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The recently launched Solar Dynamics Observatory (SDO) has two science instruments 
onboard that required sub-arcsecond pointing stability.  Significant effort has been spent 
pre-launch to characterize the disturbances sources and validating jitter level at the 
component, sub-assembly, and spacecraft levels.  However, an end-to-end jitter test 
emulating the flight condition was not performed on the ground due to cost and risk 
concerns.  As a result, the true jitter level experienced on orbit remained uncertain prior to 
launch.  Based on the pre-launch analysis, several operational constraints were placed on the 
observatory aimed to minimize the instrument jitter levels.  If the actual jitter is below the 
analysis predictions, these operational constraints can be relaxed to reduce the burden of the 
flight operations team.  The SDO team designed a three-day jitter test, utilizing the 
instrument sensors to measure pointing jitter up to 256 Hz. The test results were compared 
to pre-launch analysis predictions, used to determine which operational constraints can be 
relaxed, and analyzed for setting the jitter mitigation strategies for future SDO operations.   

Nomenclature 
dt = simulation sample time 

ATFG  = instrument stabilization system attenuation transfer function  
h = wheel momentum vector 
ℎbias = wheel momentum bias 
𝐾𝑔 = momentum redistribution control gain 

1M  = initial index of sliding window 

2M  = end index of sliding window 
N = number of sampled data points in a sliding window with width τ  

jσ  = root-mean-square jitter 

zzS  = power spectral density of  LOS motion 
τ  = instrument exposure time 
θ = LOS motion 
𝑉𝑛 = null space vector 
ω  = frequency in Hz 
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I. Introduction 
HE Solar Dynamics Observatory (SDO) was designed to understand the Sun and the Sun’s influence on Earth.  
SDO was launched on February 11, 2010 carrying three scientific instruments: the Atmospheric Imaging 

Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment 
(EVE).  Both AIA and HMI are sensitive to high frequency pointing perturbations and have sub-arcsecond level 
line-of-sight (LOS) jitter requirements.  Extensive modeling and analysis efforts were directed in estimating the 
amount of jitter disturbing the science instruments.  In order to verify the disturbance models and validate the jitter 
performance prior to launch, many jitter-critical components and subassemblies were tested either by the mechanism 
vendors or at the NASA Goddard Space Flight Center (GSFC)1.   

Although detailed analysis and assembly level tests were performed to obtain good jitter predictions, there were 
still several sources of uncertainties in the system.  The structural finite element model did not have all the modes 
correlated to test data at high frequencies (>50 Hz).  The performance of the instrument stabilization system was not 
known exactly but was expected to be close to the analytical model.  A true disturbance-to-LOS observatory level 
test was not available due to the tight schedule of the flight spacecraft, the cost in time and manpower, difficulties in 
creating gravity negation systems, and risks of damaging flight hardware.  In order to protect the observatory jitter 
performance against model uncertainties, the SDO jitter team devised several on-orbit jitter reduction plans in 
addition to reserve margins on analysis results.  Since some of these plans severely restricted the capabilities of 
several spacecraft components (e.g. wheels and high gain antennas), the SDO team performed on-orbit jitter tests to 
determine which jitter reduction plans, if any, were necessary to satisfy science LOS jitter requirements.  The SDO 
on-orbit jitter tests were designed to satisfy the following four objectives: 

1. Determine the acceptable reaction wheel operational speed range during Science Mode.  
2. Determine high gain antenna (HGA) algorithm jitter parameters (number of stagger steps and 

enable/disable no-step-requests). 
3. Determine acceptable EVE instrument filter wheel spin rates. 
4. Determine if the AIA instrument mechanism generates acceptable self-induced jitter and if the AIA 

observation sequence needs to be modified to reduce or minimize the effects of the AIA filter wheels.    
 The on-orbit jitter tests could be performed on SDO mainly because the AIA and HMI instruments contain 
sensors that also acted as jitter sensors.  The primary jitter sensor for all the jitter test was the HMI limb sensor 
measuring LOS errors at 512 Hz.  The four AIA guide telescope signals were also available with sample rates of 256 
Hz for telescopes #1 and #3, and 128 Hz for telescopes #2 and #4. Both HMI and AIA instruments can store 3 
minutes of data and require 30 minutes to download the data to the ground. The data downlink time is about a factor 
of ten times the data storage time.  The data storage and download time constraints drove the design of some of the 
jitter tests.  
 This paper first provides a brief description of the integrated dynamic model used for all pre-launch jitter 
analysis in Section II.  The detailed information on the pre-launch analysis, on-orbit jitter test plan, comparison of 
jitter measurements to predictions, and final jitter mitigation plan executed on SDO are presented in Sections III 
through VI for each of the four jitter tests.  On-orbit test results summary and important lessons learned are provided 
in Section VII of this paper.  

