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Abstract 
 

This paper proposes formulations and algorithms for design optimization under both 
aleatory (i.e., natural or physical variability) and epistemic uncertainty (i.e., imprecise 
probabilistic information), from the perspective of system robustness. The proposed 
formulations deal with epistemic uncertainty arising from both sparse and interval data 
without any assumption about the probability distributions of the random variables. A 
decoupled approach is proposed in this paper to un-nest the robustness-based design from 
the analysis of non-design epistemic variables to achieve computational efficiency. The 
proposed methods are illustrated for the upper stage design problem of a two-stage-to-
orbit (TSTO) vehicle, where the information on the random design inputs are only 
available as sparse point and/or interval data. As collecting more data reduces uncertainty 
but increases cost, the effect of sample size on the optimality and robustness of the 
solution is also studied. A method is developed to determine the optimal sample size for 
sparse point data that leads to the solutions of the design problem that are least sensitive 
to variations in the input random variables.  
 
 

1. Introduction 
 

In deterministic design optimization, it is generally assumed that all design variables 

and system variables are precisely known; the influence of natural variability and data 

uncertainty on the optimality and feasibility of the design is not explicitly considered. 

However, real-life engineering problems are non-deterministic, and a deterministic 

assumption about inputs may lead to infeasibility or poor performance (Sim, 2006). In 

recent years, many methods have been developed for design under uncertainty. 

Reliability-based design (e.g., Chiralaksanakul and Mahadevan, 2005; Ramu et al, 2006; 

Agarwal et al, 2007and Du and Huang, 2007) and robust design (e.g., Parkinson et al, 
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1993; Du and Chen, 2000; Doltsinis and Kang, 2004 and Huang and Du, 2007) are two 

directions pursued by these methods. While reliability-based design aims to maintain 

design feasibility at desired reliability levels, robust design optimization attempts to 

minimize variability in the system performance due to variations in the inputs (Lee et al, 

2008). In recent years, several methods have also been proposed to integrate these two 

paradigms of design under uncertainty (e.g., Du et al, 2004, Lee et al, 2008). 

Taguchi proposed robust design methods for selecting design variables in a manner 

that makes the product performance insensitive to variations in the manufacturing process 

(Taguchi, 1993). Taguchi’s methods have widespread applications in engineering; 

however, these methods are implemented through statistical design of experiments and 

cannot solve problems with multiple measures of performances and design constraints 

(Wei et al, 2009). With the introduction of nonlinear programming to robust design, it has 

become possible to achieve robustness in both performance and design constraints (Du 

and Chen, 2000). 

The essential elements of robust design optimization are: (1) maintaining robustness 

in the objective function (objective robustness); (2) maintaining robustness in the 

constraints (feasibility robustness); (3) estimating mean and measure of variation 

(variance) of the performance function; and (4) multi-objective optimization. The rest of 

this section briefly reviews the literature with respect to these four elements and 

establishes the motivation for the current study. 

Objective robustness 

In robust optimization, the robustness of the objective function is usually achieved by 

simultaneously optimizing its mean and minimizing its variance. Two major robustness 
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measures are available in the literature: one is the variance, which is extensively 

discussed in the literature (Du and Chen, 2000; Lee and Park, 2001 and Doltsinis and 

Kang, 2004) and the other is based on the percentile difference (Du et al, 2004). Although 

the percentile difference method has the advantage that it contains the information of 

probability in the tail regions of the performance distribution, this method is only 

applicable to unimodal distributions. Variance as a measure of variation of the 

performance function can be applied to any distribution (unimodal or multimodal), but it 

only characterizes the dispersion around the mean (Huang and Du, 2007). 

Feasibility robustness 

Feasibility robustness i.e., robustness in the constraints can be defined as satisfying 

the constraints of the design in the presence of uncertainty. Du and Chen (2000) 

classified the methods of maintaining feasibility robustness into two categories, methods 

that use probabilistic and statistical analysis, and methods that do not require them. 

Among the methods that require probabilistic and statistical analysis, a probabilistic 

feasibility formulation (Du and Chen, 2000 and Lee et al, 2008), and a moment matching 

formulation (Parkinson et al, 1993) have been proposed. Du and Chen (2000) used a most 

probable point (MPP)-based importance sampling method to reduce the computational 

burden associated with the probabilistic feasibility formulation. The moment matching 

formulation is a simplified approach which requires only the constraints on the first and 

second moments of the performance function to be satisfied, and assumes that the 

performance function is normally distributed. A variation of this approach, the feasible 

region reduction method has been described in Park et al (2006), which is more general 

and does not require the normality assumption. This is a tolerance design method, where 
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width of the feasible space in each direction is reduced by the amount k , where k is a 

user-defined constant and   is the standard deviation of the performance function. This 

method only requires the mean and variance of the performance function.  

