
NASA Tech Briefs, January 2004 31

Serial-Turbo-Trellis-Coded Modulation With Rate-1 Inner Code
Coders and decoders for bandwidth- and power-limited systems could be less complex.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Serially concatenated turbo codes
have been proposed to satisfy require-
ments for low bit- and word-error rates
and for low (in comparison with related
previous codes) complexity of coding
and decoding algorithms and thus low
complexity of coding and decoding cir-
cuitry. These codes are applicable to
such high-level modulations as octonary
phase-shift keying (8PSK) and 16-state
quadrature amplitude modulation
(16QAM); the signal product obtained
by applying one of these codes to one of
these modulations is denoted, generally,
as “serially concatenated trellis-coded
modulation” (“SCTCM”). These codes
could be particularly beneficial for com-
munication systems that must be de-
signed and operated subject to limita-
tions on bandwidth and power.

Some background information is pre-
requisite to a meaningful summary of
this development. Trellis-coded modula-
tion (TCM) is now a well-established
technique in digital communications. A
turbo code combines binary component
codes (which typically include trellis
codes) with interleaving. A turbo code
of the type that has been studied prior to
this development is composed of paral-
lel concatenated convolutional codes
(PCCCs) implemented by two or more
constituent systematic encoders joined
through one or more interleavers. The
input information bits feed the first en-
coder and, after having been scrambled
by the interleaver, enter the second en-
coder. A code word of a parallel con-
catenated code consists of the input bits
to the first encoder followed by the par-
ity check bits of both encoders. The sub-
optimal iterative decoding structure for
such a code is modular, and consists of a
set of concatenated decoding modules
— one for each constituent code — con-
nected through an interleaver identical
to the one in the encoder side. Each de-
coder performs weighted soft decoding
of the input sequence. PCCCs yield very
large coding gains at the cost of a reduc-
tion in the data rate and/or an increase
in bandwidth.

As its full name suggests, SCTCM
merges serially concatenated convolu-

tional codes (SCCCs) with TCM.
SCTCM is believed to offer the potential
to achieve low bit-error rates (≤10–9), in
part because the error floors of SCCCs
are lower than those of PCCCs.

It is important to note that the pro-
posed serial concatenated coding
scheme differs from “classical” concate-
nated coding schemes. In a classical
scheme, the role of the interleaver be-
tween two encoders is merely to break
up bursts of errors produced by the
inner decoder, and no attempt is made
to consider the combination of the two
encoders and the interleaver as a single
entity. In SCTCM, on the other hand,
one seeks to optimize the whole serial
structure.

No attempt at such optimization was
made in the past, in part because opti-
mizing an overall code with large deter-
ministic interleavers is prohibitively
complex. However, by introducing the
concept of a uniform interleaver, it is
possible to draw some criteria to opti-
mize the component codes for the con-
struction of powerful serially concate-
nated codes with large block size.
Another reason optimization of overall
codes was not attempted is that opti-
mum decoding of complex codes is
practically impossible; only the use of
suboptimum iterative decoding tech-
niques makes it possible to decode such
complex codes. The decoder in an
SCTCM system would utilize an adapted
version of iterative decoding used in
PCCC schemes.

The upper part of the figure is a block
diagram of an encoder in an SCTCM sys-
tem that yields a bit-rate-to-bandwidth
ratio of b (bits/second)/Hertz when

ideal Nyquist pulse shaping is used. The
outer encoder implements a rate-
[2b/(2b+1)] binary convolutional code
(or a short block code) with maximum
free Hamming distance (or minimum dis-
tance). The interleaver (π) permutes the
output of the outer encoder. The inter-
leaved data enter the inner encoder,
which implements a rate-[(2b+1)/(2b+2)]
recursive convolutional code. The 2b+2
output bits are then mapped to two sym-
bols, each belonging to a 2b+1-point two-
dimensional constellation. This results
in four-dimensional modulation. In this
way, 2b information bits are used for
every two modulation symbol intervals;
in other words, there are b information
bits per modulation symbol. The inner
code and the mapping are jointly opti-
mized on the basis of maximizing the ef-
fective free Euclidean distance of the
inner TCM.

Unfortunately, the decoder associated
with such an encoder would be unac-
ceptably complex and thus unsuitable
for high-speed operation. This is be-
cause the number of transitions per state
for the inner TCM is 22b+1 and so the
number of edges in the trellis section of
the decoder would have to equal to 22b+1

× the number of states.
The lower part of the figure is a block

diagram of an SCTCM encoder for an
M-point two-dimensional constellation
that would enable the use of a decoder
of lower complexity. This encoder yields
a bit-rate-to-bandwidth ratio of bm/(b+1)
(bits/second)/Hertz [where m ≡ log2M
and M is the number of points in a two-
dimensional signal constellation] when
ideal Nyquist pulse shaping is used. The
outer encoder implements a rate-

These Encoders implement two SCTCM schemes. Both encoders generate powerful codes, but the one
of the lower diagram enables the use of a simpler decoder.