II. Integrated Modeling and Analysis 
The SDO jitter performance is defined as the LOS motion measured at the instrument detectors.  The spacecraft 

attitude control system (ACS) is capable of removing large, slowly varying LOS errors that fall within the 
bandwidth (~0.05 Hz) of the pointing controller.  Both AIA and HMI have additional instrument stabilization 
systems (ISS) to reduce mid-frequency range LOS disturbances (up to 20-40 Hz).  The residual LOS motion, after 
ACS and ISS compensation, measured on the instrument detectors must be less than 170 milli-arcsecond (masec), 1-
σ for AIA and 140 masec, 1- σ for HMI.   

The SDO jitter analysis employs an integrated modeling approach where disturbance, structures, controls, and 
performance metrics are combined into one dynamic model to predict the end-to-end LOS performance of the 
system.  The disturbance models are inputs to the system, the structural dynamic model is created from the finite 
element analysis, the ACS model stabilizes the rigid body modes of the structural model, the optical model maps all 
the optical motions to the LOS motion, and the instrument stabilization system (ISS) models the LOS motion 
attenuation from the instrument controllers.  The outputs from the integrated model are the LOS motion measured at 
the AIA and HMI detectors.  In this section, more details on the structure and control models, and performance 
metric computations are provided.  Each disturbance source model is described in the pre-test analysis section 
below. 
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Figure 1 Solar Dynamic Observatory 

 

A. Structural and Damping Models 
The SDO structural dynamics model was created using the Finite Element method. The model consists of a 

spacecraft bus model, propulsion module, instrument module, and secondary structure created by GSFC, and an 
Instrument Optical Package (AIA and HMI models) provided by Lockheed Martin and Laboratory for Atmospheric 
and Space Physics. Loral provided a detailed HGA model. The models were integrated by GSFC. The spacecraft bus 
model was augmented with four copies of a four-node representation of the stepper motor and gearbox, developed 
by Nightsky Systems, that correctly represents the unpowered stiffness of the actuator, and provides the correct 
inputs for the electromagnetic motor torques2. The normal modes analysis run was performed using 
MSC/NASTRAN and produced over 650 modes between 0 and 200 Hz. 

The damping model assumed uncoupled modal damping. The scalar damping value, used for all modes, was 
calibrated by test1.  The test article comprised the Structural Verification Unit bus, the flight Instrument Module, 
three AIA mass simulators and one AIA dynamic simulator, and an HMI mass simulator.  The test article was 
mounted on air bags to give flight-like boundary conditions and was excited using a proof mass actuator through a 
force-gage-equipped stinger.  Tests at several forcing levels (at least two, three if noise level permitted) provided 
amplitude dependence information.  Frequency Response Functions (FRFs) from input force to 19 accelerometer 
responses were acquired with a DataMax data acquisition system. The FRFs were fit with state space models using 
system identification methods, and the damping was extracted from the models.  The results showed that 0.3% is a 
reasonably conservative damping ratio to be used for pre-launch jitter analysis; there is a 90% probability that 
damping for any mode will be at or above this value. 

B. Control Models 
SDO features two control systems that influence the pointing of the spacecraft: (1) ACS and (2) ISS.  The ACS 

uses reaction wheels to stabilize rigid body pointing of the observatory. The ACS control system design, the wheel 
torque models, and the sensor models are provided by the SDO ACS analysis team.  The attitude controller consists 
of a standard proportional-integral-derivative (PID) controller and a second-order structural filter for suppressing 
low frequency flexible modes and gain stabilizing the system.  For jitter analysis, the main purpose of the ACS is to 
stabilize the three rigid-body modes.  The ACS has no impact on the high frequency behavior or jitter motion of the 
closed-loop system.   

