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SUMMARY

We describe the first use from space of the Bundle Protocol for Delay-Tolerant Networking (DTN) and
lessons learned from experiments made and experience gained with this protocol. The Disaster Monitoring
Constellation (DMC), constructed by Surrey Satellite Technology Ltd (SSTL), is a multiple-satellite Earth-
imaging low-Earth-orbit sensor network in which recorded image swaths are stored onboard each satellite
and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with
capture and later download gives each satellite the characteristics of a node in a disruption-tolerant
network. Originally developed for the ‘Interplanetary Internet,’ DTNs are now under investigation in an
Internet Research Task Force (IRTF) DTN research group (RG), which has developed a ‘bundle’
architecture and protocol. The DMC is technically advanced in its adoption of the Internet Protocol (IP) for
its imaging payloads and for satellite command and control, based around reuse of commercial networking
and link protocols. These satellites’ use of IP has enabled earlier experiments with the Cisco router in Low
Earth Orbit (CLEO) onboard the constellation’s UK-DMC satellite. Earth images are downloaded from the
satellites using a custom IP-based high-speed transfer protocol developed by SSTL, Saratoga, which
tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force
(IETF) for wider adoption. We experiment with the use of DTNRG bundle concepts onboard the UK-
DMC satellite, by examining how Saratoga can be used as a DTN ‘convergence layer’ to carry the DTNRG
Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. Our
practical experience with the first successful use of the DTNRG Bundle Protocol in a space environment
gives us insights into the design of the Bundle Protocol and enables us to identify issues that must be
addressed before wider deployment of the Bundle Protocol. Published in 2010 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Delay-Tolerant Networking (DTN) has been defined as the concept of end-to-end store-and-
forward delivery, capable of providing communications in highly-stressed or disrupted network

*Correspondence to: Lloyd Wood, Center for Communication Systems Research, University of Surrey, Guildford GU2
7XH, England, U.K.
yE-mail: L.Wood@surrey.ac.uk
zThis article is a U.S. Government work and is in the public domain in the U.S.A.

Published in 2010 by John Wiley & Sons, Ltd.



environments considered ‘unusual’ from the perspective of the terrestrial Internet [1]. DTN
networks can be thought of as operating across varying conditions along several different axes,
depending on the design of the subnet being traversed:

� low or high propagation delay;
� dedicated or shared, congested links and
� links with intermittent disruption and outages, or scheduled planned connectivity.

One way to provide the store-and-forward service in these DTN networks is a new ‘Bundle
Protocol’. This acts as an overlay to some number of constituent networks [2]. Key capabilities
of this Bundle Protocol include:

� Custody transfer—the ability for a bundle agent to take full responsibility for a bundle
reaching its final destination.

� Ability for implementations to cope with intermittent connectivity, if required.
� Ability for implementations to cope with long propagation delays, if required.
� Ability to take advantage of scheduled, predicted and opportunistic connectivity (in

addition to continuous connectivity).
� Late binding of endpoint identifiers in the overlay bundle network, to network addresses

in the underlying constituent networks [3].

The Bundle Protocol suite is intended to consist of a group of well-defined protocols
that, when combined, enable a well-understood method of performing store-and-forward
communications.

In a low-propagation-delay environments, such as may occur in near-planetary or terrestrial
environments, bundle agents can use chatty Internet transport protocols, such as TCP, that
negotiate connectivity and handshake connections in real time.

In high-propagation-delay environments, such as deep space, DTNRG bundle agents
must use other methods, such as some form of scheduling, to set up connectivity
between the two bundle agents, and can use less chatty transfer protocols over Internet
Protocol (IP).

The Bundle Protocol was originally developed for deep-space use, and was proposed as the
core of the ‘Interplanetary Internet’ for civil space missions. Evaluating the utility of the
Bundle Protocol in space has significant bearing on the development of this envisaged space
network.

Our experiments with the Bundle Protocol onboard the UK Disaster Monitoring
Constellation (UK-DMC) satellite did not have high propagation delays, but were intended
to experiment with the proactive fragmentation feature of the Bundle Protocol, which would
allow files to be transferred even when they are too large to be completely transferred during
a single contact opportunity over a ground station. The experiments also demonstrate the
utility of IP for space use, even though it is used in hop-by-hop data transfers to
destinations to get the most from the conditions on each local link, rather than in the ‘end-
to-end’ path paradigm found terrestrially. We describe our experiments, draw conclusions
about the Bundle Protocol, based on experience gained from those experiments, and briefly
summarize other later experiments in space with the Bundle Protocol. These experiments in
space have bearing on how the ‘Interplanetary Internet’ for civil space missions will be
developed.
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2. THE DMC OPERATING ENVIRONMENT

Low Earth Orbit (LEO) provides a low-propagation-delay environment of less than ten
milliseconds one-way delay to ground, with long periods of disconnection between scheduled
passes over ground stations.

