Crop and Substrate Tests with Single Use Rooting "Pillows" for the VEGGIE Plant Growth Hardware Gioia Massa¹, Gerard Newsham², Janicce Caro², Gary Stutte², Robert Morrow³ and Raymond Wheeler¹

- 1. Surface Systems Division, Mail Code NE-S-1, Kennedy Space Center, FL 32899
- 2. ESC Team QNA, Mail Code ESC-24, Kennedy Space Center, FL 32899
- 3. Orbital Technologies Corporation, 1212 Fourier Drive, Madison, WI 53717

Email addresses: gioia.massa@nasa.gov, gerard.newsham-1@nasa.gov, janicce.l.caro@nasa.gov, gary.w.stutte@nasa.gov, morrowr@orbitec.com, raymond.m.wheeler@nasa.gov

Key Words: Food Production, Habitation, Life Support, Spaceflight

VEGGIE is a small plant production chamber built by ORBITEC. This chamber can be collapsed for easy stowage and deployed in orbit. It is designed for gravity independent operation, and provides 0.17 m² of crop growth area with three primary subsystems: an LED light panel, extendable transparent Teflon bellows to enclose the plants, and a wicking reservoir. VEGGIE would provide the capability for astronauts to grow fresh foods for dietary supplementation.

Initial planting concepts tested with the VEGGIE included direct seeding or plug placement on the reservoir surface. These options had issues of salt accumulation and eventual toxicity if the reservoir was filled with nutrient solution, and hardware reuse was limited due to sanitation. In response a rooting packet or "pillow" concept was developed: single-use bags of media containing time release fertilizer with a wicking surface contacting the VEGGIE reservoir. Pillows being tested are small electrostatic bags with a Nitex nylon mesh side, each holding 100 mL of dry media. Six pillows fit in one VEGGIE unit; however pillow size could vary depending on crop selected. Seeds can be planted directly in pillows and planted pillows can be hydrated in space as desired.

Our goals were to define optimal media and crops for an ISS mission scenario. Plant tests in pillows were performed in a controlled environment chamber set to habitat-relevant conditions, and capillary reservoir analogs were utilized. Media tested within pillows included: a commercial peat-based potting mix, arcillite (calcined clay), perlite: vermiculite, and peat-based: arcillite blends. Testing included 15 types of leafy greens, snow pea, radish, and herbs. Media performance was crop dependent, but generally plants showed the greatest growth in the peat-based: arcillite mixes. Crops with the best performance in pillows were identified, and testing is underway with select leafy greens examining plant and microbial load response to repeated harvest. We plan to use findings from previous flight testing with media to evaluate the effects of capillary flow from the reservoir to pillows in μ -gravity. (This work was supported by NASA).

Crop and Substrate Tests with Single Use Rooting "Pillows" for the VEGGIE Plant Growth Hardware

> Gioia Massa¹, Gerard Newsham², Janicce (Harp) Caro², Gary Stutte², Robert Morrow³ and Raymond Wheeler¹

NASA Kennedy Space Center, Surface Systems Division
 Kennedy Space Center, ESC Team QNA
 Orbital Technologies Corporation

American Society for Gravitational and Space Biology 2011, San Jose, CA

VEGGIE Vegetable Production Unit

LED Light Cap

Teflon Bellows

Reservoir

Designed and built by Orbital Technologies Corporation (ORBITEC)

Initial Planting Tests

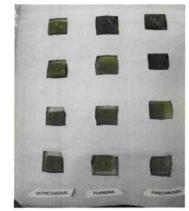
Planting directly over reservoir:
Stunted growth
Decline by 21 DAP
Stem girdling/collapse due to nutrient toxicity
Salt damage in roots
Water logging in roots

Planting in blocks/plugs on reservoir:
-in 1 X Hoagland solution:

Poor germinations
Salt build-up on plugs

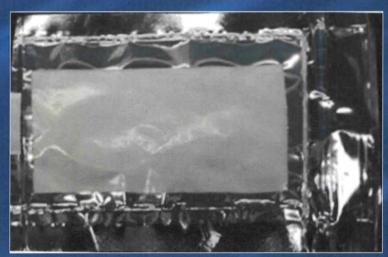
In ½ X Hoagland solution:

Slow growth
Severe stunting
Wilting
Salt build-up


One Layer Nitex with 1X Hoagland

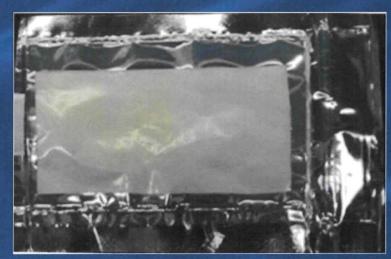
Two Layer Nitex with 1X Hoagland

Rockwool blocks at 7 DAP with 1X Hoagland


Oasis Plugs at 7 DAP with 1X Hoagland

Pillow Concept

- Small bag
 - Resealable
 - Static shielding
- Wicking surface
 - Heat-welded Nitex (nylon) membrane
 - Allows passive wicking from reservoir
- Media Contained
 - Testing underway
- Fertilizer Contained
 - Time release
 - Nutricote 18-6-8 selected



Pillow Concept (cont.)

- Plant seeds dry, in 1 g
 Low launch mass
- Hydrate on orbit
- No energy requirement
- Minimal crew time
- Designed for single use
- Dispose after harvest
- Reduces sanitation requirements

Pillow Testing in Reservoir Analog

Early Media Studies

Relatively equal root growth and shoot yields in both peat-based and arcillite media

Media and Cultivar Test #1

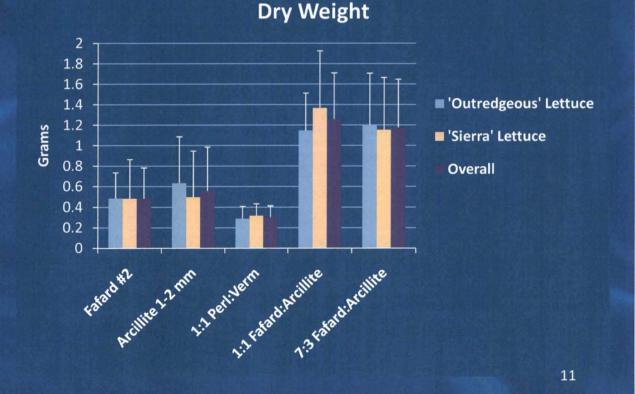
13 cultivars

- 'Outredgeous' lettuce
- 'Flandria' lettuce
- Mizuna
- 'Sierra' lettuce
- 'Oak leaf' lettuce
- 'Tender leaf' Vegetable Amaranth
- 'Bright lights' Swiss Chard
- 'Tokyo Bekana' Cabbage
- 'Sugar Pod II ' Snow Peas
- 'Spicy Globe' Basil
- 'Genovese' basil
- Common Chives
- Greek Oregano

5 types of media

- Fafard # 2 (commercial peat-based media)
- Arcillite (1-2mm)
- 1:1 Fafard # 2 : Arcillite
- 7:3 Fafard # 2 : Arcillite
- 1:1 Perlite : Vermiculite
- Reservoir analogs
- Walk-in growth chamber
- Temp. and RH (28°C, 70%)
- 16 h photoperiod
- Elevated CO₂ 1200 ppm
- Grown for 36 Days

Multiple Species and Cultivars


General Results – Cultivars and Media

Species/Cultivar Testing

- Best performance in pillows seen from cultivars of:
 - Snow Pea
 - Lettuce
 - Chinese Cabbage
 - Mizuna
 - Swiss Chard
 - Basil

Media Testing

 1:1 and 7:3 mixes support best growth

Different Media Types

Root Response Varies with Species and Media

Second Test

Cultivars

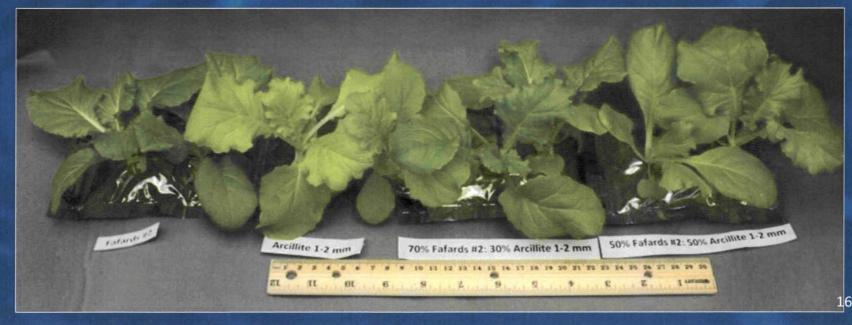
- 'Sugar Pod II' Snowpea
- 'Tokyo Bekana' Chinese Cabbage
- 'Bright Lights' Swiss Chard
- 'Outredgeous' Lettuce
- 'Cherry Bomb II' Radish

