial implementation that returns
zero will suffice. For the next test we choose data that have a simple linear relationship:

assert(l == interpolate(x=[O,2],y=[O,2],at_x=1»

This test will already compile and execute, but it will fail due to the overly simplistic
implementation after the first test. We proceed by extending the implementation to pass both
tests. Additional tests could then be to check that the behavior is correct when there are multiple
intervals in the data, or when the interpolation is outside the domain, the data are degenerate, etc.
After each test, the interpolate procedure is extended to ensure that all tests pass. For many it
will be initially counterintuitive to proceed in such minute steps, but with practice these steps
happen very quickly and lead to steady predictable development of complex features.

The practitioners ofTDO tout many benefits. Chief among these is the improvement in overall
developer productivity despite the substantial increase in the total number of lines of code for a
given piece of functionality. The improved productivity stems from the comprehensive test
coverage which in tum leads to far fewer fixes to defects later. Tests under TDO are
continuously exercised and can, therefore, serve as a form of maintainable documentation.
Developers using TDD may also be more productive due to reduced stress and improved
confidence that arise from the immediate feedback as functionality is extended. Finally, TOO
leads to higher quality implementations. This somewhat surprising claim stems from the
observation that software that is designed to be testable tends to be comprised of smaller
proccdures having shorter argument lists.

Barriers to Testing

In this section we explore the barriers, both technical and cultural, to more pervasive adoption of
testing methodologies in climate models.

Scientists often perceive testing as an attempt to execute a model, a component, or an algorithm
with maximal fidelity. Their instinct is to use representative grid resolutions, realistic input
values, etc. The art of software testing is to use synthetic input values and small grids that
exercise specific lines of code to produce output values that can be verified by inspection. High­
resolution grids serve no purpose other than to slow the execution of tests and require more
memory. The use of realistic input values is appropriate only to avoid branches that are
unsupported by the implementation, or when independent realistic output values are available.
Working with synthetic inputs does require some care to ensure that important cases are covered.
For example, frequent programming errors such as index permutations and wrong offsets can be
detected by imposing a spatial dependence on test inputs.

The largest technical barrier to unit testing in climate modeling software is the legacy nature of
the code base. Large (> 1000 sloc) procedures that rely heavily on the use of global variables are
difficult to characterize in the form of a unit test. A possible test might be to store representative
input and output data of a procedure in an external file. Tests could then be developed which
exercise the procedure with the stored data and notify if any output values have changed. Such
tests would be of limited value other than for the purposes of refactoring.

Teams that desire to enhance software testing mitigate the problem oflegacy software by
limiting modification of existing routines. Rather than "wedging" new code into a large
procedure, they develop a new testable subroutine. In the legacy procedure they insert, only, a
call to the new routine. Groups also look for opportunities to extract small testable routines from
large legacy procedures.

Beyond the burdens of the legacy code base, numerical algorithms present difficulties that are
absent in many other categories of software. The most basic of these arise from numerical errors
that originate from both truncation and round off of floating point operations. Such errors are
problematic because the corresponding tests must not only specify expected values for output
parameters, but also provide tolerances for acceptable departures from those expected values. If
the tolerances are too tight, then tests will appear to fail despite producing acceptable results,
whereas if tolerances are too loose, then tests lose value as they fail to detect some errors. In
most cases, developers do not have suitable a priori values for such tolerances, even when the
asymptotic form of the truncation error for an algorithm is known.

Fortunately, the difficulty of specifying suitable tolerances is not as severe in practice as the
above discussion indicates. First, note that the tests are verifying the implementation - not the
asymptotic form of the algorithm. When an algorithm is broken down into sufficiently small
steps, the resulting pieces are often amenable to simple, even trivial, error analysis. Complicated
error bounds are largely a consequence of the how errors compound through subsequent stages
of a calculation, and from the testing perspective, this compounding can be avoided by
examining each step independently.

