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Abstract

The calibration of measurement systems is a fundamental but under-studied problem
within industrial statistics. The origins of this problem go back to basic chemical
analysis based on NIST standards. In today’s world these issues extend to mechanical,
electrical, and materials engineering. Often, these new scenarios do not provide ”gold
standards” such as the standard weights provided by NIST.

This paper considers the classic ”forward regression followed by inverse regression”
approach. In this approach the initial experiment treats the ”standards” as the
regressor and the observed values as the response to calibrate the instrument. The
analyst then must invert the resulting regression model in order to use the instrument
to make actual measurements in practice. This paper compares this classical approach
to ”reverse regression,” which treats the standards as the response and the observed
measurements as the regressor in the calibration experiment. Such an approach is
intuitively appealing because it avoids the need for the inverse regression. However,
it also violates some of the basic regression assumptions.
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Problem Context

Flight research aircraft at NASA require the calibration and characterization of mul-
tiple instruments. For example, the NASA Airborne Subscale Transport Aircraft
Research (AirSTAR) program seeks to develop a research testbed for a dynamically
scaled vehicle under upset conditions for commercial aircraft. The purpose of this
testbed is to allow NASA to evaluate the aircraft response under severe upset condi-
tions without risking full scale aircraft and personal.

The test vehicle contains a comprehensive suite of instrumentation to measure the
vehicle’s performance under these conditions. For example, each control has an angu-
lar measurement that detects its deployment. These instruments transduce angular
displacement to an electrical signal, which was calibrated in the laboratory to de-
velop the relationship. In flight, the electrical signals are measured and the actual
angle is inferred through the calibration relationship. In the calibration the angles
are precisely set, and the electrical signal is measured.

The classical calibration approach develops a forward regression model for signal as
a function of angle. The analyst then inverts this model to estimate the actual angle
from the electrical signal transmitted in the flight. An alternative method commonly
considered directly models the angle as a function of signal in the calibration experi-
ment, thereby reversing the roles of the explanatory variable and the response. Such
an approach is attractive because it avoids the need to invert the forward regression
model and the necessity of the Delta Method to estimate prediction intervals. How-
ever, while this reverse approach is simple and easy to implement in any software,
this approach violates certain assumptions, such as the explanatory variables are mea-
sured without error while the response is measured with error, and could result in
undesirable consequences.

Situations such as the NASA AirSTAR program are not examples of the classical
laboratory standards calibration problem. In classical laboratory standards experi-
ments, the precision of the instruments is of the order of 0.01 to 0.1% of the full scale
measurement range, which means that the standard deviation of the measurement
error of the instrument is 0.01 to 0.1% of the full load measurement. Transducer
class instruments, such as the one outlined above, typically have precisions in the
range of 0.5 to 5%. However, some applications that should lend themselves to a
calibration approach may have much lower precision, on the order of 50% of full-scale
instrument range. In these cases, we expect severe problems with the inverse ap-
proach required by the classical calibration approach due to having an approximately
normally distributed random variable in the denominator.
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Background

Consider the problem of calibrating an instrument where we know that we can model
the response y as a simple linear function of the factor x. In practice, we collect
the data from the instrument at known values of x. We use the resulting data set
(x1, y1), (x2, y2), . . . , (xn, yn) to model the relationship between x and y. We then use
this model to estimate the corresponding unknown value of x for future observations
of y from the instrument.

Two commonly used methods for modeling the relationship between x and y are
inverse regression and reverse regression. Inverse regression fits a regression line of y
on x. We then estimate future unknown x values by applying the inverse solution to
the observed y′s. Reverse regression treats x as the response and y as the regressor
(even though the x’s are measured with negligible error) and fits a regression line of
x on y. These two methods can lead to very different estimates of the unknown x
values, as well as different prediction intervals.

The statistical literature in this area seems somewhat underdeveloped. This calibra-
tion problem is common in many engineering and science applications. The structure
of the experiment suggests that the inverse regression approach should be most appro-
priate; however, the statistical properties of this approach are not readily apparent,
not very accessible to engineers and scientists, and not generally addressed in much
detail in the standard linear regression texts. Our experience, particularly within
NASA, indicates that many practitioners naively use the reverse regression approach
instead. A natural question then becomes what are the resulting consequences.

Krutchkoff (1967, 1969) compared inverse and reverse regression using Monte Carlo
simulation and recommended reverse regression based on the mean squared error.
Berkson (1969) Halpern (1970) present significant criticisms to Krutchkoff’s work.