Data In

2b 2b + 1 2b + 1 2b + 2

Outer
Encoder

Inner
Encoder Mapping

Four-
Dimensional
Modulation

π

Data In

b m mb + 1

Outer
Encoder

Inner
Encoder Mapping

Two-
Dimensional

M-point
Constellation

π

Information Sciences



32 NASA Tech Briefs, January 2004

[b/(b+1)] binary convolutional code (or
a short block code) with maximum free
Hamming distance (or minimum dis-
tance). The interleaver (π) permutes the
output of the outer encoder. The inter-
leaved data enter the inner encoder,
which implements a rate-(m/m) [rate-1]
recursive convolutional code. The m out-
put bits are then mapped to one symbol
that belongs to a 2m-level modulation.
Because the inner code does not have
redundancy, it is useless by itself; how-
ever, the combination of the inner and
outer codes with the interleaver results
in very powerful code. For MQAM
where M = N2, further reduction in com-

plexity is possible. This can be done by
assigning the m = log2N output bits of
the inner encoder alternately to the in-
phase and quadrature components of
N2QAM modulation. In this case, the
bit-rate-to-bandwidth ratio will be 

2bm/(b+1).
The advantage of this generic design

can be made more apparent by citing an
example of b = 3 for 16QAM, for which
m = 2. In this example, the number of
transitions per state of the inner TCM is
only 4, which is only 1/32 of the corre-
sponding number for the previous case.

This work was done by Dariush Divsalar,
Sam Dolinar, and Fabrizio Pollara of Caltech

for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1)

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Intellectual Property group
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109
(818) 354-2240
Refer to NPO-20878, volume and number

of this NASA Tech Briefs issue, and the
page number.

Enhanced Software for Scheduling Space-Shuttle Processing
Prototype software has been upgraded.
John F. Kennedy Space Center, Florida

The Ground Processing Scheduling
System (GPSS) computer program is
used to develop streamlined schedules
for the inspection, repair, and refurbish-
ment of space shuttles at Kennedy Space
Center. A scheduling computer pro-
gram is needed because space-shuttle
processing is complex and it is fre-
quently necessary to modify schedules to
accommodate unanticipated events, un-
availability of specialized personnel, un-
expected delays, and the need to repair
newly discovered defects. GPSS imple-
ments constraint-based scheduling algo-
rithms and provides an interactive
scheduling software environment. In re-
sponse to inputs, GPSS can respond with
schedules that are optimized in the
sense that they contain minimal viola-
tions of constraints while supporting the
most effective and efficient utilization of
space-shuttle ground processing re-
sources.

The present version of GPSS is a prod-
uct of re-engineering of a prototype ver-
sion. While the prototype version
proved to be valuable and versatile as a
scheduling software tool during the first
five years, it was characterized by design
and algorithmic deficiencies that af-
fected schedule revisions, query capabil-
ity, task movement, report capability,
and overall interface complexity. In ad-
dition, the lack of documentation gave
rise to difficulties in maintenance and
limited both enhanceability and porta-
bility.

The goal of the GPSS re-engineering
project was to upgrade the prototype

into a flexible system that supports mul-
tiple-flow, multiple-site scheduling and
that retains the strengths of the proto-
type while incorporating improvements
in maintainability, enhanceability, and
portability. The major enhancements
were the following:
• The implementation of container ob-

jects (e.g., lists and maps) was made
more efficient by use of the C++ Stan-
dard Template Library (STL).

• Improvements in the management of
schedule network objects were made.
An embedded schedule-data configu-
ration-management subsystem, similar
to systems used for software configura-
tion management, was built. This sub-
system accommodates multiple ver-
sions and revisions of each schedule,
including direct descendants and
branches. It also implements a concept
of user sessions that enables each user
to maintain multiple current instances
of the same schedule and full schedule
data files with sizes of the order of
1MB.

• Improvements in calendar operations
were made. The original implementa-
tion required the full, time-series ex-
pansion of all calendars, giving rise to
a large memory overhead. Further-
more, some calendar features (e.g.,
holidays), were “hard-coded.” In the
re-engineering, calendar memory re-
quirements were reduced by providing
for all calendar calculations to be per-
formed in real time and by removing
all hard-coded elements.

• Re-engineering of a robust query sub-

system was perhaps the most challeng-
ing aspect of the project. The proto-
type utilized a Prolog-like query lan-
guage that was scanned, parsed, and
executed in a C program. The query
code was problematic and difficult to
understand. The re-engineering in-
volved the building of a real (but simi-
lar) query language, utilizing the
FLEX language and the Bison pro-
gram to define a scanner and parser
that includes all elements of logical in-
ference (for example, AND, OR, and
NOT) as well as full capability for
building and incorporating user-cus-
tomizable queries.

• An improved report architecture was de-
veloped. The prototype featured a sig-
nificant number of hard-coded user op-
tions, and too little care was taken
initially to develop a consistent but flexi-
ble report architecture. The re-engineer-
ing of the affected software components
involved design around a new report
class that contains attributes that de-
scribe the class of objects (e.g., tasks)
represented in a report, the presenta-
tion style (e.g., Gantt chart or tabula-
tion), and the time frame of the report.
All report definitions are saved in files
that the user can edit to customize re-
ports.

• Several improvements in algorithms
were made to solve backward-move-
ment problems, provide a more robust
implementation of achievers, and im-
prove memory management through
the use of smart pointers and “lazy
load” of persistent data. Also included


