[/ (b+1)] binary convolutional code (or
a short block code) with maximum free
Hamming distance (or minimum dis-
tance). The interleaver () permutes the
output of the outer encoder. The inter-
leaved data enter the inner encoder,
which implements a rate-(m/m) [rate-1]
recursive convolutional code. The m out-
put bits are then mapped to one symbol
that belongs to a 2"-level modulation.
Because the inner code does not have
redundancy, it is useless by itself; how-
ever, the combination of the inner and
outer codes with the interleaver results
in very powerful code. For MQAM
where M= 1\/2, further reduction in com-

plexity is possible. This can be done by
assigning the m = logeN output bits of
the inner encoder alternately to the in-
phase and quadrature components of
NQQAM modulation. In this case, the
bit-rate-to-bandwidth ratio will be

2bm/ (b+1).

The advantage of this generic design
can be made more apparent by citing an
example of b = 3 for 16QAM, for which
m = 2. In this example, the number of
transitions per state of the inner TCM is
only 4, which is only 1/32 of the corre-
sponding number for the previous case.

This work was done by Dariush Divsalar,
Sam Dolinay, and Fabrizio Pollara of Caltech

Jor NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP
(see page 1)

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Intellectual Property group

JPL

Mail Stop 202-233

4800 Oak Grove Drive

Pasadena, CA 91109

(818) 354-2240

Refer to NPO-20878, volume and number
of this NASA Tech Briefs issue, and the
page number.

3 Enhanced Software for Scheduling Space-Shuttle Processing

Prototype software has been upgraded.

John F Kennedy Space Center, Florida

The Ground Processing Scheduling
System (GPSS) computer program is
used to develop streamlined schedules
for the inspection, repair, and refurbish-
ment of space shuttles at Kennedy Space
Center. A scheduling computer pro-
gram is needed because space-shuttle
processing is complex and it is fre-
quently necessary to modify schedules to
accommodate unanticipated events, un-
availability of specialized personnel, un-
expected delays, and the need to repair
newly discovered defects. GPSS imple-
ments constraint-based scheduling algo-
rithms and provides an interactive
scheduling software environment. In re-
sponse to inputs, GPSS can respond with
schedules that are optimized in the
sense that they contain minimal viola-
tions of constraints while supporting the
most effective and efficient utilization of
space-shuttle ground processing re-
sources.

The present version of GPSS is a prod-
uct of re-engineering of a prototype ver-
sion. While the prototype version
proved to be valuable and versatile as a
scheduling software tool during the first
five years, it was characterized by design
and algorithmic deficiencies that af-
fected schedule revisions, query capabil-
ity, task movement, report capability,
and overall interface complexity. In ad-
dition, the lack of documentation gave
rise to difficulties in maintenance and
limited both enhanceability and porta-
bility.

The goal of the GPSS re-engineering
project was to upgrade the prototype

32

into a flexible system that supports mul-
tiple-flow, multiple-site scheduling and
that retains the strengths of the proto-
type while incorporating improvements
in maintainability, enhanceability, and
portability. The major enhancements
were the following:

* The implementation of container ob-
jects (e.g., lists and maps) was made
more efficient by use of the C++ Stan-
dard Template Library (STL).

¢ Improvements in the management of
schedule network objects were made.
An embedded schedule-data configu-
ration-management subsystem, similar
to systems used for software configura-
tion management, was built. This sub-
system accommodates multiple ver-
sions and revisions of each schedule,
including direct descendants and
branches. It also implements a concept
of user sessions that enables each user
to maintain multiple current instances
of the same schedule and full schedule
data files with sizes of the order of
1MB.
Improvements in calendar operations
were made. The original implementa-
tion required the full, time-series ex-
pansion of all calendars, giving rise to
a large memory overhead. Further-
more, some calendar features (e.g.,
holidays), were “hard-coded.” In the
re-engineering, calendar memory re-
quirements were reduced by providing
for all calendar calculations to be per-
formed in real time and by removing
all hard-coded elements.

® Re-engineering of a robust query sub-

system was perhaps the most challeng-
ing aspect of the project. The proto-
type utilized a Prolog-like query lan-
guage that was scanned, parsed, and
executed in a C program. The query
code was problematic and difficult to
understand. The re-engineering in-
volved the building of a real (but simi-
lar) query language, utilizing the
FLEX language and the Bison pro-
gram to define a scanner and parser
that includes all elements of logical in-
ference (for example, AND, OR, and
NOT) as well as full capability for
building and incorporating user-cus-
tomizable queries.