For the DMC imaging satellites in LEO, contact times consist of five to fourteen minutes per
pass, depending on relative positioning of the ground station and satellite track, with one or two
available ground station contact times per 100min orbit.

The ground stations are connected across the public terrestrial Internet, which has different
operating conditions (shared, competing, congestion-sensitive, always on) from the private links
between satellite and ground station (intermittent but scheduled, and dedicated to downloading).

3. THE RATE MISMATCH PROBLEM

Figure 1 illustrates a LEO satellite ground network with a bundle agent sink located at a remote
location. The final destination for the downloaded imagery could be a satellite control station
and office or a laptop ‘in the field’ with wireless connectivity—it really doesn’t matter.

In this example, an image is to be transferred from the DTN source, the LEO satellite, to the
DTN sink. In this example, the image file is too large to be transferred during one pass over a
single ground station. Three passes are required to transfer the complete file to ground. These
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Figure 1. Use of bundling and fragmentation across multiple passes.

EXPERIENCE WITH DELAY-TOLERANT NETWORKING FROM ORBIT 337

Published in 2010 by John Wiley & Sons, Ltd. Int. J. Satell. Commun. Network. 2010; 28:335–351

DOI: 10.1002/sat



could either all be through the same ground station, or could utilize three different ground
stations, from left to right in the diagram.

In the example in Figure 1, the minimum time a complete image file could be transferred
using a single ground station is a little over 300min, assuming one pass per 100-min orbit.
However, using three different ground stations, the entire image could be downloaded in a
fraction of an orbit, by downloading fragments of the image to each ground station and
reassembling the complete image file on the ground.

If some type of rate-based file transfer is used between the sink and source, problems will
arise if ground link capacity does not match or exceed the rate of the space-to-ground link; the
transfer becomes limited by any bottleneck in the path. In order to increase the download rates
across each link, the transfer can be split into multiple separate hops, where the download is
stored and forwarded locally across each hop. Note, this is the situation whether using a single
ground station or multiple ground stations.

The requirement is to get the image off the spacecraft as efficiently as possible, as spacecraft
pass time is the major constraint, and then transfer separately across the different environment
of the terrestrial Internet afterwards.

The Internet Research Task Force (IRTF) DTN Research Group’s Bundle Protocol is one
example of a way to provide such functionality to split the path into separate hops and control
loops. It can therefore compensate for rate mismatches between the private space-to-ground link
and the shared path between ground station and remote destination for the image.

4. CHARACTERISTICS OF THE UK-DMC SATELLITE

The UK-DMC satellite is one of seven similar imaging satellites currently launched into Low
Earth Orbit (LEO) in similar sun-synchronous planes. It was launched in September 2003, with
a design lifetime of five years. This imaging constellation continues to grow, with at least two
more satellites to be added in the next two years to maintain a continuous on-orbit imaging
capability. Although most of these satellites are government-owned, the UK-DMC satellite is
also used to provide imagery for commercial resale when not otherwise tasked in imaging
campaigns or supporting disaster relief. Anyone may buy a requested image [4].

The UK-DMC is primarily an operational imaging satellite and not an experimental satellite.
However, Surrey Satellite Technology Ltd (SSTL) has also run secondary experiments onboard
the UK-DMC, such as investigating GPS reflectometry [5], and networking experiments have
taken advantage of an onboard Internet router [6, 7]. SSTL continues to permit NASA Glenn to
utilize the UK-DMC satellite for experimentation with new forms of networking.

The UK-DMC satellite’s onboard payloads include:

� The Cisco router in Low Earth Orbit (CLEO)—CLEO has been used for network testing
and is its own experiment to simply show that a commercial-off-the-shelf router could
survive and function in orbit. CLEO is not used for DTNRG Bundle Protocol testing.

� Three solid-state data recorders (SSDRs)

J one SSDR based around a StrongARM Processor, supporting the onboard GPS
reflectometry experiment.