Methods that do not require probabilistic and statistical analysis are also available, for 

example, worst case analysis (Parkinson et al, 1993), corner space evaluation 

(Sundaresan et al, 1995), and manufacturing variation patterns (MVP) (Yu and Ishii, 

1998). A comparison study of the different constraint feasibility methods can be found in 

Du and Chen (2000). 

Estimating mean and variance of the performance function 

Various methods have been reported in the literature to estimate the mean and 

standard deviation of the performance function. These methods can be divided into three 

major classes: (i) Taylor series expansion methods, (ii) sampling-based methods and (iii) 

point estimate methods (Huang and Du, 2007).  

The Taylor series expansion method (Haldar and Mahadevan, 2000; Du and Chen, 

2000; and Lee et al, 2001) is a simple approach. However, for a nonlinear performance 

function, if the variances of the random variables are large, this approximation may result 

in large errors (Du et al., 2004). Although a second-order Taylor series expansion is 

generally more accurate than the first-order approximation, it is also computationally 

more expensive. 

 Sampling-based methods require information on distributions of the random 

variables, and are expensive. Efficient sampling techniques such as importance sampling, 

Latin hypercube sampling, etc. (Robert and Cesalla, 2004) can be used to reduce the 

computational effort, but are still prohibitive in the context of optimization. Surrogate 
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models (Ghanem and Spanos 1991; Bichon et al, 2008; Cheng and Sandu, 2009) may be 

used to further reduce computational effort.  

In an attempt to overcome the difficulties associated with the computation of 

derivatives required in Taylor series expansion, Rosenlblueth (1975) proposed a point 

estimate method to compute the first few moments of the performance function. Different 

variations of this point estimate method (Hong, 1998; Zhao and Ono, 2000 and Zhao and 

Ang, 2003) have been studied. Although point estimate methods are easier to implement, 

the accuracy may be low and may generate points that lie outside the domain of the 

random variable. 

Multi-objective optimization 

Robustness-based optimization considers two objectives: optimize the mean of the 

objective function and minimize its variation. An extensive survey of the multi-objective 

optimization methods can be found in Marler and Arora (2004). Among the available 

methods, the weighted sum approach is the most common approach to multi-objective 

optimization and has been extensively used in robust design optimization (Lee and Park, 

2001; Doltsinis and Kang, 2004; Zou and Mahadevan, 2006). The designer can obtain 

alternative design points by varying the weights and can select the one that offers the best 

trade-off among multiple objectives. Despite its simplicity, the weighted sum method 

may not obtain potentially desirable solutions (Park et al, 2006). Another common 

approach is the ε-constraint method in which one of the objective functions is optimized 

while the other objective functions are used as constraints. Despite its advantages over 

weighted sum method in some cases, the ε-constraint method can be computationally 

expensive for more than two objective functions (Mavrotas, 2009). 
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Other methods include goal programming (Zou and Mahadevan, 2006), compromise 

decision support problem (Bras and Mistree, 1993, 1995; Chen et al, 1996), compromise 

programming (CP) (Zalney, 1973; Zhang, 2003; Chen et al, 1999) and physical 

programming (Messac, 1996; Messac et al, 2001; Messac and Ismail-Yahaya, 2002; Chen 

et al, 2000). Each of these methods has its own advantages and limitations.  

Although there is now an extensive volume of literature for robust optimization 

methods and applications, all these methods have only been studied with respect to 

physical or natural variability represented by probability distributions. Uncertainty in 

system design also arises from other contributing factors. Sources of uncertainty may be 

divided into two types: aleatory and epistemic (Oberkampf et. al., 2004). Aleatory 

uncertainty is irreducible. Examples include phenomena that exhibit natural variation like 

operating conditions, material properties, geometric tolerances, etc. In contrast, epistemic 

uncertainty results from a lack of knowledge about the system, or due to approximations 

in the system behavior models, or due to limited or subjective (e.g., expert opinion) data; 

it can be reduced as more information about the system is obtained.  