From a statistical perspective, the basic problem with inverse regression is that if the
random errors follow a normal distribution, then the estimated slope of the regression
line is also normally distributed. Inverse regression must use this estimated slope in
the denominator for making predictions. Williams (1969) stated that the reciprocal
of the slope has infinite variance, which means that the inverse estimator has infinite
variance, and hence infinite mean squared error. Williams notes that the reverse
estimator has finite variance and mean squared error, and so minimum variance and
mean squared error are not suitable criterion on which to base the comparison of the
inverse and reverse estimators.

It is important to note that Williams in making this claim is assuming Cauchy-like
behavior for the reciprocal of the slope. A Cauchy random variable is the inverse of a
standard normal random variable, which has a mean of zero. In practical applications,
this issue is not a concern. In every calibration experiment, we can rescale the data
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such that the slope has a mean of one. Typically, the standard deviation of the random
error is extremely small. We note that the slope of the regression line is not actually
normally distributed, but instead follows a truncated normal distribution since it is
not possible for extreme values to occur. Assuming a normal distribution with σ
= 0.01, as is reasonable in the calibration problem, zero is one hundred standard
deviations away from the mean. Thus, in practice, a slope of zero will not occur, and
so the reciprocal of the slope will have finite variance and mean squared error. Berkson
(1969) and Halperin (1970) showed that for large samples, the reverse estimator has
smaller mean squared error only when x lies within a small interval around x.

Graybill (1976) and Seber (1977) developed a (1 − α)100% confidence region for an
unknown value of x using the inverse regression approach. In some cases, this method
may result in two semi-infinite intervals or the entire real line, rather than a finite
interval. Scheffé (1973) proposed a general method for calibration intervals based
on inverting simultaneous tolerance intervals. Eberhardt and Mee (1994) developed
constant width calibration intervals, which are simple to compute and narrower than
the maximum width of the intervals found using Scheffé’s (1973) method. Srivastava
and Shalabh (1997) examined the asymptotic properties of the inverse and reverse
estimators when the errors are not assumed to be normally distributed. Shalabh
(2001) compared the inverse and reverse estimators using the balanced loss function.

This paper presents prediction intervals for x using inverse regression based on the
Delta Method, as well as prediction intervals using reverse regression. It then derives
approximations of the bias for both the inverse and reverse estimators. A simulation
study is presented to compare the two estimators. The prediction intervals found
using the Delta Method and reverse regression are also compared to the intervals
based on Scheffé’s (1973) method and the constant width intervals of Eberhardt and
Mee (1994). The final section provides some conclusions and additional discussion.

Methods

Assume that a simple linear regression model is appropriate, so the true model is

yi = β0 + β1xi + εi, (1)

where β0 is the y-intercept, β1 is the slope, and the εi’s are random errors assumed to
be independent and identically distributed as normal with a mean of 0 and a variance
of σ2. Note an important assumption of this model is that the xi’s are measured with
negligible error. Let

x =
1

n

n∑

i=1

xi

and
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y =
1

n

n∑

i=1

yi.

For convenience, we use the centered simple linear model

y∗i = yi − y = β∗0 + β1xi + εi, (2)

where β∗0 = β0 − y. The ordinary least squares estimates of β∗0 and β1 are

β̂1 =

∑n
i=1(xi − x)(y∗i − y∗)∑n

i=1(xi − x)2
=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
=

Sxy

Sxx

,

β̂∗0 = y∗ − β̂1x

However, one can establish that y∗ = 0; thus,

β̂∗0 = −β̂1x.

As a result,

ŷ∗i = −β̂1(xi − x).

The corresponding estimate of σ2 is

s2
I =

1

n− 2

n∑

i=1

(y∗i − ŷ∗i )
2 =

1

n− 2

n∑

i=1

(yi − ŷi)
2

It is useful to see the relationship between β̂0 for the uncentered model and β̂∗0 for
the centered model:

β̂0 = y − β̂1x = y + β̂∗0 .

Let y0 be a future observed value of the response after calibration. The estimated
value of x0 corresponding to y0 is

x̂I0 =
y0 − y − β̂∗0

β̂1

=
y0 − β̂0

β̂1

. (3)

Next, we want to find a prediction interval for x0. From equation (2), we know that

x0 =
y0 − y − β∗0 − ε0

β1

=
y0 − β0 − ε0

β1

.

Then, the predicted value is
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x̂I0,pred =
y0 − β̂0 − ε̂0

β̂1

.