An improved report architecture was de-
veloped. The prototype featured a sig-
nificant number of hard-coded user op-
tions, and too little care was taken
initially to develop a consistent but flexi-
ble report architecture. The re-engineer-
ing of the affected software components
involved design around a new report
class that contains attributes that de-
scribe the class of objects (e.g., tasks)
represented in a report, the presenta-
tion style (e.g., Gantt chart or tabula-
tion), and the time frame of the report.
All report definitions are saved in files
that the user can edit to customize re-
ports.

Several improvements in algorithms
were made to solve backward-move-
ment problems, provide a more robust
implementation of achievers, and im-
prove memory management through
the use of smart pointers and “lazy
load” of persistent data. Also included

NASA Tech Briefs, January 2004



is an updated implementation of an

object-oriented callback system to the

Motif widget set.

The benefits of the re-engineered ver-
sion of GPSS hinge on the object-ori-
ented approach. The use of STL and the
improvements in schedule and query op-
erations are incorporated in C++ libraries
that may prove useful on succeeding pro-
jects. The rewriting of software in C++ in-

creases portability. For the users, every ef-
fort was made in the re-engineering to
maximize flexibility and improve upon
the intuitive nature of the interface with-
out sacrificing any of the capabilities that
made the prototype successful.

This work was done by Joseph A. Barretta,
Earl P. Johnson, Rocky R. Bierman, Juan
Blanco, Kathleen Boaz, Lisa A. Stotz,
Michael Clark, George Lebovitz, Kenneth J.

Lotti, James M. Moody, Tony K. Nguyen,
Kenneth A. Peterson, Susan Sargent, Karma
Shaw, Mack D. Stoner, Deborah S. Stowell,
Daniel A. Young, and James H. Tulley, Jr., of
United Space Alliance for Kennedy Space
Center. For further information, contact the
Kennedy Commercial Technology Office at
321-867-8130.

KSC-12043

3 Bayesian-Augmented Identification of Stars in a Narrow View
An adaptive threshold guides acceptance or rejection of a tentative identification.

NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm for the identification of
stars from a charge-coupled-device
(CCD) image of a star field has been ex-
tended for use with narrower field-of-
view images. Previously, the algorithm
had been shown to be effective at a field
of view of 8°. This work augments the
earlier algorithm using Bayesian deci-
sion theory. The new algorithm is shown
to be capable of effective star identifica-
tion down to a field of view of 2°. The al-
gorithm was developed for use in esti-
mating the attitude of a spacecraft and
could be used on Earth to help in the
identification of stars and other celestial
objects for astronomical observations.

The present algorithm is one of sev-
eral that seek matches between (1) im-
aged star fields and (2) portions of the
sky, with angular dimensions equal to
those of the imaged star fields, in a cata-
log of stars in a known reference frame.
Previously developed star-identification
algorithms are not suitable for fields of

view only 2° wide. The present algorithm
is based partly on one such prior algo-
rithm, called the “grid algorithm,” that
has shown promise for identifying stars
in fields of view 8° wide. To make it pos-
sible to identify stars in fields of view
down to 2° with acceptably low probabil-
ities of error, the grid algorithm has
been extended by incorporating
Bayesian decision theory.

For the special purpose of the grid al-
gorithm, the term “pattern” denotes a
grid representation of the relative posi-
tions of stars in a field of view. Each star
is deemed to be located within one of
the cells of a square grid that spans ei-
ther the field of view of the CCD image
or a candidate star-catalog field of the
same angular dimensions. The portion
of the grid algorithm that generates a
pattern comprises the following steps
(see figure):

1. Choose a star from the CCD image or
the applicable field of view in the star

catalog to be the center star.

2. Decide which star is the neighbor star.
The neighbor star is deemed to be the
star nearest to the center star outside a
buffer radius of &r pixels. The value of
bris chosen on the basis of experience.

3. Center a grid of g rows and g columns
on the center star, and orient the grid
such that a horizontal vector from the
center to the right edge passes through
the neighbor star. Like &7, the value of
gis chosen on the basis of experience.

4. Derive a pattern, a gQ-element bit vector

VI[0... g - 1]

such that if grid cell(7,j) contains a star,
then

Vijg+i =1
The vector element corresponding to

any grid cell which does not contain a
star is given the value 0. The dot product

Image or Star-Catalog Field

Center grid on one star and orient grid
with reference to nearest neighbor star.

=\
g

s

Mark each grid cell that contains a star.

e

|

Final Pattern

A Grid Pattern is created from either a CCD image of stars or star-catalog data for a field of view of the same angular dimensions as those of the CCD image.

NASA Tech Briefs, January 2004

33