One type of data uncertainty involves having limited data to properly define the 

distribution parameters of the random variables. This type of uncertainty may be reduced 

by collecting more data. In some cases of data uncertainty, distribution information of a 

random variable may only be available as intervals given by experts. The objective of this 

paper is to develop an efficient robust optimization methodology that includes both 

aleatory and epistemic uncertainty described through sparse point data and interval data. 

A few studies on robust design optimization are reported in the literature to deal with 

epistemic uncertainty arising from lack of information. Youn et al (2007) used a 
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possibility-based method, and redefined the performance measure of robust design using 

the most likely values of fuzzy random variables. Dai and Mourelatos (2003) proposed 

two two-step methods for robust design optimization that can treat aleatory and epistemic 

uncertainty separately using a range method and a fuzzy sets approach. Most of the 

current methods of robust optimization for epistemic uncertainty need additional non-

probabilistic formulations to incorporate epistemic uncertainty into the robust 

optimization framework, which may be computationally expensive. However, if the 

epistemic uncertainty can be converted to a probabilistic format, the need for these 

additional formulations is avoidable, and well-established probabilistic methods of robust 

design optimization can be used. Therefore, there is a need for an efficient robust design 

optimization methodology that deals with both aleatory and epistemic uncertainty.  

In this paper, we propose robustness-based design optimization formulations that 

work under both aleatory and epistemic uncertainty using probabilistic representations of 

different types of uncertainty. Our proposed formulations deal with both sparse point and 

interval data without any assumption about probability distributions of the random 

variables. 

The performance of robustness-based design can be defined by the mean and 

variation of the performance function. In our proposed formulations, we obtain the 

optimum mean value of the objective function (e.g., gross weight) while also minimizing 

its variation (e.g., standard deviation). Thus, the design will meet target values in terms of 

both design bounds and standard deviations of design objectives and design variables 

thereby ensure feasibility robustness.  
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A Taylor series expansion method is used in this paper to estimate the mean and 

standard deviation of the performance function, which requires means and standard 

deviations of the random variables. However, with sparse point data and interval data, it 

is impossible to know the true moments of the data, and there are many possible 

probability distributions that can represent these data (Zaman et al, 2009). In this paper, 

we propose methods for robustness-based design optimization that account for this 

uncertainty in the moments due to sparse point data and interval data and thereby include 

epistemic uncertainty into the robust design optimization framework. As collecting more 

data reduces uncertainty but increases cost, the effect of sample size on the optimality 

and the robustness of the solution is also studied. A method to determine the optimal 

sample size for sparse point data that will lead to the minimum scatter on solutions to the 

design problem is also presented in this paper.  

In some existing methods for robust design under epistemic uncertainty, all the 

epistemic variables are considered as design variables (Youn et al, 2007). However, if the 

designer does not have any control on an epistemic variable (e.g., Young’s modulus in 

beam design), considering that variable as a design variable might lead to a solution that 

could underestimate the design objectives. Therefore, in this paper, we propose a general 

formulation for robust design that considers some of the epistemic variables as non-

design variables, which leads to a conservative design under epistemic uncertainty. 

Note that the proposed robustness-based design optimization method is general 

and capable of handling a wide range of application problems under data uncertainty. The 

proposed methods are illustrated for the conceptual level design process of a two-stage-
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to-orbit (TSTO) vehicle, where the distributions of the random inputs are described by 

sparse point and/or interval data.  

The rest of the paper is organized as follows. Section 2 proposes robustness-based 

design optimization framework for sparse point data and interval data. In Section 3, we 

illustrate the proposed methods for the conceptual level design process of a TSTO 

vehicle. Section 4 provides conclusions and suggestions for future work. 

 

2. Proposed methodology 

 
Deterministic design optimization 
 

In a deterministic optimization formulation, all design variables and system 

variables are considered deterministic. No random variability or data uncertainty is taken 

into account. The deterministic optimization problem is formulated as follows: 
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where  )(xf  is the objective function,  x is the vector of design variables,  xgi  is the ith 

constraint, LB and UB are the vectors of lower and upper bounds of constraints sgi '  and 

lb and ub are the vectors of lower and upper bounds of design variables. 

In practice, the input variables might be uncertain and solutions of this 

deterministic formulation could be sensitive to the variations in the input variables. 