Since x̂I0,pred is the ratio of two dependent normal random variables, its properties are
difficult to determine. However, we can use the Delta Method to obtain an asymptotic
approximation for the variance. Let U and V be two random variables. From Casella
and Berger (2002), we note

Var
(

U

V

)
≈ Var(U)

E(V )2
+

E(U)2

E(V )4
Var(V )− 2

E(U)

E(V )3
Cov(U, V ).

In this case, U = y0 − β̂0 − ε̂0 and V = β̂1, which gives

E(U) = β1x0,

E(V ) = β1,

Var (U) = σ2

(
1 +

1

n
+

x2

Sxx

)
,

Var (V ) =
σ2

Sxx

, and

Cov (U, V ) =
σ2x

Sxx

.

Thus,

Var (x̂I0,pred) ≈ σ2

β2
1

(
1 +

1

n
+

(x0 − x)2

Sxx

)
,

and so a (1− α)100% prediction interval for x0 based on the Delta Method is

x̂I0 ± t1−α
2

,n−2
sI

β̂1

√
1 +

1

n
+

(x̂I0 − x)2

Sxx

. (4)

In reverse regression, we treat x as the response and y as the regressor. In this case,
we express our estimated model by

x̂i = γ̂0 + γ̂1(yi − y), (5)
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where

γ̂0 = x,

γ̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(yi − y)2
=

Sxy

Syy

, and

s2
R =

1

n− 2

n∑

i=1

(xi − x̂i)
2.

Note this method violates the simple linear regression assumption that the regressor
is measured with negligible error. For a future observed value y0, the estimate of x0

using reverse regression is

x̂R0 = γ̂0 + γ̂1(y0 − y). (6)

A (1− α)100% prediction interval for x0 based on reverse regression is

x̂R0 ± t1−α
2

,n−2sR

√√√√1 +
1

n
+

(y0 − y)2

Syy

. (7)

It is important to note that y0, y, and Syy are all random, unlike the usual regression
case where they are fixed effects. Consequently, there is more variability to the
prediction interval for reverse regression than the naive user realizes. Typically, one
runs a single calibration experiment and then uses the results for several, if not many,
predictions. The user has no basis for evaluating the full impact of the additional
randomness upon the quality of the resulting prediction interval.

Bias in Prediction

Both the inverse and reverse estimators involve the ratio of two dependent normal
random variables, which makes the derivation of the expected values difficult. How-
ever, the Delta Method allows us to obtain an asymptotic approximation. From
Pham-Gia, Turkkan, and Marchand (2006), we note that for two random variables U
and V ,

E
(

U

V

)
≈ E(U)

E(V )
+

E(U)

E(V )3
var(V )− cov(U, V )

E(V )2
.

In the case of the inverse estimator in equation (3), U = y − β̂0 and V = β̂1, which
gives

E(U) = β1x,
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E(V ) = β1,

Var (V ) =
σ2

Sxx

, and

Cov (U, V ) =
σ2x

Sxx

.

Thus, an approximation of the expected value of the inverse estimator using the Delta
Method is

E (x̂I) ≈ x +
(x− x)σ2

β2
1Sxx

.

The bias is E (x̂I)− x; thus,

bias(x̂I) ≈ x +
(x− x)σ2

β2
1Sxx

− x =
(x− x)σ2

β2
1Sxx

(8)

This relationship suggests that there should be no bias at x. It also suggests that the
bias is negative for x < x and is positive for x > x. Finally, the rate of change in the
bias as x increases is

(x− x)σ2

β2
1Sxx

.

For the reverse estimator in equation (6), it is trivial to show that

E(γ̂0) = x.

We observe that γ̂1 and y are independent. We also note that γ̂1 and y are independent
since y was not used to estimate γ1. As a result, one can show that

E(x̂R) = x + (x− x)β1E(γ̂1). (9)

Since γ̂1 is the ratio of two random variables, the Delta Method allows us to ap-
proximate the expected value. In this case, U = Sxy, and V = Syy. One can show
that

E(U) = β1Sxx,

E(V ) = (n− 1)σ2 + β2
1Sxx,
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var(V ) = 2(n− 1)σ4 + 4σ2β2
1Sxx and

cov(U, V ) = 2β1σ
2Sxx.

Thus,

E(γ̂1) ≈ β1Sxx

(n− 1)σ2 + β2
1Sxx

− 2β1σ
2Sxx

[(n− 1)σ2 + β2
1Sxx]2

+
[β1Sxx][2(n− 1)σ4 + 4σ2β2

1Sxx]

[(n− 1)σ2 + β2
1Sxx]3

We note then

E(γ̂1) ≈ β1Sxx

(n− 1)σ2 + β2
1Sxx

+ o
(

1

n

)
.