Both AIA and HMI have an ISS that further 
attenuates residual pointing errors around body Y and 
Z axes (or tip/tilt of the LOS vector) from the ACS. 
See Figure 1 for coordinate system definition. The ISS 
has a much higher bandwidth than the ACS and does 
impact the jitter performance of the system.  These 
controllers are designed and constructed by engineers 
at Lockheed Martin.  Each AIA science telescope is 
accompanied by a guide telescope (GT) that uses limb 
sensors to provide pointing jitter signals to the ISS for 
image motion correction.  The AIA ISS employs a 
Piezoelectric Transducer (PZT) actuated tip/tilt 
secondary mirror located inside the science telescope to 
center the image on the detector. Since the actuated 
mirror is not in the detection (optical) path of the limb 
sensor, the AIA has an open-loop ISS design. The 
performance of the AIA ISS depends on the calibration 
of the GT error signal and the image motion introduced 
by the PZT actuator. HMI also has limb sensors to feed 
back error signals to its ISS which drives a tip/tilt 
mirror to reduce image motion. Unlike the AIA design, the actuated mirror for HMI is in the optical path of the limb 
sensor. Therefore, the HMI ISS system operates in a closed-loop mode. 

The disturbance rejection capabilities of each ISS were modeled as high-pass filters.  These models were verified 
by demonstrating that the magnitudes of the high-pass filters match the requirements on the ISS.  The actual 
performance of each telescope’s ISS was tested by engineers at Lockheed Martin.  The test data were delivered to 
GSFC for calibrating and validating the ISS models.  The left and right plots of Figure 2 illustrate the comparison 
between the ISS test data and the ISS model for AIA and HMI, respectively.  As a note, when the test data showed 
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better suppression than is required, the ISS model matches the required performance in order to add some 
conservatism to the analysis.     

 
Figure 2 Attenuation transfer function: (left) AIA ISS (right) HMI ISS 

C. Jitter Analysis Metrics and Margins 
 There are two jitter evaluation metrics used in estimating SDO jitter performance.  The first metric is a 

frequency-domain based evaluation method defined by the SDO scientists:  

 ( ) ( ) ( )( )
1
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where jσ is the root-mean-square (RMS) or 1-σ jitter, zzS is the power spectral density (PSD) of the LOS motion, 

ATFG  is the attenuation transfer function (ATF) that models the ISS performance, ω is frequency in Hz, and sinc is 
a function defined as sinc(x) = sin(x)/x.   The variable τ is the instrument exposure or integration time.  The AIA 
telescopes have large exposure time variations that range from 0.1 sec to 3.0 sec, whereas the HMI exposure time 
has a smaller time range of 0.15-0.3 sec.  The frequency-domain based jitter metric is appropriate for analyzing 
random disturbance inputs including the reaction wheel jitter analysis.  However, many of the jitter sources are not 
random and their jitter effects can be analyzed using time-domain simulations.  A second jitter performance metric 
used for non-random types of jitter effects is defined as follows 
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where ( )tθ is the LOS motion, N is the number of sampled data points in a sliding window with width τ , 1M is the 
initial index of the sliding window, 2M is the end index of the window, and dt is the simulation sample time. The 
jitter prediction is calculated using either Eq. (1) for frequency-domain analysis or Eq. (2) for time-domain 
simulations.   

There are three types of uncertainties considered in the SDO jitter analysis.  The first type is the modal gain 
uncertainty since the magnitudes of most of the high frequency modes are not validated by test data.  The second 
type is disturbance amplitude.  Although many disturbances were measured at the component level, some 
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disturbance amplitudes may change after launch.  To protect against the modal gain and disturbance amplitude 
uncertainties, the jitter analysis team aimed to achieve a 100% margin on the current best estimate (CBE) jitter when 
compared to the allocated requirements.  The percent margin is defined as  

 % margin = �Requirement
CBE

− 1� *100 (3) 

The third type of uncertainty is modal frequency.  Typically only the frequencies of primary modes are matched to 
the modal survey test data, and the frequencies of other modes may easily vary 5-10% and possibly more.  In order 
to estimate the impact of modal frequency uncertainty on the analysis results, the jitter team performed frequency 
sensitivity analyses by either varying the FEM modes or the input disturbance frequencies by +/- 10% .  The worst-
case result from the frequency sweep studies was reported as CBE to guard against frequency uncertainty.  This is a 
source of potentially large conservatism, since the probability of perfect alignment between disturbance and modal 
frequency is low. 