Robustness-based design optimization takes this uncertainty into account. The optimal 

design points obtained using the deterministic method could be used as initial guesses in 

robustness-based optimization. 
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Robustness-based design optimization 

In the proposed methodology, we use variance as a measure of variation of the 

performance function in order to achieve objective robustness, the feasible region 

reduction method to achieve feasibility robustness, a first-order Taylor series expansion 

to estimate the mean and variance of the performance function, and a weighted sum 

method for the aggregation of multiple objectives. This combination of methods is only 

used for the sake of illustration. Other approaches can be easily substituted in the 

proposed methodology. The robustness-based design optimization problem can now be 

formulated as follows: 
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design input random variables, whose values are kept fixed at their mean values as a part 

of the design. The weighting coefficients 0w  and 0v  represent the relative 

importance of the objectives ff σ and   in Eq. (2);  zdgi ,  is the ith constraint; 

  zdgE i ,  is the mean and )),(( zdgi is the standard deviation of the ith constraint. LB 

and UB are the vectors of lower and upper bounds of constraints sgi ' ; lb and ub are the 

vectors of lower and upper bounds of the design variables; )(x is the vector of standard 

 

nddviubdlb

nrdvixkubdxklb

izdgkUBzdgEzdgkLBts

vwf

i

iii

iii

ff
d

,...,2,1for 

,...,2,1for )()(

)2( allfor  )),(()),(()),((..

)**(,min














11 
 

deviations of the random variables  and k is some constant. The role of the constant k is to 

adjust the robustness of the method against the level of conservatism of the solution. It 

reduces the feasible region by accounting for the variations in the design variables and is 

related to the probability of constraint satisfaction. For example, if a design variable or a 

constraint function is normally distributed, k =1 corresponds to the probability 0.8413, k 

=2 to the probability 0.9772, etc. 

Note that the robust design formulation in Eq. (2) is a standard nonlinear multi-

objective optimization formulation. The optimality conditions of such a formulation have 

been extensively described in the literature including Cagan and Williams (1993) and 

Marler and Arora (2004). 

In the proposed formulation, the performance functions considered are in terms of the 

model outputs. The means and standard deviations of the objective and constraints are 

estimated by using a first-order Taylor series approximation as follows: 

Performance function: ),....,,( 21 nXXXgY                                                                    (3) 

First-order approximate mean of y: ),....,,()'(
21 nXXXgYE                                        (4) 
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The implementation of Eq. (2) requires that variances of the random design 

variables Xi and the means and variances of the random non-design variables Zi be 

precisely known, which is possible only when a large number of data points are available. 

In practical situations, only a small number of data points may be available for the input 

variables. In other cases, information about random input variables may only be specified 

as intervals, as by expert opinion. This is input data uncertainty, causing uncertainty 
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regarding the distribution parameters (e.g., mean and variance) of the inputs Xi and Zi. 

Robustness-based optimization has to take this into account. In the following subsections, 

we propose a new methodology for robustness-based design optimization that accounts 

for data uncertainty.  

 
 

2.1 Robustness-based design optimization under data uncertainty 
 

The inclusion of epistemic uncertainty in robust design adds another level of 

complexity in the design methodology. The design variables d and/or the input random 

variables z in Eq. (2) might have epistemic uncertainty. Since the designer does not have 

any control on the non-design epistemic variables z, the design methodology has to 

employ a search among the possible values of such epistemic variables in order to find an 

optimal solution. In such case, we get a conservative robust design. The robustness-based 

design optimization problem can now be formulated with the following generalized 

statement: 

 

 

 

 

where Zl and Zu are the vectors of lower and upper bounds of the decision variables µz of 

the outer loop optimization problem. 
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design optimization problem, where a robust design optimization is carried out for a fixed 

  

uzl

ziizi

ff
d

ZZ

xkubdxklb

idgkUBzdgEdgkLBts

vwf
z
















)()(

)6( allfor  )),(()),(()),((..

)**(,minmax



13 
 

set of non-design epistemic variables. The outer loop optimization is the analysis for the 

non-design epistemic variables, where the optimizer searches among the possible values 

of the non-design epistemic variables for a conservative solution of the robust design 

problem. 

 This nested optimization problem can be decoupled and expressed as: 
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The optimization problems in Eqs. (7) and (8) are solved iteratively until convergence. 

Note that the first constraint (i.e., the robustness constraint) in Eq. (8) is required to 

ensure that the optimization is driven by all non-design epistemic variables, because 

sometimes the objective function may not be a function of all non-design epistemic 

variables. In cases when the objective function is the function of all non-design epistemic 

variables, this constraint is not required. 