Media

- Fafard # 2 (commercial peat-based media)
- Arcillite (1-2mm)
- 1:1 Fafard # 2 : Arcillite
- 7:3 Fafard # 2 : Arcillite
- Same environmental conditions
- All cultivars tested with all media
- Larger sample sizes
- Grown for 28 Days

Space Competition

(28 DAP)

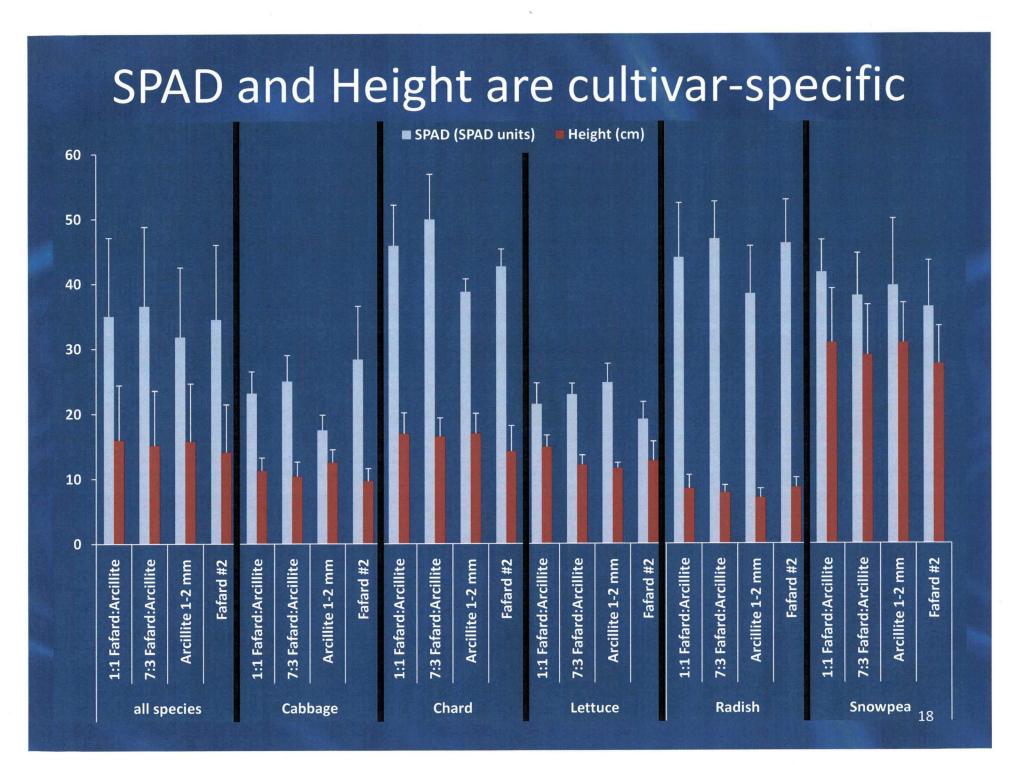


18 DAP

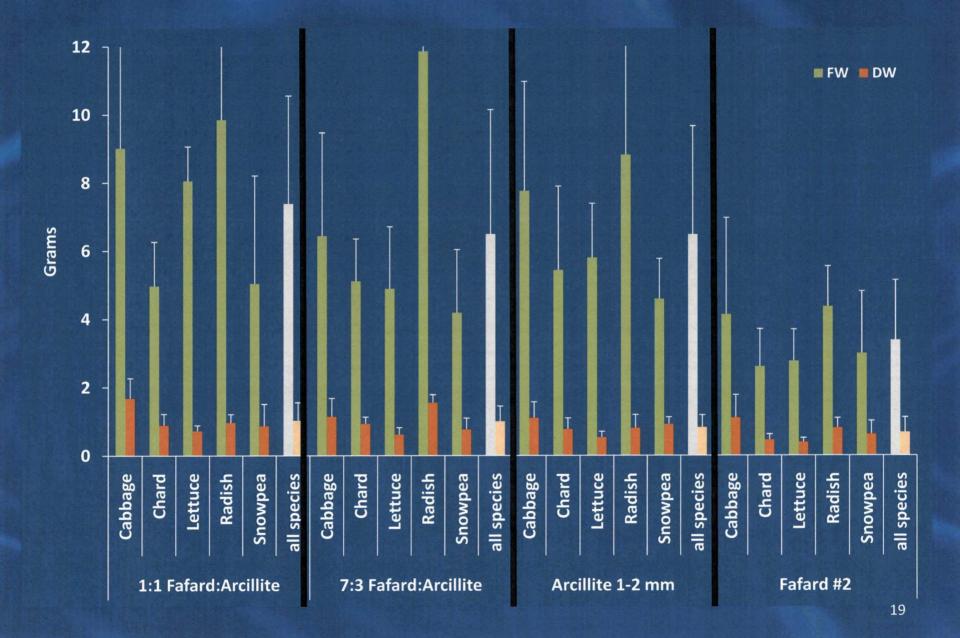
'Outredgeous' Lettuce

'Tokyo Bekana' Chinese Cabbage

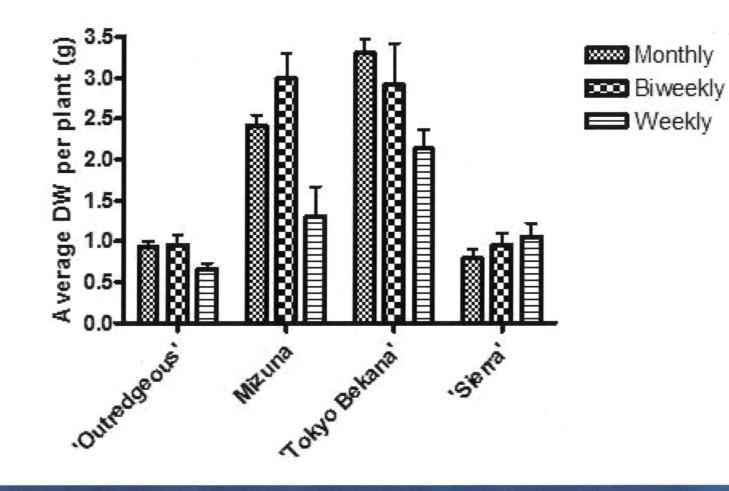



28 DAP

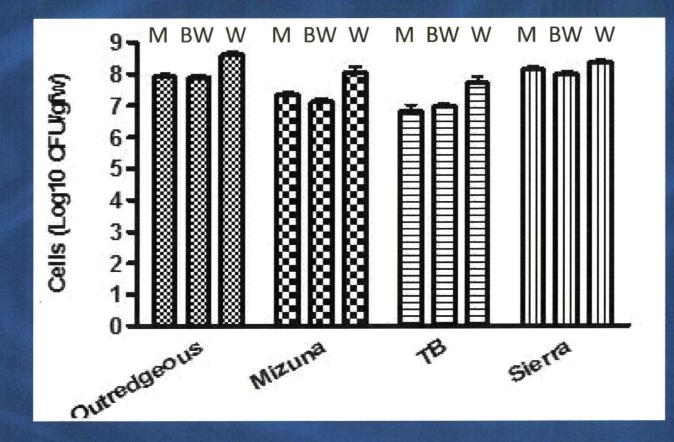
'Outredgeous' Lettuce



'Tokyo Bekana' Chinese Cabbage



Effect of Media



Next Steps

Harvest strategies

Next Steps Harvest strategies and microbial load

Graph courtesy of Anthony Nguyen

Next Steps (cont.)

Other media combinations

- Consideration of other factors:
 - Launch mass
 - Ease of rewetting
 - Uniformity
 - Storage
- Planting for microgravity

Media in Spaceflight – a few examples

- CHROMEX Floro foam (Musgrave)
- PGBA Agar and other media (Hohen)
- PTNDS porous tubes (PT) no media (Dreschel)
- SVET Balkanine zeolite (Ivanova & Bingham)
- ASTROCULTURE- Arcillite with PT (Morrow)
- Balkanine-Arcillite comparison (Jones & Or)
- PESTO Arcillite (1-2mm) with PT (Monje & Stutte)
- ORZS multiple media, no plants (Bingham et al.)

Acknowledgements

- Larry Koss
- Oscar Monje
- Mary Hummerick
- Anthony Nguyen
- NASA Postdoctoral Program administered by Oak Ridge Associated Universities

- NASA Innovative Partnership Program
- ISS Research
- Exploration Systems Mission Directorate (ESMD)