J two SSDRs with Motorola MPC8260 PowerPC processors, supporting the imaging
cameras. One of these SSDRs is used for DTN testing. These run the RTEMS
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operating system, which supports the POSIX API and BSD sockets. These have a
constrained operating system firmware size limit of 1Mbyte and storage capacities of
1-Gbyte and 512-Mbyte RAM, respectively.

� An uplink of 9600 bits per second and a downlink of 8.134Mbps—this is highly
asymmetric. Both links use the proven IPv4/Frame Relay/HDLC commercial-standard
protocol stack developed for space use by Hogie et al. [8]. IPv6 has been tested over these
links, using the onboard CLEO router [9, 10]. The IP-based transport protocol used for
downloading images is SSTL’s original implementation of Saratoga, called version 0
based on its version field, running over UDP.

Saratoga version 0 is the existing operational SSTL file transfer protocol, originally
developed to replace and improve transfer performance rates over an implementation of
CCSDS File Delivery Protocol (CFDP) that was previously used by SSTL. Saratoga version 1 is
a slightly improved specification, with enhancements to Saratoga version 0, which has now been
documented publicly as a contribution to the Internet Engineering Task Force (IETF) [11].

Our use of Saratoga as a bundle convergence layer to carry DTNRG bundles has also been
publicly documented [12].

5. EXPERIMENTAL BUNDLING IMPLEMENTATION

5.1. Onboard the UK-DMC satellite

Figures 2 and 3 show how DTNRG bundling is implemented onboard the UK-DMC and in the
ground infrastructure.
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Figure 2. The protocol stacks used for these Bundle Protocol tests.
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The Saratoga implementation (at the time of experimentation, the operational version 0,
rather than the later, publicly documented version) acts as a bundle transport ‘convergence’
layer on the space-ground link. Only the bundle-forwarding portion of the Bundle Protocol was
implemented onboard as a simple networking ‘shim’ as available code space is constrained.
A goal is to have the onboard Bundle Protocol implementation be transparent to normal
UK-DMC operations, living side-by-side with the existing operational code in a non-disruptive
manner. This was considered acceptable for testing as the UK-DMC acts only as a source of
DTN data and does not need to receive and parse bundles from elsewhere.

The DTN bundle-receiving intelligence only needed to be present in the ground station
implementation of the Saratoga client and the bundle agent. The Saratoga client in the ground
station queries the UK-DMC satellite for a directory of files, and then requests any bundle
metadata files with a ‘.dtn’ extension and an associated satellite image file that contains
the payload used to construct the bundle. The satellite image file and the associated metadata
files are transferred to the ground, where the Saratoga client reassembles the bundles and
then presents them to the full bundle agent—full DTN2 dtnd bundle agent implementations
were used both at the ground station and the final DTN destination [13]. Finally, to
demonstrate proactive fragmentation, the bundle fragments are reassembled at the final DTN
destination.

Deploying bundle functionality on the satellite required that all the new pieces of that
functionality were first implemented and tested on the ground against emulated pieces of the rest
of the operational system.

5.2. Ground development and testing

Figure 4 shows the DTN ground testbed, where bundling over Saratoga was prototyped, with a
schematic diagram given in Figure 5.

Bundling and 
Forwarding 

implemented

Full Bundle Agents 
implemented

SSTL 
Saratoga

Client

Bundling and 
Forwarding 

implemented

Full Bundle Agents 
implemented

SSTL 
Saratoga

Client

separate download allows file
validation against usual SaratogaSaratoga

Figure 3. How bundling was implemented for downloads from the UK-DMC satellite.
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This development testbed, which reused the CLEO ground-based testbed duplicating in-orbit
UK-DMC hardware, contains:

� The PowerPC-based SSDR that resides in the CLEO engineering model, where the bundle
file is generated by reading data from an emulated satellite imaging device.

� A channel emulator that emulates the 9600-bps uplink and the 8.134-Mbps downlink.
This uses a Spirent SX-14 data link simulator to provide channel delay and bit-error-rate
emulation independently on both the uplink and downlink.

� A bundle agent acting as the ground station, which queries the DTN source onboard the
SSDR for files and bundles sent using the Saratoga version 0 transfer protocol.

� A remote sink for bundles—another bundle agent.

All network-layer communications used IPv4. The simulated space/ground data link was
implemented using Frame Relay and HDLC to match the real space/ground link as closely as
possible.