 
2.1.1 Robustness-based design with sparse point data 

 
 

In this section, we propose a methodology for robustness-based design 

optimization with sparse point data. It is assumed that only sparse point data are available 

for the uncertain design variables as well as non-design epistemic variables. 
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Since the data size is small, there is uncertainty about the mean and variance 

calculated from the samples. The chi-square distribution is a good assumption for the 

distribution of the variance, if the underlying population is normal. The two-sided (1-α) 

confidence interval for the population variance σ2 can be expressed as (Haldar and 

Mahadevan, 2000): 

   
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                                                                          (9) 

where n is the sample size, s is the sample standard deviation of sparse point data, and 

1,2/ nc  is obtained from the chi-square distribution at (n-1) degrees of freedom and α 

significance level. Note that Eq. (9) can still be used to obtain approximate confidence 

bounds for variance if the underlying population is not normal. However, in such cases, 

other approximation methods (Bonett, 2006; Cojbasic and Tomovic, 2007) can be 

used to obtain more reliable estimates of confidence bounds. In robustness-based design 

optimization, we are interested in obtaining a solution that is least sensitive to the 

variations in the input random variables; therefore we use the upper bound variances for 

the input random variables xi and zi to solve the formulations in Eqs. (7)-(8) for sparse 

point data. 

For non-design epistemic variables described by sparse point data, the constraints 

on the decision variables in Eq. (8) are implemented through the construction of 

confidence intervals about means. As the design variables are described by the sparse 

point data, it is possible that the underlying distributions of the design variables might 

have major deviations from normality. Therefore, we have used the Johnson's modified t 
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statistic (Johnson, 1978) to construct the confidence bounds on means of the design 

variables as follows: 
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where z  is the vector of means of the epistemic variables, s is the vector of standard 

deviations, n is the sample size of the sparse point data, 3  is the third central moment 

and 1,2/ nt  is obtained from the Student t distribution at (n-1) degrees of freedom and α 

significance level. This modified statistic takes into account the skewness of the 

distribution and thus provides a better estimate of the confidence bound in the presence of 

limited data. 

The optimization formulation shown in Eqs. (7)-(8) involves aggregation of 

multiple objectives. In the proposed formulations, the aggregate objective function 

consists of two types of objectives, expectation and standard deviation of model outputs. 

Since different objectives have different magnitudes, a scaling factor has to be used in the 

formulation. 

 
2.1.2 Determination of optimal sample size for sparse point data 
 

The optimal solutions depend on the sample size of the sparse data as will be 

discussed in Section 3.1. Therefore, it is of interest to determine the optimal sample size 

of the sparse data that leads to the solution of the design problem that is least sensitive to 

the variations of design variables. This will facilitate resource allocation decisions for 

data collection. The following two optimization formulations are solved iteratively until 
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convergence for the optimal sample sizes of the epistemic design variables ( *
dn ) and 

epistemic non-design variables( *
en ).The formulations in Eq. (11)-(12) are the weighted 

sum formulations of a three-objective optimization problem, where the first and second 

objectives are the mean and standard deviation of GW respectively and the third 

objective is the total cost of obtaining samples for all the random variables. 
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random design and non-design variables, respectively and C is the total cost allocated for 

obtaining samples for all the random variables. Note that as in Eq. (8), the robustness 

constraint in Eq. (12) is only required if the objective function is not a function of all non-

design epistemic variables.  The optimization formulation presented above is a mixed-

integer nonlinear problem. A relaxed problem is solved in Section 3. 

 

2.1.3 Robustness-based design with interval data 

 
This section proposes a methodology for robustness-based design optimization 

with interval data. In this case, the only information available for one or more input 

random variables is in the form of single interval or multiple interval data. The following 

discussion develops a methodology to solve the formulations in Eq. (7)-(8) for 

uncertainty represented through interval data. 

For interval data, the moments (e.g., mean and variance) are not a single value, 

rather only bounds can be given (Zaman et al, 2009). We have proposed methods to 

compute the bounds of moments for both single and multiple interval data in Zaman et al 

(2009).The methods for computing bounds of the first two moments for interval data are 

given later in this section. Once the bounds on the mean and variance of interval data are 

estimated, we use the upper bounds of sample variance to solve the formulations of 

robust design under uncertainty represented through single interval or multiple interval 

data. Therefore, the resulting solution becomes least sensitive to the variations in the 

uncertain variables. 
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For non-design epistemic variables described by interval data, the constraints on 

the decision variables in Eqs. (8) and (12) are implemented through estimating the 

bounds of the means by the methods as described later in this section. 