An important concem of climate models is whether small changes to an implementation may
result in a different basin of attraction for the trajectories and hence a different climate. The
chaotic nature of the underlying dynamics effectively limits the ability of unit tests to constrain
the system in this regard, and only long control runs can protect against undesirable changes.
Likewise, so long as all "local" tests pass, long control runs cannot identifY any particular aspect
of the implementation that is responsible for an incorrect result, though the most recent change
will often be the assumed offender. Over time, researchers identifY additional constraints (and
thus unit tests) that decrease the frequency of incorrectly altering the simulated climate, but
verification will always require control runs.

Another major objection to testing of some numerical algorithms is the general lack of known,
analytic solutions for realistic algorithms that could be used to derive appropriate values to use in
tests. Unless an equivalent and entirely independent algorithm is available, tests of such
algorithms tend to be redundant with the implementation and thus of no real value. As with the
discussion of numerical errors above, this concern can largely be eliminated by decomposing
algorithms into distinct, simple steps, for which synthetic test values are readily apparent. For
pedagogical purposes, consider how testing would be implemented for a procedure which
computes the area of a circle.

area = areaOfCircle(radius)

One might choose a small set of trial values for the input radius: 0, 1, 2 and verifY that the results
are 0., 3.14159265,12.5663706 respectively. These results are not obvious by inspection because
mental arithmetic with Jt is problematic. One could replace these literal values with expressions
involving Jt, but that the resulting test is very nearly redundant with the algorithm being tested.
However, from the software engineering perspective, there is a different option: introducing Jt as
a second parameter into the interface. We can then use simple values of "Jt" such as I or 2 for
testing the implementation of the procedure. One would implement the usual interface for
areaOfCircle (radius) by passing a hardcoded value of Jt to the procedure that accepts
two arguments. This hardcoded value of Jt can be tested by inspection or by trigonometric
identities.

This methodology for decomposing numerical schemes may seem overly burdensome at first;
however, we argue that compared to the level of effort of developing a scientific
parameterization, the effort spent on expressing algorithms in this fine-grained manner would be
modest, and the return might be immeasurable in the form of early detection of software defects.
This approach also helps to side step the issue of providing realistic input values for complicated
physical parameterizations based upon empirical parameters and curve fitting. Of course, if
realistic input and output data are available, then corresponding tests should be created. More
often, though, high-level tests for such parameterizations should verifY the sequence of sub-steps
rather than attempting to compose a full numerical comparison. This approach is more natural
with abstract data types and object-oriented programming, and may require re-engineering a
relatively small number of interfaces in a model.

More broadly, the technique of splitting scientific models into very small procedures to enable
unit testing raises concerns about computational efficiency. If algorithms are split into very small

procedures with short parameter lists, then the overhead cost in terms of performance in a real
code could be substantial. This difficulty can be overcome via bootstrapping. Namely, an
optimized implementation (large monolithic optimized procedure) can be tested against the
slower fine-grained implementation that is in tum covered by simple, clean unit-tests. Although
this technique introduces yet more overhead to the development process, the fine-grained
implementation can itself be a very useful reference for attempts at further optimizing an
algorithm.

Applications of Test-Driven Development

In the Software Integration and Visualization Office (SIVO) at the NASA Goddard Space Flight
Center, we have aggressively applied TDD to several development projects including two that
are directly relevant to scientific modeling. The first of these was to develop a parallel
application, GTRAJ, which calculates the trajectories of billions of air parcels in the atmosphere.
The other was to develop a parallel implementation, SNOWFAKE, of a numerical model [13] that
simulates the growth of virtual snowflakes. The success of these projects demonstrates that unit
testing in general, and TDD in particular, can be applied in the modeling arena. These projects
also revealed the challenges of repressing established programming habits and methodology on
the part of senior scientific programmers.