We also deployed bundle agent software at several remote ground stations to create a hub-
and-spoke topology around NASA Glenn Research Center (GRC)’s bundle agent, to gain
experience with managing bundle agent deployment on the scale needed for coordinating
multiple ground stations for cooperative fragmented large file transfers.

5.3. Overall goals of these bundle experiments

The goals of the experiments were to:

� demonstrate that NASA Glenn’s code additions can coexist with SSTL’s code without
affecting normal SSTL spacecraft or ground station operations;

� demonstrate bundle transfers from the UK-DMC satellite to SSTL and NASA Glenn and
� demonstrate proactive fragmentation of bundles to allow downloads across multiple passes.

The ability to run bundling without affecting normal SSTL operations can allow the DTN
bundling code to remain loaded as part of the operational system. NASA Glenn will not need to
take the UK-DMC out of normal operations for dedicated experimental use. This lack of
impact on normal imaging operations and decreased opportunity cost will result in significant
cost savings for future tests and demonstrations.

Demonstrating normal DTNRG bundle transfers verifies DTN operation and shows that
Saratoga can also be used as a bundle convergence layer. Proactive fragmentation allows the
download to tolerate disruption between satellite passes, and is required to perform large file
transfers over multiple passes and multiple ground stations.

6. BUNDLING TESTS FROM ORBIT

To efficiently run as many bundling tests as possible during a single satellite contact time, an
analysis was performed to determine the optimal satellite image size to take. During a ten-minute
pass over a ground station, just over 600Mbytes of data can be transferred from the UK-DMC
satellite; this varies with the elevation and duration of the pass over the ground station. Calculations
suggested that, in the likely pass time available, an image size of approximately 160Mbytes would
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allow us to carry out a full 160-Mbyte file transfer, a 160-Mbyte bundle transfer and two 80-Mbyte
bundle fragment transfers during a single satellite pass (single continuous contact).

Figure 6 shows how bundles were created onboard the UK-DMC satellite. When the image
was acquired, the large 150-Mbyte image was stored in the SSDR and automatically named by
the operating system. Small metadata files were created by our modifications to accompany the
image files.

6.1. Initial January 2008 on-orbit tests

Partially-successful tests of bundling image files over Saratoga were carried out on 25 January
2008. Three UK-DMC satellite passes were taken to test the latest NASA/Cisco/SSTL firmware
code supporting Saratoga/DTNRG bundling. Four tests were performed:

� Basic image file download, using existing Saratoga file transfer techniques (NASA GRC’s
implementation of Saratoga version 0).

� Download of that file as a DTNRG bundle.
� Download of the same file, using proactive fragmentation with 80-Mbyte preconfigured

fragments, by creating additional small files containing metadata information (Figure 7).
� Normal file transfer using SSTL’s workstation and SSTL’s implementation of Saratoga

version 0. This provided an operational control to be compared with the first three
experiments.

For test 1, the satellite image file, DU00076pm, was received at the SSTL ground station in
Guildford, England using NASA Glenn’s implementation of Saratoga version 0. This file was then
transferred to NASAGRC over the public Internet using the normal File Transfer Protocol (FTP).

For test 2, the satellite image file, DU00076pm, and associated bundle metadata file for the full
bundle, DU00076pm.dtn, were received by the Saratoga client on the ground and presented as a
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Figure 6. Bundles on the UK-DMC.
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full bundle to the bundling agent, Bundling-SSTL, at SSTL’s ground station. This was resent as a
full bundle across the Internet to the NASA Glenn Research Center DTN sink, Bundling-GRC1,
using the TCP convergence layer implemented in the DTN2 dtnd implementation [14].

For test 3, proactive fragmentation, the first proactively-fragmented bundle file from the UK-
DMC was received on the ground by the Saratoga client. The fragmentation bundle was
reconstituted and presented to the DTNRG bundle agent, Bundling-SSTL. This bundle
fragment was then automatically transferred from Bundling-SSTL to Bundling-GRC1 using
dtnd. The second proactive fragmentation bundle was not retrieved. On further investigation,
the directory and the syslog file onboard the UK-DMC indicated that the first fragmentation
metadata file was created, but not the second. Post-experiment analysis showed that SSTL’s
operating system limits file names to 32 characters. This is a settable parameter. The file name,
DU000c76pm.79999999-153700328.dtn, is 33 characters long and thus the file was not created.