The following discussions briefly summarize the methods to estimate the bounds 

on the first two moments for single interval and multiple interval data, respectively. 

 
Bounds on moments with single interval data 

 The methods for calculating bounds on the first two moments for single interval 

data are summarized in Table 1 below. 

 

Table 1: Methods for calculating moment bounds for single interval data 

Moment 
Condition 

Formula 
Lower bound Upper bound 

1 
PMF = 1 at lower endpoint 
         = 0  elsewhere 

PMF = 1 at upper endpoint 
         = 0  elsewhere 

 

2 
PMF = 1 at any point 

      = 0  elsewhere  
PMF = 0.5 at each 

endpoint  

Note:   

where = Probability Mass Function (PMF) 

 

 In Table 1, the formulas lead to the lower and upper endpoints of the interval as 

the lower and upper bounds for the first moment, respectively. The formulas also imply 

that the lower bound for the second moments is zero. 

 

Bounds on moments with multiple interval data 

The methods for calculating bounds on the first two moments for multiple interval 

data are summarized in Table 2 below. 
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Table 2: Methods for calculating moment bounds for multiple interval data 
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Note: [lbi     ubi] = Set of intervals   n = Number of intervals 

Once the bounds on the mean and variance of interval data are estimated by the 

methods described above, we can now use these bounds to solve the formulations of 

robustness-based design optimization under uncertainty represented through single 

interval or multiple interval data. In the following section, we illustrate our proposed 

formulations for robustness-based design optimization with both sparse point and interval 

data. 

 

3. Example Problem 

In this section, the proposed methods are illustrated for the conceptual level 

design process of a TSTO vehicle. The multidisciplinary system analysis consists of 

geometric modeling, aerodynamics, aerothermodynamics, engine performance analysis, 

trajectory analysis, mass property analysis and cost modeling (Stevenson et al, 2002). In 

this paper, a simplified version of the upper stage design process of a TSTO vehicle is 

used to illustrate the proposed methods.  High fidelity codes of individual disciplinary 

analysis are replaced by inexpensive surrogate models. Figure 1 illustrates the analysis 

process of a TSTO vehicle. 
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Figure 1: TSTO vehicle concept 

The analysis outputs (performance functions) are Gross Weight (GW), Engine 

Weight (EW), Propellant Fraction Required (PFR), Vehicle Length (VL), Vehicle Volume 

(VV) and Body Wetted Area (BWA). Each of the analysis outputs is approximated by a 

second-order response surface and is a function of the random design variables Nozzle 

Expansion Ratio (ExpRatio), Payload Weight (Payload), Separation Mach (SepMach), 

Separation Dynamic Pressure (SepQ), Separation Flight Path Angle (SepAngle), and 
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Body Fineness Ratio (Fineness). Each of the random variables is described by either 

sparse point data or interval data. 

The objective is to optimize an individual analysis output (e.g., Gross Weight) 

while satisfying the constraints imposed by each of the design variables as well as all the 

analysis outputs.  We note here that we have assumed independence among the uncertain 

input variables and thereby ignored the covariance terms in Eq. (5) to estimate the 

variance of the performance function in each of the following examples. The numerical 

values of the design bounds for the design variables and analysis outputs are given in 

Tables 3 and 4, respectively. 

Table 3: Design bounds for the design variables 

Design Variable lb ub 
ExpRatio 40 150 
Payload 8000 40000 

SepMach 7 12 
SepQ 40 200 

SepAngle 7 12 
Fineness 4 6 

 

Table 4: Design bounds for the analysis outputs 

Analysis output LB UB 
GW 0 100e+005
EW 0 100e+005
PFR 0.4 0.95 
VL 0 100e+002
VV 0 100e+003

BWA 0 100e+005
 

3.1. Robustness-based design optimization with sparse point data 

The methodology proposed in Section 2.1.1 is illustrated here for the TSTO 

problem. It is assumed that all the input variables x are described by sparse point data as 
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given in Table 5. For this example, the input variable SepQ is assumed to be a non-design 

epistemic variable and all the remaining variables are assumed to be design variables. 

The design bounds for the respective design variables and the analysis outputs are given 

in Tables 3 and 4. 