III. Reaction Wheel Jitter Tests 
SDO has four Goodrich E-type reaction wheels onboard the spacecraft for attitude control. These wheels are 

mounted on the four upper bus panels of the spacecraft with the spin axis pointing 60 deg away from the LOS (body 
X) axis. The maximum torque capability of each wheel is 0.25 Nm with a momentum limit of 70 Nms. The reaction 
wheels are the source of high amplitude jitter disturbance, due to static imbalance, dynamic imbalance, and bearing 
imperfections that introduce tonal disturbances occurring at known ratios of the wheel speed. In addition, the noise 
signature includes a low level broadband noise characteristic that is visible at low wheel speeds. Since the net solar 
and gravitational torques acting on SDO are low, the wheel speed change is very slow. As a result, the wheel tonal 
disturbances dwells on jitter-critical observatory modes long enough to excite them to steady state.     

Based on pre-launch jitter analysis estimates, the wheel speeds were limited to ±412 revolution/min (RPM) to 
meet AIA and HMI jitter requirements. This constraint forces the wheels to reverse direction about once every four 
weeks and uses only a small portion of the available wheel speed range of ±6000 RPM.  As the wheel reverses 
direction, a small increase in LOS motion occurs and was considered an acceptable error to the science team.  
However, the team preferred to reduce the frequency of wheel reversals and the number of thruster maneuvers 
required to unload wheel momentum.  The objective of the wheel jitter tests was to measure the actual wheel-
induced jitter on orbit, which was expected to be smaller than the analytical prediction.  If our expectation was 
correct, the SDO flight operations team (FOT) would be able to extend the wheel speed operational range. 

A. Pre-launch Analysis 
In this paper, a brief summary of the pre-test wheel jitter analysis is provided. Detailed wheel disturbance 

modeling, jitter analysis approach, and ground validation tests are subjects of Ref. 3.  The reaction wheel induced 
vibration (IV) disturbances were measured by the wheel vendor in order to verify the imbalance requirements.  A 
semi-analytical wheel disturbance model was created and tuned to the IV test data for wheel jitter analysis.  This 
model consisted of a physical model of the wheel axial and rocking modes, including gyroscopic torques on the 
wheel, excited by external forces. As illustrated in Figure 3, the model has empirical tonal and broadband 
disturbance models, generated from fits to the IV disturbance data. The disturbances are filtered by an analytical 
model of the reaction wheel structural modes, which accounts for the dynamic amplification of the disturbances at 
wheel structural frequencies. The model development proceeded by, first, identifying the harmonic disturbances, 
then tuning the wheel structural modes and modal damping to match the dynamic amplification observed in the 
harmonic data. Finally, the harmonics were removed from the disturbance data to produce a broadband noise model. 

 
Figure 3 Semi-analytical disturbance wheel model   
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As an example, Figure 4 plots the torque contours about the Y axis, for one SDO wheel. The dashed lines 
fanning out from the lower left are the identified harmonics for the tonal disturbances. These are wheel disturbances 
occurring at frequencies equal to harmonics of the wheel speed.  The solid black lines are the whirl modes as 
predicted by the physical structural model: the lower branch is the retrograde mode (precession in the opposite sense 
to the wheel spin), and the upper branch is posigrade.  The peak disturbance occurs at several wheel speeds; at high 
wheel speed (above 35 rev/sec) at the fundamental, at 23 rev/sec when the second harmonic crosses the retrograde 
branch, and at 36 rev/sec when the 3rd harmonic crosses the posigrade branch. The wheel disturbance model 
predicts the whirl mode behavior well at all wheel speeds. The broadband noise from 210 to 400 Hz is particularly 
evident in the data set. The continuous ridge lines tracing out the whirl mode branches in the data make it clear that 
the wheel structural modes are constantly excited by broadband energy.  Figure 5 shows an example of the radial 
torque power spectral density (PSD) when the wheel is running at 430 RPM. In this plot, the PSD raw data and the 
broadband noise PSD data are shown as a solid line and dashed-dotted line, respectively.  The noise data is obtained 
after removing the tonal disturbances.  The two dominating disturbance peaks are generated by the wheel broadband 
noise exciting the wheel rocking modes.  A simple constant plus second-order filter model (shown as dashed line) 
was also developed for describing the broadband noise. 