GTRAJ is a complete rewrite of a legacy application, the Goddard Trajectory Model [14]

originally developed in IDL. To achieve portability and scalability, SIVO applied TDD to
rewrite the application in C++ and MPI using a team of senior scientific programmers that were
relatively inexperienced with unit testing and TDD. The primary numerical algorithms used in
GTRAJ are numerical interpolation of gridded meteorological data, and temporal integration of
the interpolated flow field experienced by a given parcel of air. The original model was primarily
tested by measuring the discrepancy in time reversal of a five-day integration. Although
seemingly stringent, the requirement of time-reversibility is unable to detect many types of
errors. During the rewrite the new fine-grained tests revealed two important errors in the original.
First, the binning algorithm which selects which grid points should be used for interpolation was
incorrect in some regions with sharp changes in the pressure heights. The "interpolations" would
then become extrapolations and occasionally extreme inaccuracies would result. The correction
would have been difficult in the original monolithic implementation, but was straightforward in
the version developed under TDD. The second error detected by unit testing in the development
of GTRAJ was the behavior of Runge-Kutta (RK) when parcels pass near the poles in a latitude­
longitude grid. Examination of the large errors for such trajectories using synthetic test data, led
to the realization that the usual RK algorithm must be reformulated for curvilinear coordinate
systems. With this correction, the accuracy of trajectories that pass near the poles was improved
by orders of magnitude which in tum permitted substantially larger time steps and faster
execution of the application.

At several points in the creation of GTRAJ, the primary developers were challenged by the
process offollowing TDD. The temptation to immediately begin implementing an algorithm was
difficult to resist, especially early in the project. Unfortunately, the pressure to skip tests is
typically highest when the tests do the most good either because the design requires further
thought, or the expected behavior is harder to specify. Scientific programmers also struggled

with a tendency to use realistic input values in tests rather than "enlightening" values, but rapidly
improved.

In contrast to GTRAJ, the initial serial implementation of SNOWFAKE was developed by a
single developer who was experienced in using TOO for components of model infrastructure.
The project benefited from the precise mathematical specification of the model in the reference
paper which was translated into a set of basic tests. The initial implementation was completed in
approximately 12 hours of development time and was comprised of approximately 700 lines of
source code and 800 lines of tests. The application ran to completion on the first try and
produced simulated snowflakes in excellent agreement with the reference paper. The simple
"micro" debugging at each stage of TOO apparently eliminated the substantial debugging
typically experienced during the integration phase of programs of even less complexity. Other
encouraging statistics are that procedures averaged under 12 lines and less than 2 parameters
(arguments). As one might expect, the initial implementation was suboptimal in terms of
computational performance, but optimized variants of key algorithms were then easily created
and verified by tests that compared optimized results against the slower baseline
implementations. For example, one significant cache-based optimization was from fusing the
sub steps associated with vapor diffusion. The test for the fused procedure was simply to
compare the results of the fused procedure with a sequential execution of each original sub step.
Both implementations and corresponding tests were retained.

Conclusions

Confidence in the scientific predictions of climate models is contingent upon confidence in the
underlying implementations of those models. In this paper we have advocated that current
software development practices are inadequate for gaining such trust, and that the increased use
of automation and systematic fine-grained testing of model implementations would be a major
improvement in this regard. Further, such testing has been shown to provide a net improvement
to developer productivity in other communities through a number of indirect mechanisms.

Our experience with two applications suggests that this testing methodology is applicable to
climate modeling, but more relevant examples are needed. Changing established processes in
any community is difficult, and scientists are understandably skeptical about the costs and
benefits of our approach. In the near future we intend to apply test-driven development in the
creation of a parameterized model component from scratch. The early phases of the
development of such a component are the ideal time to express the various physical requirements
and constraints as unit-tests, and the results should serve as a strong demonstration of the
potential of this technique.