 

Table 5: Sparse Point Data for the random design variables 

Sample ExpRatio Payload SepMach SepQ SepAngle Fineness 
01 85.23 2.8952e+004 10.85 115.38 9.12 4.07 
02 82.25 2.9747e+004 10.56 111.63 9.49 4.02 
03 88.79 2.6638e+004 10.93 118.57 9.85 4.47 
04 83.93 2.8356e+004 10.70 111.60 9.87 4.15 
05 80.67 2.7193e+004 10.58 100.34 9.27 4.15 
06 91.32 2.9168e+004 10.82 102.42 9.21 4.17 
07 83.64 2.8844e+004 10.88 117.25 9.57 4.23 
08 86.64 2.5836e+004 10.99 109.69 9.64 4.32 
09 90.32 2.9310e+004 10.00 116.90 9.42 4.01 
10 85.39 2.9949e+004 10.87 104.19 9.21 4.42 

 

The design problem becomes: 
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where the bounds Zl and Zu for the mean of the non-design epistemic variable SepQ are 

calculated by Eq. (10) as given in Section 2.1.1. Note that in Eq. (14), we do not use the 

robust design constraints, since the objective function in this case is a function of all non-

design epistemic variables. 

 

As mentioned earlier in Section 2, 0w  is the weight parameter that represents the 

relative importance of the objectives and k is a constant that adjusts the robustness of the 

method against the level of conservatism of the solution. In this paper, k is assumed to be 

unity. 

Variances of the random variables x and z are estimated as single point values. 

Confidence intervals for the variances are estimated for each random variable described 

by the sparse point data. The weight parameter w is varied (from 0 to 1) and the 

optimization problem in Eqs. (13)-(14) are solved iteratively until convergence by the 

Matlab solver 'fmincon' for different sample sizes (n) of the sparse point data. In each 

case, the optimization problems converged in less than 5 iterations. Here, ‘fmincon’ uses 

a sequential quadratic programming (SQP) algorithm. The estimate of the Hessian of the 

Lagrangian is updated using the BFGS formula at each iteration. The convergence 

properties of SQP have been discussed by many authors including Fletcher (1987) and 

Panier and Tits (1993). 
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The solutions are obtained by solving the problem using the upper confidence 

bound for the variances of the random variables x and z. The solutions are presented in 

Figure 2. 

 

Figure 2: Robustness-based design optimization with sparse data for different sample 

sizes (n) 

 
It is seen in Figure 2 that the solutions become more conservative (i.e., the mean 

and standard deviation of GW assume higher values) as we add uncertainty to the design 

problem. It is also seen from Figure 2 that as the sample size (n) increases, both the 

standard deviation and mean of GW decrease. As gathering more data reduces data 

uncertainty, the solutions become less sensitive (i.e., the standard deviation of GW 

assumes lower value) to the variations of the input random variables as the sample size 

(n) increases. Also, looking at the mean of GW, it is seen that as the uncertainty 

decreases with sample size, the optimum mean weight required is less. 
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The optimal sample size formulations are illustrated here for the TSTO design 

problem. The formulations are relaxed by assuming that standard deviations of the data 

do not change significantly as sample size changes. To make the problem simpler, we 

first relax the integer requirement on the optimal sample size n and then round off the 

solution for n to the nearest integer value. The input variable SepQ is assumed to be a 

non-design epistemic variable and all the remaining variables are assumed to be design 

variables. The design bounds for the respective design variables and the analysis outputs 

remain the same as in Tables 3 and 4. 

Therefore, the design problem becomes as follows: 
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We have solved this problem for different combinations of weights w and v and 

the optimal solutions are presented in Table 6. In each case, the optimization problems 

converged in less than 4 iterations. 

  

Table 6: Objective function values at optimal solutions and optimal sample sizes 

Weights Objective function Value Optimal Sample Sizes  
w v 1-

w-
v 

Mean GW Std GW Total 
Cost 

nd1 nd2 nd3 nd4 nd5 ne 

0 0 1 1.6118e+005 6.3732e+004 455.3008 5 10 15 8 9 30
0.6 0.2 0.2 1.4684e+005 5.3219e+004 539.8948 6 10 30 8 10 30
0.5 0.4 0.1 1.4878e+005 5.0526e+004 593.6961 7 10 30 14 15 30
0.5 0.5 0 1.5143e+005 4.7604e+004 886.9363 25 25 30 30 30 15

 

It is seen in Table 6 that the total cost incurred in obtaining samples is the 

minimum when we solve the problem giving the maximum importance on the total cost. 

