
NASA Tech Briefs, November 2004 15

Software

Verifying Diagnostic
Software

Livingstone PathFinder (LPF) is a
simulation-based computer program
for verifying autonomous diagnostic
software. LPF is designed especially to
be applied to NASA’s Livingstone com-
puter program, which implements a
qualitative-model-based algorithm that
diagnoses faults in a complex auto-
mated system (e.g., an exploratory
robot, spacecraft, or aircraft). LPF
forms a software test bed containing a
Livingstone diagnosis engine, embed-
ded in a simulated operating environ-
ment consisting of a simulator of the
system to be diagnosed by Livingstone
and a driver program that issues com-
mands and faults according to a non-
deterministic scenario provided by the
user. LPF runs the test bed through all
executions allowed by the scenario,
checking for various selectable error
conditions after each step. All compo-
nents of the test bed are instrumented,
so that execution can be single-stepped
both backward and forward. The archi-
tecture of LPF is modular and includes
generic interfaces to facilitate substitu-
tion of alternative versions of its differ-
ent parts. Altogether, LPF provides a
flexible, extensible framework for simu-
lation-based analysis of diagnostic soft-
ware; these characteristics also render it
amenable to application to diagnostic
programs other than Livingstone.

This program was written by Tony Lindsey
and Charles Pecheur of Ames Research
Center. Further information is contained in
a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to the Patent Counsel, Ames Research Center,
(650) 604-5104. Refer to ARC-14780-1.

Initial Processing of
Infrared Spectral Data

The Atmospheric Infrared Spectrom-
eter (AIRS) Science Processing System
is a collection of computer programs,
denoted product generation executives
(PGEs), for processing the readings of
the AIRS suite of infrared and mi-
crowave instruments orbiting the Earth
aboard NASA’s Aqua spacecraft. Follow-
ing from level 0 (representing raw AIRS
data), the PGEs and their data products
are denoted by alphanumeric labels

(1A, 1B, and 2) that signify the succes-
sive stages of processing. Once level-0
data have been received, the level-1A
PGEs begin processing, performing
such basic housekeeping tasks as ensur-
ing that all the Level-0 data are present
and ordering the data according to ob-
servation times. The level-1A PGEs then
perform geolocation-refinement calcu-
lations and conversions of raw data
numbers to engineering units. Finally,
the level-1A data are grouped into pack-
ages, denoted granules, each of which
contain the data from a six-minute ob-
servation period. The granules are for-
warded, along with calibration data, to
the Level-1B PGEs for processing into
calibrated, geolocated radiance prod-
ucts. The Level-2 PGEs, which are not
yet operational, are intended to process
the level-1B data into temperature and
humidity profiles, and other geophysi-
cal properties.

This program was written by Solomon De
Picciotto, Albert Chang, Zi-Ping Sun, Yuan-
Ti Ting, Evan Manning, Steven Gaiser,
Bjorn Lambrigtsen, Mark Hofstadter, Thomas
Hearty, Thomas Pagano, Hartmut Aumann,
and Steven Broberg of Caltech for NASA’s Jet
Propulsion Laboratory. Further informa-
tion is contained in a TSP (see page 1).

This software is available for commercial
licensing. Please contact Don Hart of the Cal-
ifornia Institute of Technology at (818) 393-
3425. Refer to NPO-35243.

Activity-Centric Approach to
Distributed Programming

The first phase of an effort to develop
a NASA version of the Cybele software
system has been completed. To give
meaning to even a highly abbreviated
summary of the modifications to be em-
bodied in the NASA version, it is neces-
sary to present the following back-
ground information on Cybele:

Cybele is a proprietary software infra-
structure for use by programmers in de-
veloping agent-based application pro-
grams [complex application programs
that contain autonomous, interacting
components (agents)]. Cybele provides
support for event handling from multiple
sources, multithreading, concurrency
control, migration, and load balancing. A
Cybele agent follows a programming par-
adigm, called activity-centric program-
ming, that enables an abstraction over
system-level thread mechanisms. Activity-

centric programming relieves application
programmers of the complex tasks of
thread management, concurrency con-
trol, and event management. In order to
provide such functionality, activity-centric
programming demands support of other
layers of software. This concludes the
background information.

In the first phase of the present de-
velopment, a new architecture for Cy-
bele was defined. In this architecture,
Cybele follows a modular service-based
approach to coupling of the program-
ming and service layers of software ar-
chitecture. In a service-based approach,
the functionalities supported by activ-
ity-centric programming are appor-
tioned, according to their characteris-
tics, among several groups called
services. A well-defined interface
among all such services serves as a path
that facilitates the maintenance and en-
hancement of such services without ad-
verse effect on the whole software
framework. The activity-centric applica-
tion-program interface (API) is part of
a kernel. The kernel API calls the ser-
vices by use of their published inter-
face. This approach makes it possible
for any application code written exclu-
sively under the API to be portable for
any configuration of Cybele.

This program was written by Renato Levy,
Goutam Satapathy, and Jun Lang of Intelli-
gent Automation, Inc., for Johnson Space
Center. For further information, contact:

Intelligent Automation, Inc.
2 Research Place, Suite 202
Rockville, MD 20850

Refer to MSC-23239.

Controlling Distributed
Planning

A system of software implements an
extended version of an approach, de-
noted shared activity coordination
(SHAC), to the interleaving of planning
and the exchange of plan information
among organizations devoted to differ-
ent missions that normally communi-
cate infrequently except that they need
to collaborate on joint activities and/or
the use of shared resources. SHAC en-
ables the planning and scheduling sys-
tems of the organizations to coordinate
by resolving conflicts while optimizing
local planning solutions. The present
software provides a framework for mod-
eling and executing communication