Initial results showed all image files reconstructed at the GRC bundle sink had the correct file
size, but that the file contents did not match, as there were long strings of zeros in various places
in each file. The placement of these long strings of zeros differed for each file. These errors in
assembling the bundle at the destination went entirely undetected by the Bundle Protocol.

SSTL performed an additional control test, test 4, where the ground station computer
running the GRC bundle agent and Saratoga client was replaced by one with SSTL’s normal
Saratoga client (Figure 3). That copy of the 150-Mbyte image was downloaded without errors.

On the first pass, tests 1 and 2 were successful regarding the operation of the Bundle Protocol
and the ability to either use either Saratoga for straight file transfers or Saratoga with bundling
to transfer DTNRG bundles between the UK-DMC payloads and the ground, demonstrating
bundle delivery from space. Also, the DTN2 forwarding agent, Bundling-SSTL, was able to
automatically forward the DTN bundles to a DTN2 bundling agent at NASA Glenn Research
Center, Bundling-GRC1. It was then possible to extract the image file from the bundle.

The post-test analysis revealed a number of minor problems in the experiments conducted.
The reconstructed bundle payload and image file (tests 1 and 2) did not match. The bundling
and forwarding worked, but there was a problem in the NASA GRC implementation of the
Saratoga client regarding filling holes in missed data. Retransmission requests, to resend packets
errored and dropped during the start and end of the pass, were not being performed properly.
This programming problem was later fixed and tested extensively on the ground testbed using
the channel emulator to introduce bit errors.

DU000c76pm

DU000c76pm.0-79999999.dtn

DU000c76pm.79999999-153700328.dtn

DU000c76pm.dtn

Figure 7. File naming convention.
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A programming problem was also found in the DTN2 code implementation put on the SSTL
bundling agent in the ground station, as a bundle became stuck in a temporary file and was
never transferred to GRC.

6.2. Successful August 2008 on-orbit tests

An unsuccessful bundle image download was carried out during two passes on 26 August, using
an older code version that led to corrupted fragments.

Replacement code, with a bugfix giving correct fragmentation offsets, was then uploaded to the
UK-DMC’s SSDR. A remote sensing image swath over South Africa was taken on 08:27 UTC on
27 August 2008. Successful download tests, with reassembly of that proactively-fragmented image
file downloaded over two passes, were carried out that morning and are the first successful uses of
the Bundle Protocol from space [15]. In these successful tests, the image taken by the UK-DMC
satellite’s cameras was stored as a single bundle as well as proactively fragmented into two bundles
onboard the UK-DMC’s SSDR, as previously shown in Figure 6. These bundle fragments were
then downloaded during two passes over SSTL’s ground station, to a bundle agent living on a
computer donated by NASAGlenn. That bundle agent then forwarded the bundle fragments over
TCP to NASA Glenn Research Center, in Cleveland, Ohio, where the fragments were
reassembled into a 150-Mbyte file containing the raw sensor data.

That file was then returned to SSTL for post-processing to generate the final image. Figure 8
shows the resulting image of Southern Africa. The Cape of Good Hope and False Bay are to the
west. This is a false-color image; vegetation is red, whereas the Karoo desert, inland on the
plateau, is gray.

The image data was also downloaded using SSTL’s standard operational method, using
Saratoga version 0 only, for comparison with the bundle delivery method and validation of the
bundle delivery.

We noticed some minor differences in operation and performance between the NASA Glenn
and SSTL implementations of Saratoga.

The NASA Glenn Saratoga implementation can currently time out and reset to requesting
the start of the file, rather than the left edge of its window. This needs to be fixed for efficient
resumption of disrupted transfers via Saratoga.

Figure 8. Image delivered via bundles: first useful sensor data delivered from space via the Bundle Protocol.
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The more mature SSTL Saratoga implementation performs slightly more efficiently by
combining selective negative acknowledgements for nearby blocks even though some
unnecessary data resend results. This technique avoids congestion of the bottleneck 9600-bps
uplink, leading to better download performance when the bit error rate is high, which is mostly
at the start and end of passes when the satellite is at a low elevation.

7. ISSUES ENCOUNTERED IN THE CURRENT BUNDLE PROTOCOL DESIGN

Our practical experience, recounted in this study, and other detailed analyses have enabled us to
identify a number of problems with the current design of the Bundle Protocol.

In this study, we summarize some of the significant problems with the Bundle Protocol that
we have encountered during our practical testing. These and other problems and related issues
are discussed in greater detail elsewhere [16].