As a result, a reasonable approximation for moderate sample size is

E(γ̂1) ≈ β1Sxx

(n− 1)σ2 + β2
1Sxx

,

which we may rewrite as

E(γ̂1) ≈ 1
(n−1)σ2

β1Sxx
+ β1

. (10)

Substituting (10) into (9), we obtain

E(x̂R) ≈ x +
(x− x)β1

(n−1)σ2

β1Sxx
+ β1

. (11)

With some algebra, one can show that the resulting bias is

bias(x̂R) ≈ x +
(x− x)β1

(n−1)σ2

β1Sxx
+ β1

− x =
−(x− x)

1 +
β2
1Sxx

(n−1)σ2

. (12)

This relationship suggests that the bias is zero for x = x. It also suggests that the bias
is positive for x < x and that the bias is negative for x > x. Finally, this relationship
suggests that the rate of change for the bias as x increases is

−1

1 +
β2
1Sxx

(n−1)σ2

If we scale the x’s used in the calibration experiment to be in the range [−1, 1], then
the maximum size for Sxx is n. However, this maximum occurs when half the points
are at -1, and half are at 1. One immediate consequence is that x = 0. Putting runs
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into the calibration experiment to test for lack-of-fit reduces Sxx, which increases the
bias in x̂I and x̂R. Finally, assume that β1 = 1 and that n is moderately large. If we
choose the x’s in the calibration experiment to maximize Sxx, then

bias(x̂I) ≈ x · σ2

n
,

and

bias(x̂R) ≈ − x

1 + 1
σ2

,

which gives the basis for the lower bounds on the bias. These relationships help
explain the bias behavior observed in the simulation study. The bias for inverse
regression is lower than the bias for reverse regression whenever n > σ2 + 1, which is
true for all realistic calibration experiments. Replicates improve the bias for inverse
regression, but surprisingly, they do not help reverse regression. Of course, replicates
help both inverse and reverse regression in terms of the width of their intervals.

It is no surprise that the inverse regression approach produces slightly biased esti-
mates. However, many analysts do not realize that the forward regression approach
also produces biased estimates. This bias is the direct result of reversing the roles
of the regressor and the response. Most analysts who uses the reverse regression
approach naively assume that one can arbitrarily reverse the roles, since the mathe-
matics appear to allow it. As our results point out, the reality is much more subtle.

These bias results suggest that one can create bias correction factors. However, it
is important to consider the size of this bias for most calibration experiments. An
adequate instrument typically has a σ on the order of 0.01 (a 1% instrument). An
extremely marginal instrument has a σ on the order of .1. For an adequate instrument,
the bias for inverse regression is approximately

.0001 · x
n

< .0001,

and the bias for reverse regression is

1

1 + 1/.0001
=

1

10001
.

Both biases are practically zero. For a marginal instrument, the bias for inverse
regression is

.01 · x
n

< .01,

and the bias for reverse regression is
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1

1 + 1/.01
=

1

101
.

In light of the reliability of the measurement from a marginal instrument, these biases
are minor. One could attempt to correct for these biases; however, the variability
introduced from estimating σ2, which bias corrections would require, would certainly
render any improvement negligible.

Simulation Study

The analytic results presented in this paper are all asymptotic. As a result, we
conducted a simulation study to compare the prediction intervals based on the Delta
Method and the reverse regression approach for small sample sizes. The calibration
experiment used n known values of x and obtained the corresponding values of y
using equation (1) under the assumption that β0 = 0 and β1 = 1. Essentially, this
study assumed an appropriate centering and scaling, which is always an option in
these kinds of experiments. The study used these n pairs of observations to compute
β̂0, β̂1, s2

I , γ̂0, γ̂1, and s2
R. Next, the study observed a value of y for each of x = -1,

-0.5, 0, 0.5, and 1, again using equation (1). The values of x corresponding to these
five values of y were then estimated using both the inverse estimator in equation (3)
and the reverse estimator in (5), and the biases were computed. Finally, the study
found 95% prediction intervals using the Delta Method in equation (4) and reverse
regression (7). The study also computed intervals based on the methods of Scheffé
(1973) and Eberhardt and Mee (1994). For a given set of coefficients, these estimates
and intervals were computed M times, and the mean bias, mean interval widths, and
capture probabilities were examined. This entire process was then repeated N times.