In this case, we get the most conservative robust design i.e., the mean and the standard 

deviation of GW assume the maximum of all possible values. Note that the optimal 

sample size required is also the minimum in this case. As we give more importance on 

the mean and standard deviation of GW, the total cost and also the optimal sample size 

increase with a decrease in both the mean and standard deviation of GW.  

3. 3 Robustness-based design optimization with sparse point and interval data 
 

The methodology proposed in Section 2.1 is illustrated here for the same TSTO 

problem. Here, it is assumed that the design variable ExpRatio is described by sparse 

point data as given in Table 5, the design variable Payload is described by multiple 

interval data as given in Table 7 and the design variables SepMach and SepQ are 

described by single interval data as given in Table 8. The non-design epistemic variables 
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SepAngle and Fineness are described by the sparse point data (as given in Table 5) and 

the single interval data (as given in Table 7), respectively. The design bounds for the 

respective design variables and the analysis outputs remain the same as in Tables 3 and 4. 

Table 7: Multiple Interval Data for the random input variables 

Payload [25000, 28000], [26000, 29000], [25000, 29000], [26000, 30000], 
[25000, 30000] 

 

Table 8: Single Interval Data for the random input variables 

SepMach [9, 10] 
SepQ [100, 120] 

 

The design problem is now formulated as follows: 
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where the bounds Zl and Zu for the mean value of the non-design epistemic variable 

SepAngle are calculated by Eq. (10) as given in Section 2.1.1 and those for the epistemic 

variable Fineness are calculated by the method described in Section 2.1.3. Note that in 
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Eq. (16), we do not use the robust design constraints, since the objective function in this 

case is a function of all non-design epistemic variables. 

Variances of the random variables ExpRatio and SepAngle are estimated as single 

point values. Confidence intervals for the variances are estimated for each random 

variable described by sparse point data. Bounds on the variances of the random variables 

SepMach, SepQ, Fineness, and Payload are estimated by the methods described in 

Sections 2.1.3. The free parameter w is varied (from 0 to 1) and the optimization 

problems in Eqs. (15) and (16) are solved iteratively until convergence. In each case, the 

optimization problems converged in less than 5 iterations. The solutions are obtained by 

solving the problems using the upper confidence bound on sample variance for the 

random variables ExpRatio and SepAngle, and the upper bound on sample variances for 

the random variables Payload, SepMach, SepQ and Fineness. The solutions are presented 

in Figure 3. 

 

 

Figure 3: Robustness-based design optimization with non-design epistemic variables 
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Figure 3 shows the solutions of the conservative robust design in presence of 

uncontrollable epistemic uncertainty described through mixed data i.e., both sparse point 

data and interval data, which is seen frequently in many engineering applications. 

 
4. Summary and Conclusion 

 

This paper proposed several formulations for robustness-based design 

optimization under data uncertainty. Two types of data uncertainty – sparse point data 

and interval data – are considered. The proposed formulations are illustrated for the upper 

stage design problem of a TSTO space vehicle. A decoupled approach is proposed in this 

paper to un-nest the robustness-based design from the analysis of non-design epistemic 

variables to achieve computational efficiency. As gathering more data reduces 

uncertainty but increases cost, the effect of sample size on the optimality and the 

robustness of the solution is also studied. This is demonstrated by numerical examples, 

which suggest that as the uncertainty decreases with sample size, the resulting solutions 

become more robust.  We have also proposed a formulation to determine the optimal 

sample size for sparse point data that leads to the solution of the design problem that is 

least sensitive (i.e., robust) to the variations of design variables. In this paper, we have 

used the weighted sum approach for the aggregation of multiple objectives and to 

examine the trade-offs among multiple objectives. Other multi-objective optimization 

techniques can also be explored within the proposed formulations.    

The major advantage of the proposed methodology is that unlike existing 

methods, it does not use separate representations for aleatory and epistemic uncertainties 

and does not require nested analysis. Both types of uncertainty are treated in a unified 
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manner using a probabilistic format, thus reducing the computational effort and 

simplifying the optimization problem. The results regarding robustness of the design 

versus data size are valuable to the decision maker. The design optimization procedure 

also optimizes the sample size, thus facilitating resource allocation for data collection 

efforts. Due to the use of a probabilistic format to represent all the uncertain variables, 

the proposed robustness-based design optimization methodology facilitates the 

implementation of multidisciplinary robustness-based design optimization, which is a 

challenging problem in presence of epistemic uncertainty.  
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