
of pipe is located immediately upstream
of the point of discharge of the flow to
be monitored. The special section of
pipe must be large enough that the pipe
can accommodate the entire flow of in-
terest (in contradistinction to a small di-
verted sample flow), that the flow re-
mains laminar at all times, and that the
pipe is never entirely full, even at the
maximum flow rate.

In another configuration, the appara-
tus does not measure the rate of flow or
the density directly: Instead, it (a) mea-
sures the height of the fluid in the spe-
cial section of pipe and computes the
flow rate as a predetermined function of
the height and (b) measures the speed
of sound in the fluid and computes the
density of the fluid as a predetermined
function of the speed of sound in the
fluid. To enable the apparatus to per-

form these computations, one must cali-
brate the apparatus, prior to operation,
by measuring the flow rate as a function
of height and the mass density as a func-
tion of the speed of sound for the
drilling mud or other fluid of interest.

In the second configuration, the veloc-
ity of the fluid can be measured subsur-
face using a set of one transmitter and two
receivers to measure differential phase
shifts. This second configuration can be
used within a filled or unfilled closed pipe
to measure volume flow. The microwave
portion of the apparatus (see figure)
includes a broadband swept-frequency
(more precisely, stepped-frequency)
transmitter/receiver pair connected, via
a directional coupler, to an antenna
aimed downward at the liquid. Transmit-
ted- and received-signal data are processed
by an algorithm that uses a modified

Fourier transform to compute the round-
trip propagation time of the signal re-
flected from top of the fluid. The height
of the fluid is then computed from the
round-trip travel time and the known
height of the antenna. A sonic sensor that
operates alongside the microwave sensor
gives an approximate height reading that
makes it possible to resolve the integer-
multiple-of-2π phase ambiguity of the mi-
crowave sensor, while the microwave sen-
sor makes it possible to refine the height
measurement to within 0.1 in. (≈2.5 mm).

Ultrasonic sensors on the walls near
the bottom of the special section of pipe
are used to measure the speed of sound
needed to compute the density of the
fluid. More specifically, what is measured
is the difference between the phase of a
signal of known frequency at a transmit-
ting transducer and the phase of the
same signal at a receiving transducer a
known distance away. It may also be  nec-
essary to resolve an integer-multiple-of-
2π phase ambiguity. This can be done by
using two sonic frequencies chosen ac-
cording to a well-established technique.
Alternatively, one could use a single
sonic frequency low enough not to be
subject to the phase ambiguity, albeit
with some loss of density resolution. Sim-
ulations indicate that a density accuracy
measurement of 0.25 percent (0.0025)
can be attained with a single-tone system.

This work was done by G. D. Arndt and
Phong Ngo of Johnson Space Center
and J. R. Carl and Kent A. Byerly, indepen-
dent consultants. 

This invention is owned by NASA, and
a patent application has been filed. In-
quiries concerning nonexclusive or exclu-
sive license for its commercial development
should be addressed to the Patent Counsel,
Johnson Space Center, (281) 483-0837. Refer
to MSC-23311.
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The Height of the Fluid relative to the antenna is determined from differences between the phases of
stepped-frequency microwave signals transmitted to, and reflected from, the top surface of the fluid.
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A methodology for improving gravity-
gradient measurement data exploits the
constraints imposed upon the compo-
nents of the gravity-gradient tensor by
the conditions of integrability needed
for reconstruction of the gravitational
potential. These constraints are derived

from the basic equation for the gravita-
tional potential and from mathematical
identities that apply to the gravitational
potential and its partial derivatives with
respect to spatial coordinates.

Consider the gravitational potential φ
in a Cartesian coordinate system {x1,x2,x3}.

The ith component of gravitational ac-
celeration is given by

(where i = 1, 2, or 3) and the (α,β) com-

g
xi

i
= − ∂

∂
φ

Reducing Errors by Use of Redundancy in Gravity
Measurements
Mathematical identities are exploited to suppress noise or reduce numbers of measurements.
NASA’s Jet Propulsion Laboratory, Pasadena, California
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ponent of the gravity-gradient tensor 
is given by

where α = 1, 2, or 3 and β = 1, 2, or 3. The
aforementioned constraints are such that
the components of the gravity-gradient
tensor are not independent of each other.
In particular, it is easily shown that the
gravity-gradient tensor is symmetrical and
has a zero trace; that is,

Γαβ = Γβα and Γ11+ Γ22 +Γ33 = 0.
Hence, if one measures all the compo-
nents of the gravity-gradient tensor at all
points of interest within a region of space
in which one seeks to characterize the
gravitational field, one obtains redun-
dant information. One could utilize the

constraints to select a minimum (that is,
nonredundant) set of measurements
from which the gravitational potential
could be reconstructed. Alternatively,
one could exploit the redundancy to re-
duce errors from noisy measurements.

A convenient example is that of the
selection of a minimum set of measure-
ments to characterize the gravitational
field at n3 points (where n is an integer)
in a cube. Without the benefit of such a
selection, it would be necessary to make
9n3 measurements because the gravity-
gradient tensor has 9 components at
each point. It has been shown that when
the constraints are applied to the mea-
surement points in an appropriately
chosen sequence, the number of mea-
surements needed to compute all 9n3

components is only n3+n2+3n.

The problem of utilizing the redun-
dancy to reduce errors in noisy measure-
ments is an optimization problem: Given a
set of noisy values of the components of
the gravity-gradient tensor at the measure-
ment points, one seeks a set of corrected
values — a set that is optimum in that it
minimizes some measure of error (e.g.,
the sum of squares of the differences be-
tween the corrected and noisy measure-
ment values) while taking account of the
fact that the constraints must apply to the
exact values. The problem as thus posed
leads to a vector equation that can be
solved to obtain the corrected values.

This work was done by Igor Kulikov and
Michail Zak of Caltech for NASA’s Jet
Propulsion Laboratory. Further informa-
tion is contained in a TSP (see page 1).
NPO-30536
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