The simulation study considered five different designs for the calibration experiment:
x = {−1, 1} with 3, 5, and 10 replicates at each point, x = {−1,−1, 0, 0, 1, 1},
and x = {−1, 0, 0, 0, 0, 1}. The true standard deviations σ used were 0.01, which
represents a ”1%” or reasonably precise device, 0.1, which represents a ”10%” or
at best a borderline precision device, and 0.5, where one should expect the inverse
regression to break down. Simulations were run with N = 100, 000 and M = 1,
so that the least squares estimates of the coefficients were recalculated each time
the intervals were computed. However, in practical applications, the same estimated
model would be used many times, so simulations were also run with N = 1, 000 and
M = 100. Results for some of the simulations are shown in Tables 1 - 6.

For σ = 0.01 or 0.1, the intervals based on the Delta Method and reverse regression
had approximately the same mean widths and capture probabilities of 95%. Both
Scheffé’s (1973) and Eberhardt and Mee’s (1994) methods are very conservative and
resulted in intervals with capture probabilities of more than 99%, and mean widths
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much wider than those of the intervals found using the Delta Method and reverse
regression. In fact, intervals computed using Scheffé’s (1973) were usually more than
twice as wide. In the case of high variability, i.e. σ = 0.5, Scheffé’s (1973) method
did not work for most designs, and prediction intervals found using the Delta Method
were much wider than those using reverse regression. The simulation results also
show that both the inverse and reverse estimators are biased and that these biases
increase as σ increases.
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Table 1 A. Mean interval widths for x = {−1,−1, 0, 0, 1, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.200 0.182 0.174 0.182 0.200

0.01 EM 0.121 0.121 0.121 0.121 0.121
Delta 0.061 0.057 0.055 0.057 0.061
Reverse 0.061 0.057 0.055 0.057 0.061
Scheffé 2.349 2.214 2.172 2.213 2.347

0.1 EM 1.227 1.227 1.227 1.227 1.227
Delta 0.620 0.577 0.562 0.577 0.619
Reverse 0.615 0.573 0.558 0.573 0.615
Scheffé . . . . .

0.5 EM 6.923 6.923 6.923 6.923 6.923
Delta 6.495 5.027 4.370 4.802 6.465
Reverse 2.868 2.692 2.632 2.694 2.871

Table 1 B. Mean bias for x = {−1,−1, 0, 0, 1, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse 1.197e-4 1.422e-4 1.248e-4 8.738e-5 5.415e-5 1.057e-4 -3.718e-5

Reverse 2.334e-5 9.401e-5 1.248e-4 1.355e-4 1.505e-4 1.056e-4 5.916e-5
0.1 Inverse 0.005 0.004 0.003 0.002 0.001 0.003 -0.002

Reverse -0.005 -0.001 0.003 0.007 0.011 0.003 0.008
0.5 Inverse 0.125 0.062 -0.004 -0.065 -0.131 -0.0026 -0.1278

Reverse -0.179 -0.093 -0.004 0.087 0.172 -0.0034 0.1764

Table 1 C. Mean variance of the interval widths for x = {−1,−1, 0, 0, 1, 1}, N = 1, 000
and M = 100.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 5.164e-4 4.480e-4 4.252e-4 4.480e-4 5.165e-4

Reverse 5.162e-4 4.479e-4 4.251e-4 4.479e-4 5.163e-4
0.1 Inverse 0.051 0.044 0.041 0.044 0.051

Reverse 0.049 0.042 0.040 0.042 0.049
0.5 Inverse 10023 4335 1995 3186 9593

Reverse 1.375 1.063 0.959 1.078 1.378
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Table 1 D. Capture probabilities for x = {−1,−1, 0, 0, 1, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.999 0.999 0.999 0.998 0.998

0.01 EM 0.994 0.995 0.996 0.995 0.993
Delta 0.945 0.946 0.946 0.945 0.946
Reverse 0.945 0.946 0.946 0.945 0.946
Scheffé 0.999 0.999 0.999 0.998 0.999

0.1 EM 0.995 0.997 0.997 0.997 0.996
Delta 0.950 0.951 0.950 0.951 0.950
Reverse 0.950 0.951 0.951 0.951 0.950
Scheffé . . . . .

0.5 EM 0.993 0.995 0.996 0.995 0.994
Delta 0.952 0.961 0.966 0.963 0.956
Reverse 0.954 0.959 0.962 0.962 0.958

Table 2 A. Mean interval widths for x = {−1, 0, 0, 0, 0, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.226 0.195 0.180 0.195 0.226

0.01 EM 0.123 0.123 0.123 0.123 0.123
Delta 0.067 0.059 0.056 0.059 0.067
Reverse 0.067 0.059 0.056 0.059 0.067
Scheffé 3.284 3.053 2.994 3.053 3.283

0.1 EM 1.256 1.256 1.256 1.256 1.256
Delta 0.690 0.606 0.575 0.606 0.690
Reverse 0.679 0.597 0.568 0.597 0.678
Scheffé . . . . .