Many technical difficulties must be overcome before unit testing can become pervasive within
climate models. Chief among these is the extreme difficulty of introducing fine-grained tests
into the procedures typical oflegacy science code. In many cases, this issue can by side­
stepped by implementing changes and extensions to models as new modules. This is in contrast
with the common practice of "wedging" changes directly into old procedures and ultimately
compounding the legacy burden. Fixes to software bugs are a particularly important case to
follow this approach, as the constructed test serves as protection against re-introduction of the

defect. In the long tenn more powerful tools must be developed which allow developers to
efficiently extract disjoint bits of functionality from the legacy layer. In other programming
languages, especially Java, new generations of powerful software developer tools have been
shown to be quite effective for such purposes. Photran [IS] is an attempt to introduce some of
these capabilities for Fortran, but greater investments should be made to bring appropriate tools
to a state of maturity suitable for routine application to climate models.

I S. Shackley, "Epistemic lifestyles in climate change modeling," in Changing the Atmosphere, C. C. Miller and P.
N. Edwards, Eds. Cambridge, MA: The MIT Press, 2001, pp 107-133.
2 D. E. Post and R. P. Kendall, "Software project management and quality engineering practices for complex,
coupled multiphysics, massively parallel computational simulations: lessons learned from ASCI," The International
Journal of High Performance Computing Applications, vol. 18, pp. 399-416, Winter 2004.
3 S. M. Easterbrook and T. C. Johns, "Engineering the software for understanding climate change," Computing in
Science and Engineering, vol. II, pp. 64-74, 2009.
4 C. Hill. C. Deluca, V. Balaji, M. Suarez, and A. da Silva, "Architecture of the Earth System Modeling
Framework," Computing in Science and Engineering, vol. 6, pp. 18-28,2004.
5 N. Oreskes, K. Shrader-Frechette, and K. Belitz, "Verification, validation, and confirmation of numerical models
in the Earth sciences," Science, vol. 263, pp. 641-646, 4 February 1994.
6 H. Guillemot, "Connections between simulations and observation in climate computer modeling. Scientist's
practices and "bottom-up epistemology" lessons," Studies in History and Philosophy of Modern Physics, vol. 41, pp.
242-252,2010.
7 R. B. Rood and Staff. (1996, Nov.). Algorithm Theoretical Basis Document for Goddard Earth Observing System
Data Assimilation System (GEOS DAS) with a Focus on Version 2. [Online]. Available:
http://eospso.gsfc.nasa.govieos homepage/for scicntistsiatbdJdocs/[)AO/atbd-dao.pdf
R RTI. (2002, May). The Economic Impacts of Inadequate Infrastructure for Software Test. [Online]. Available:
http://www.nist.gov.!directoriplanning/uploadJrcport02 -3 .pdf
9 S. Vasquez, S. Murphy, and C. DeLuca. (2011, Apr.). Earth System Modeling Framework Software Developer's
Guide. [Online]. Available: http://www.carthsystcmmodeling.org/documcnts/dev guide/
to G. A. Schmidt, R. Ruedy, J. E. Hansen et aI., "Present day attnospheric simulations using GISS ModelE:
Comparison to in-situ, satellite and reanalysis data," J. Climate. vol. 19.153-192,2006.
II K. Beck, Test-driven development: By example. Boston, MA: Addison-Wesley, 2003. pp. 240.
12 M. Feathers, Working effectively with legacy code. Upper Saddle River, NJ: Prentice-Hall, 2004, pp. 456.
13 J. Gravner and D. Griffeath, "Modeling snow-crystal growth: A three-dimensional mesoscopic approach," Phys.
Rev. E., vol. 79, DOl: 10.1 103/PhysRevE.79.01 1601 ,2009.
14 M. R. Schoeberl and L. C. Sparling, "Trajectory Modeling," in Diagnostic Tools in Atmospheric Physics, J. C.
Gille and G. Visconti Eds., Proc.lnternat. School ofPhys. "Enrico Femai," vol. 124, 1995, pp. 419-430.
IS Photran - An integrated development environment and refacroring tool for Fortran. [Online]. Available:
http:! www.t':ciipse.org!photranJ