7.1. Reliability, error detection and checksums

We earlier described problems encountered in our January 2008 testing due to the lack of error
checking in the Bundle Protocol.

The current published Bundle Protocol specification does not address reliability, in that it has
no checksum support for error detection and rejection of corrupted bundles. That means that
one cannot easily determine if the bundle information received at each node was received error-
free or not.

Error detection is a very basic networking concept that was overlooked in the Bundle
Protocol design. The design of the bundle architecture completely ignores the well-known end-
to-end principle [17].

Without useful error detection, the Bundle Protocol’s custody transfer mechanism cannot
guarantee that a node taking responsibility for final delivery of a bundle has actually received an
uncorrupted copy of that bundle to send on.

The Bundle Protocol is intended to permit delivery of errored content, as some applications
may find it desirable to receive errored content rather than no content at all, in the case where a
bundle is corrupted [18]. However, the basic Bundle Protocol does not protect its own header
data, nor does it satisfy the needs of applications that do not inherently tolerate payload bit
errors and that expect a transport to provide reliability.

Leaving error recovery up to the applications is only possible when the applications are
tightly coupled across the network, with a tight control loop for resends of errored data. DTN
networks, by their ad hoc nature, are loosely coupled, and there may not be any direct
communication or control loop between applications at end nodes, requiring increased
assistance from the network to improve performance—in line with the end-to-end principle.

We have proposed a workaround extension to the Bundle Protocol to add reliability into the
existing protocol infrastructure. This is to use the bundle security specification and to wrap the
bundle using a reliability-only cipher (a null-keyed hash function construction) rather than
relying on a security cipher (a keyed Message Authentication Code or signature algorithm)
that provides a reliability check as a side effect of security [19]. However, this bundle security
specification was not implemented onboard the UK-DMC satellite. Using the existing
bundle security protocol to support reliability also has some drawbacks, as discussed in detail
elsewhere [16].
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To provide a measure of reliability checking, we have now implemented an optional MD5
checksum for the Saratoga protocol, which can be used to compare hash values of files before
and after downloading. The MD5 computation can take several minutes to run over a large file
hence is likely to be used sparingly onboard. Given that image data is often downloaded in ‘one
shot’ before being deleted to make room for new images, and post-processed heavily with
human inspection, the need to resend image files with slight corruption is minor, although
knowing where that corruption may lie in the image data would be useful. However, overall
reliability checking becomes very important when e.g. uploading code to be executed.

7.2. Time synchronization problems

A clock synchronization problem was experienced during initial ground testing. All bundle
agents were originally configured and tested at NASA GRC in Cleveland, Ohio. One bundle
agent was sent to Guildford, England. A second was sent to Universal Space Network (USN) in
Alaska. When performing initial bundle transfers from SSTL to GRC to USN, it was noticed
that the machine clocks had drifted far apart enough to result in the bundle creation time stamps
being out of synchronization. The bundles were therefore rejected due to mismatches in system
times leading to unexpected expiry of the bundles. Once the machines were resynchronized,
bundle transfers operated correctly. Bundle expiry times could have been increased and set
further into the future to tolerate this clock slippage, but this would not have prevented the
problem of bundles being sent ‘from the future’ to a node with a slow clock.

Our initial ground testing made clear that network time synchronization is critical for the
Bundle Protocol, which assumes that all communicating bundle nodes share a common,
synchronized, understanding of local UTC time. This is probably not a reasonable requirement
for many DTN networks. Many DTN networks will have non-deterministic time-varying
topologies making time synchronization more difficult. Furthermore, the Bundle Protocol may
be running on low-end hardware in ad hoc networks in highly-stressed environments. The
requirement that all DTN networks running the Bundle Protocol must be synchronized to
enable interoperation is not necessarily one that is either practical or deployable. Network
robustness is sacrificed by this design choice.

With scheduled LEO passes over a ground station, it is necessary to know what the time is to
support the pass opportunity. However, in our initial CLEO/Virtual Mission Operations Center
testing, nodes in the field at Vandenberg were still able to operate with clocks set several minutes
adrift; the loosely-coupled architecture tolerated this [7].