0.5 EM 7.658 7.658 7.658 7.658 7.658
Delta 16.926 11.057 9.572 13.165 20.347
Reverse 2.782 2.526 2.434 2.522 2.772

Table 2 B. Mean bias for x = {−1, 0, 0, 0, 0, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse 3.697e-4 1.244e-4 -6.728e-5 -3.166e-4 -5.785e-4 -9.366e-5 -4.675e-4

Reverse 1.689e-4 2.401e-5 -6.730e-5 -2.163e-4 -3.777e-4 -9.368e-5 -2.667e-4
0.1 Inverse 0.009 0.003 0.001 -0.003 -0.008 4.000e-4 -0.008

Reverse -0.012 -0.007 0.001 0.007 0.013 4.000e-4 0.0128
0.5 Inverse 0.223 0.112 -0.008 -0.116 -0.228 -0.0034 -0.226

Reverse -0.316 -0.156 0.004 0.166 0.327 0.005 0.3216
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Table 2 C. Mean variance of the interval widths for x = {−1, 0, 0, 0, 0, 1}, N = 1, 000
and M = 100.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 6.205e-4 4.807e-4 4.339e-4 4.805e-4 6.202e-4

Reverse 6.200e-4 4.803e-4 4.337e-4 4.801e-4 6.197e-4
0.1 Inverse 0.069 0.052 0.046 0.052 0.069

Reverse 0.063 0.048 0.043 0.048 0.063
0.5 Inverse 1.703e5 6.515e4 4.697e4 1.100e5 2.590e5

Reverse 1.314 0.898 0.752 0.904 1.325

Table 3 A. Mean interval widths for x = {−1,−1,−1, 1, 1, 1}, N = 1, 000, and M =
100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.193 0.180 0.175 0.180 0.193

0.01 EM 0.122 0.122 0.122 0.122 0.122
Delta 0.060 0.057 0.056 0.057 0.060
Reverse 0.060 0.057 0.056 0.057 0.060
Scheffé 2.171 2.071 2.039 2.071 2.171

0.1 EM 1.241 1.241 1.241 1.241 1.241
Delta 0.607 0.578 0.568 0.578 0.608
Reverse 0.605 0.576 0.566 0.576 0.605
Scheffé . . . . .

0.5 EM 6.385 6.385 6.385 6.385 6.385
Delta 3.240 3.060 2.994 3.053 3.228
Reverse 2.841 2.715 2.670 2.710 2.831

Table 3 B. Mean bias for x = {−1,−1,−1, 1, 1, 1}, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse 2.988e-4 1.640e-4 -1.020e-6 -1.070e-4 -2.281e-4 2.534e-5 -2.650e-4

Reverse 2.330e-4 1.311e-4 -1.018e-6 -7.414e-5 -1.623e-4 2.533e-5 -1.992e-4
0.1 Inverse 6.408e-4 -4.455e-4 -8.823e-4 -0.003 -0.004 -1.537e-3 -2.367e-3

Reverse -0.006 -0.004 -8.814e-4 7.777e-4 0.003 -1.421e-3 4.556e-3
0.5 Inverse 0.048 0.029 -0.012 -0.006 -0.024 0.007 -0.036

Reverse -0.118 -0.054 -0.010 0.074 0.138 0.006 0.128
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Table 3 C. Mean variance of the interval widths for x = {−1,−1,−1, 1, 1, 1}, N =
1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 4.778e-4 4.329e-4 4.180e-4 4.329e-4 4.777e-4

Reverse 4.776e-4 4.328e-4 4.179e-4 4.328e-4 4.776e-4
0.1 Inverse 0.053 0.047 0.046 0.047 0.053

Reverse 0.051 0.046 0.045 0.046 0.051
0.5 Inverse 2.784 2.175 1.960 2.163 2.781

Reverse 1.224 1.047 0.981 1.033 1.196

Table 4 A. Mean interval widths for x = {−1, 1} with 5 replicates at each point,
N = 1, 000, and M = 100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.119 0.111 0.108 0.111 0.119

0.01 EM 0.086 0.086 0.086 0.086 0.086
Delta 0.049 0.048 0.047 0.048 0.049
Reverse 0.049 0.048 0.047 0.048 0.049
Scheffé 1.211 1.144 1.119 1.144 1.211

0.1 EM 0.857 0.857 0.857 0.857 0.857
Delta 0.492 0.477 0.471 0.477 0.492
Reverse 0.490 0.474 0.469 0.474 0.490
Scheffé . . . . .