The analysis approach used for SDO was to evaluate the disturbance forces on the fixed-base wheel model, and 
apply these to the spacecraft structural model. This technique ignored the coupling between wheel and spacecraft 
structural dynamics, which could result in a shift in rocking and axial modes. The alternative of incorporating the 
wheel model into the FEM, and applying the gyroscopic terms to the FEM during the jitter analysis, would be more 
accurate but substantially more computationally intensive. To account for mode frequency uncertainty, the wheel 
jitter analysis allowed for a +/-10% structural mode frequency shift and reported the worst case jitter observed from 
the frequency sensitivity analyses.  Therefore the worst-case coupling between wheel disturbances and observatory 
structural modes were captured.  The jitter predictions and various sensitivity analyses were performed using 
Matlab® and Nightsky Systems Inc.’s Disturbance-Optics-Controls-Structures (DOCS) Toolbox. 
 

 
Figure 4 Contour plot of wheel torque (My) 

 
Figure 5 Broadband noise data for radial moment 

disturbance 

 
After performing the wheel jitter analysis using the post-environmental wheel IV test model, the HMI LOS 

response exceeded the wheel 100% margin requirement at very low wheel speeds (~200 RPM).  To minimize the 
predicted wheel jitter, a wheel location trade study was performed to place the nosiest wheel in the quietest location.  
In addition, the SDO team decided to conduct validation tests on the ground in order to understand the conservatism 
in the analysis before choosing the most appropriate wheel jitter mitigation strategy3.  Ground wheel jitter test 
results showed that our analytical prediction was generally a factor of 1.5 to 2.0 larger than the measured 
accelerations at low wheel speeds (<700 RPM). Based on the ground validation results, the required jitter analysis 
margin on the wheel disturbances was reduced from 100% to 66.7% (the allowable jitter was increased by a factor 
of 1.33).   

The latest pre-launch wheel jitter analysis predictions are shown in Figure 6 through Figure 9.  There are four 
AIA telescopes, each with two axes of performance outputs (tip and tilt of the LOS error) which result in a total of 
eight jitter responses.  All eight were calculated and the largest was compared against the wheel jitter allocation.  
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Figure 6 Maximum AIA telescope jitter due to 
different wheel disturbance components at final 
selected wheel locations 

 
Figure 7 Maximum AIA telescope jitter due to all 
wheel disturbance components 

 
Figure 8 Maximum HMI telescope jitter due to 
different wheel disturbance components at final 
selected wheel locations 

 
Figure 9 Maximum HMI telescope jitter due to all 
wheel disturbance components 

Figure 6 shows the AIA jitter due to each wheel disturbance component (radial force (Frad), axial force (Fax), radial 
moment (Mrad), and broadband noise (random)). The 70 masec allocation and the 66.7% margin requirement (46.7 
masec) are also shown as red dashed and black dotted horizontal lines in the plot, respectively. At low wheel speeds 
(<400 RPM), the broadband noise dominate the jitter response, whereas at high wheel speed (> 400 RPM), jitter 
responses due to tonal disturbances are significantly larger than those caused by the broadband noise.  Since the 
broadband noise determines the jitter response of the telescope at low wheel speeds, it must be included in the jitter 
analysis. After combining all the wheel disturbance sources, the final AIA jitter response is shown in Figure 7.  The 
wheel jitter allocation is exceeded for wheel speeds greater than ~500 RPM. The 66.7% margin allocation can be 
met only if the wheel speeds are limited to ~412 RPM.  

For the HMI instrument, there are two performance outputs for the single telescope. The maximum jitter 
response over the two outputs was again computed and is reported here. Figure 8 and Figure 9 demonstrate that the 
HMI results follow similar trends as the AIA jitter results. The HMI wheel jitter allocation (62.6 masec) and 66.7% 
margin requirement (41.7 masec) is exceeded for wheel speeds greater than ~500 RPM and ~432 RPM, respectively.  
The pre-launch analysis results show that the 66.7% margin requirement can be met if wheel speeds are kept lower 
than 412 RPM for both AIA and HMI. Since SDO experiences small torques on-orbit, it is possible to run the 
wheels from -412 RPM to +412 RPM and still meet the four week momentum unload requirement.  As a result, the 

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

Wheel speed [RPM]

M
ax

 A
IA

 L
O

S
 [m

as
ec

]

 

 

Final Loc Frad
Final Loc Fax
Final Loc Mrad
random
70 masec
66.7% margin

200 400 600 800 1000 1200 1400 1600 1800
10

1

10
2

 

 

X: 411.8
Y: 50.47

Wheel speed [RPM]

M
ax

 A
IA

 L
O

S
 [m

as
ec

]