Expecting DTN nodes with loosely-coupled ad hoc connectivity to be tightly coupled with
respect to their understanding of clock time has interesting ramifications. A side effect of
requiring shared use of UTC time is that it would not be possible for a node to learn the correct
time using the Bundle Protocol, as its bundles sent asking for the time are likely to be judged
expired or invalid and be discarded, based on their erroneous timestamps. Another protocol
would be required to do clock ‘housekeeping’. Another concern is that for nodes ‘in the field’ for
a long time (decades), some way of communicating newly-decided leap seconds would be
required to prevent clock drift that would eventually inhibit transfers of bundles with short
expiration times.

Problems with a shared universal clock were articulated at the 71st IETF meeting in March
2008. Others have noted similar problems in experiments funded through DARPA and other
programs [20].
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8. OTHER LATER TESTS IN SPACE

The Bundle Protocol was later tested in space in October and November 2008 by NASA’s Jet
Propulsion Laboratory. The Deep Impact Network Experiment (DINET) was conducted
onboard the Deep Impact comet probe, in cooperation with the Extrasolar Planet Observation
and Deep Impact eXtended Investigation (EPOXI) project [21].

In those later experiments, small images were uploaded to the spacecraft, where a bundle
agent acted as a relay, and then returned to a terrestrial network.

File transfers were conducted using the Bundle Protocol and the Licklider Transmission Protocol
(LTP) over the existing network infrastructure of the spacecraft, which uses CFDP [22]. The
resulting network stack structure is shown in Figure 9, which can be compared with Figure 2.

DINET implemented a full DTN store-and-forward relay, including automated routing
using Contact Graph Routing (CGR) [23] and compressed bundle header compression (CBHE)
[24] to compact bundle headers. CGR requires a priori knowledge of all contacts, which is not
unreasonable for a deep-space network. CBHE requires use of a highly-simplified naming
scheme that is applicable to a small deep-space backbone.

DINET was a successful experiment showing the applicability of bundling and automated
routing to deep space networks. Bundle sizes sent were limited to 64Kbytes; therefore,
thumbnail images were used as data, uploaded from Earth, and relayed back to Earth. As
DINET was an add-on experiment and was not to interact with mission-critical flight code, it
was not given access to onboard sensors. CCSDS protocols were used for the space links
(Figure 9).
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Figure 9. DINET Deep Impact stack [25].
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The Internet Protocol was not used onboard Deep Impact or in the space portion of DINET,
although these experiments were hailed as the start of the ‘Interplanetary Internet’ [26].

Deep Impact’s clock drifts considerably in the cold of space, and had to be reset before each
DINET test [27]. This has accord with the problems that we experienced with lack of clock
synchronization adversely affecting bundle use.

Both the UK-DMC and DINET bundling experiments leveraged existing available network
stacks that already supported packet-based transmission. Both the DMC’s Saratoga and Deep
Impact’s CFDP installations were modified to support the Bundle Protocol, either by carrying
bundles directly or by carrying bundles within LTP.

Neither experiment implemented the Bundle Security Protocol onboard the spacecraft.

9. CONCLUSIONS

DTN Bundle Protocol transfers have now been successfully demonstrated from the orbit with
the download of sensor data in proactively fragmented bundles.

This has demonstrated the ability to download data across multiple satellite passes, despite
the disruption and link loss experienced between those passes.

The DTN bundling shim onboard the UK-DMC and the ground station Saratoga client and
the bundle reconstitution mechanisms should continue to operate without affecting normal UK-
DMC operations, giving access to an operational DTN testbed in-orbit when the UK-DMC’s
busy operational schedule permits.

Our practical experience gained with implementing and operating the Bundle Protocol from
the orbit enables us to consider aspects of the Bundle Protocol’s design.

The lack of integrity checksums for reliability checks in the Bundle Protocol and the need for
network time synchronization were shown to be real deployment issues during our first tests,
and we are investigating new checksum mechanisms for the Bundle Protocol and ways to
remove the protocol’s dependence on clock synchronization.

The addition of a common Bundle Protocol overlay can facilitate more automated routing of
data and increase interoperability for network-centric operations between organizations and
assets. We hope that the problems with the Bundle Protocol that we have experienced and
identified will be addressed in the later versions of the DTN architecture and Bundle Protocol
specifications.

The DMC satellites and their use of IP for imaging transfers provide working
operational examples of effective use of IP for sensor networks. This allows easy integration
with the terrestrial Internet for data delivery. This mission-critical use of the Saratoga protocol
and IP to carry sensor data performs well on a daily basis, without requiring the Bundle
Protocol.
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