0.5 EM 4.269 4.269 4.269 4.269 4.269
Delta 2.489 2.407 2.379 2.409 2.494
Reverse 2.220 2.160 2.140 2.161 2.223

Table 4 B. Mean bias for x = {−1, 1} with 5 replicates at each point, N = 1, 000 and
M = 100.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse -6.943e-5 -1.050e-4 -1.211e-4 -3.010e-5 1.145e-5 -6.284e-5 4.733e-5

Reverse -1.509e-4 -1.457e-4 -1.210e-4 1.063e-5 9.292e-5 -6.281e-5 1.288e-4
0.1 Inverse 0.001 2.540e-4 4.547e-4 -7.550e-4 -8.652e-5 1.734 -6.364e-4

Reverse -0.007 -0.004 4.410e-4 0.003 0.007 -1.118e-4 0.007
0.5 Inverse 0.012 0.004 -0.007 -0.019 -0.030 -0.008 0.021

Reverse -0.157 -0.080 -0.005 0.069 0.144 -0.006 0.150
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Table 4 C. Mean variance of the interval widths for x = {−1, 1} with 5 replicates at
each point, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 0.313 0.282 0.272 0.284 0.318

Reverse 0.205 0.189 0.184 0.190 0.208
0.1 Inverse 0.015 0.014 0.013 0.014 0.014

Reverse 0.014 0.013 0.013 0.013 0.014
0.5 Inverse 0.594 0.524 0.503 0.530 0.608

Reverse 0.303 0.278 0.270 0.280 0.308

Table 5 A. Mean interval widths for x = {−1, 1} with 10 replicates at each point,
N = 1, 000, and M = 100.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.081 0.077 0.075 0.077 0.081

0.01 EM 0.065 0.065 0.065 0.065 0.065
Delta 0.044 0.043 0.043 0.043 0.044
Reverse 0.044 0.043 0.043 0.043 0.044
Scheffé 0.815 0.774 0.758 0.774 0.815

0.1 EM 0.647 0.647 0.647 0.647 0.647
Delta 0.438 0.430 0.428 0.430 0.438
Reverse 0.435 0.428 0.426 0.428 0.435
Scheffé 5.468 5.385 5.360 5.385 5.468

0.5 EM 3.281 3.281 3.281 3.281 3.281
Delta 2.235 2.195 2.181 2.194 2.235
Reverse 1.983 1.955 1.945 1.955 1.983

Table 5 B. Mean bias for x = {−1, 1} with 10 replicates at each point, N = 1, 000
and M = 100.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse 1.365e-4 9.139e-5 1.051e-4 4.927e-5 4.111e-5 8.467e-5 -4.658e-5

Reverse 4.480e-5 4.555e-5 1.051e-4 9.511e-5 1.328e-4 8.467e-5 1.080e-5
0.1 Inverse 0.001 9.699e-4 8.257e-4 3.806e-4 3.063e-5 6.414e-4 -5.056e-4

Reverse -0.008 -0.004 8.200e-4 0.005 0.009 5.640e-4 0.009
0.5 Inverse 0.015 0.011 -3.283e-4 -0.004 -0.013 0.002 -0.014

Reverse -0.180 -0.087 -4.835e-4 0.092 0.181 0.001 0.180
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Table 5 C. Mean variance of the interval widths for x = {−1, 1} with 10 replicates at
each point, N = 1, 000 and M = 100.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 5.581e-5 5.391e-5 5.327e-5 5.391e-5 5.581e-5

Reverse 5.579e-5 5.389e-5 5.326e-5 5.389e-5 5.580e-5
0.1 Inverse 5.365e-3 5.176e-3 5.114e-3 5.179e-3 5.369e-3

Reverse 5.210e-3 5.032e-3 4.973e-3 5.034e-3 5.214e-3
0.5 Inverse 0.246 0.229 0.222 0.228 0.246

Reverse 0.118 0.112 0.110 0.112 0.117

Table 6 A. Mean interval widths for x = {−1,−1, 0, 0, 1, 1}, N = 100, 000 and M = 1.

Sigma Method -1 -0.5 0 0.5 1
Scheffé 0.204 0.186 0.178 0.186 0.204

0.01 EM 0.124 0.124 0.124 0.124 0.124
Delta 0.062 0.058 0.056 0.058 0.062
Reverse 0.062 0.058 0.056 0.058 0.062
Scheffé 2.376 2.241 2.199 2.241 2.376

0.1 EM 1.236 1.236 1.236 1.236 1.236
Delta 0.624 0.581 0.566 0.581 0.624
Reverse 0.619 0.577 0.562 0.577 0.619
Scheffé . . . . .

0.5 EM 6.741 6.741 6.741 6.741 6.741
Delta 9.029 12.018 10.734 16.613 22.927
Reverse 2.881 2.706 2.644 2.705 2.880

Table 6 B. Mean bias for x = {−1,−1, 0, 0, 1, 1}, N = 100, 000 and M = 1.

Sigma Method -1 -0.5 0 0.5 1 Intercept Slope
0.01 Inverse 6.767e-5 6.382e-5 6.398e-6 3.003e-5 -4.129e-5 2.533e-5 -5.034e-5

Reverse -3.270e-5 1.363e-5 6.392e-6 8.020e-5 5.906e-5 2.446e-5 5.174e-5
0.1 Inverse 0.002 5.279e-4 -2.070e-4 -0.001 -0.003 -3.358e-4 -2.306e-4

Reverse -0.008 -0.004 -2.007e-4 0.004 0.007 -2.401e-4 0.008
0.5 Inverse 0.088 0.038 -1.064e-4 -0.051 -0.095 -0.004 -0.091

Reverse -0.173 -0.085 0.004 0.087 0.176 0.002 0.174
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Table 6 C. Mean variance of the interval widths for x = {−1,−1, 0, 0, 1, 1}, N =
100, 000 and M = 1.

Sigma Method -1 -0.5 0 0.5 1
0.01 Inverse 5.136e-5 4.456e-5 4.229e-5 4.455e-5 5.135e-5

Reverse 5.134e-5 4.454e-5 4.227e-5 4.454e-5 5.133e-5
0.1 Inverse 0.053 0.046 0.043 0.046 0.053

Reverse 0.051 0.044 0.042 0.044 0.051
0.5 Inverse 2.870e6 7.551e6 5.665e6 1.764e7 3.704e7

Reverse 1.280 1.012 9.223 1.016 1.280

Conclusions

In general, the prediction intervals for both delta and reverse regression approaches,
on the average, have essentially correct coverage probabilities. We show the results
for only one simulation case, but all of the other simulation cases are similar. The
width of the prediction interval for reverse regression is slightly less variable than for
inverse regression, which suggests some preference for using reverse regression. As
expected, the Scheffé and the Eberhardt and Mee methods are too conservative.

For a reasonably precise instrument, σ = 0.01, the delta and reverse regression pre-
diction interval widths are virtually the same, while the Scheffé and Eberhardt and
Mee prediction intervals are two to three times larger. The bias is practically zero for
both the inverse and reverse regression methods. As a result, the mean square error
is dominated by the variance.

For a borderline precision instrument σ = 0.1, the reverse regression prediction in-
terval widths are slightly smaller than delta method. Once again, the Scheffé and
the Eberhardt and Mee prediction intervals are two to three times larger. The bias
depends on location, but the inverse regression results appear to be generally slightly
better. Once again, the variance dominates the bias. As a result, the mean squared
error is effectively the variance.

The σ = 0.5 case illustrates a situation where anything based on inverse regression
breaks down. The Scheffé intervals are not computable in most cases. The delta
method prediction intervals are significantly wider than reverse regression; however,
they still are smaller than the Eberhardt and Mee intervals.

The simulation study confirms that both the inverse and the reverse regression ap-
proaches lead to biased predictions. As expected, inverse regression has less bias than
reverse regression as we predict further away from 0. In both cases the bias depends
on location and follows a linear trend. Both approaches give unbiased predictions
at 0. The bias for inverse regression has a positive slope while the bias for reverse
regression has a negative slope. Increasing the number of design points at the interval
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boundaries decreases the bias for inverse regression; however, it has no effect on the
bias for reverse regression. In general, inverse regression tends to be less biased than
reverse regression. The one case where forward regression appears to have less bias is
the rather unrealistic situation with only two points on the interval boundaries and
many points at the interval center. Such a situation does provide good ability to test
for lack-of-fit, but it fails to estimate the basic relationship well.

The bottom-line conclusions are somewhat mixed. Reverse regression appears to
have a slight edge in terms of the width of the prediction intervals for reasonable
and borderline instruments. On the other hand, inverse regression appears to have a
definite edge in terms of bias for calibration experiments that replicate the interval
boundaries.

It is important to note that this study only considers a simple linear relationship.
Future research intends to study more complicated calibration relationships including
more than one calibration factor and higher-order models.
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