X: 499.1
Y: 94.6

Final Loc
70 masec
66.7% margin

10
2

10
3

10
-4

10
-2

10
0

10
2

Wheel speed [RPM]

M
ax

 H
M

I L
O

S
 [m

as
ec

]

 

 

Final Loc Frad
Final Loc Fax
Final Loc Mrad
random
62.6 masec
66.7% margin

200 400 600 800 1000 1200 1400 1600 1800
10

1

10
2

 

 

Wheel speed [RPM]

M
ax

 H
M

I L
O

S
 [m

as
ec

]

X: 432.4
Y: 47.31

X: 500.5
Y: 63.45

Final Loc
62.6 masec
66.7% margin



 
American Institute of Aeronautics and Astronautics 

 
 

8 

pre-launch wheel jitter mitigation plan was to limit the wheel speeds to within +/- 412 RPM during the science 
mode. This operating restriction obviates the need to reduce the magnitude of the wheel disturbance, for example by 
adding isolation systems to the wheels or the science instruments.   

B. Jitter Test Descriptions 
During the on-orbit wheel jitter test, all wheel speeds were driven from a slow speed (<200 RPM) to a maximum 

speed of about 1000 RPM.  To accommodate the instrument data storage and download capabilities, the wheel 
speeds were accelerated during data collection periods (3 min) and held constant during data dumping periods (30 
min).  Furthermore, during the speed acceleration periods, the acceleration level were maintained small enough to 
ensure that structural modes could be fully excited (e.g. reach maximum amplitude), similar to nominal operating 
conditions where the wheel speeds change slowly.  The acceptable acceleration level was determined to be less than 
2 RPM/sec to allow sufficient time for exciting structural modes and reasonable test completion time.   

The wheel speeds were varied using the reaction wheel momentum redistribution algorithm in the ACS Science 
Control Mode.  The redistribution torque law is given by 
 

𝜏red = −𝐾𝑔 �
(ℎ ∙ 𝑉𝑛)max + (ℎ ∙ 𝑉𝑛)min

2
+ ℎbias� 𝑉𝑛, (4) 

 
where ℎ is the 4x1 wheel momentum vector, 𝑉𝑛 = [1,−1, 1,−1] is the 4-wheel null space vector, 𝐾𝑔 is the 
momentum redistribution control gain, and ℎbias is the parameter that can be adjusted to change the wheel 
momentum to the desired level. Using this control method, the wheel speed changes occur only along the null space 
direction and did not perturb the ACS closed-loop control torques.  The parameters 𝐾𝑔 and ℎbias were used to 
achieve the desired wheel speed or momentum slew profile: 𝐾𝑔 controlled the wheel speed acceleration level; and 
ℎbias changed the wheel momentum along the null space vector.  Small increments of ℎbias were commanded to vary 
the wheel momentum slowly, approximating a linear momentum ramp profile (See Figure 10), until the desired 
momentum was reached. Figure 11 shows the desired wheel momentum slew profile during the jitter test, where the 
momentum was accelerated for 3 min (or 180 sec) and held constant for 30 min.  The slope of the momentum 
change depended on the selection of 𝐾𝑔 and the reaction wheel drag torque.  Since the wheel drag torque was not 
well known prior to the jitter test, a separate test day was scheduled to calibrate 𝐾𝑔 and determine the incremental 
size of ℎbias to limit the speed acceleration level to 1-2 RPM/sec.  The parameters chosen to achieve the desired 
wheel speed acceleration were: 𝐾𝑔 = 0.075, and ℎbias was divided into 10 steps between desired bias levels. 
 
 

 
Figure 10 Momentum biases are commanded during 

acceleration period 

 
Figure 11 Wheel speed profile during wheel jitter 

tests 

The wheel jitter test was performed in the ACS Science Mode (See Ref. 6 for more ACS control mode details).  
The HMI ISS control loop was opened while wheel speeds increased to ~1000 RPM and closed while wheel speeds 
decreased back to low levels.  The open- and closed-loop test data provided the HMI team information on how well 
the instrument stabilization system performed.  Since HMI nominally functions with a closed-loop instrument 
control system, jitter data collected during the speed decrement section was compared to the requirement. The AIA 
instrument has an open-loop instrument stabilization system as described in Section II-B.  All other mechanisms, 
including four HGA gimbal actuators and instrument mechanisms, were held fixed during the wheel jitter test.   
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Figure 12 (top) Wheel speeds during jitter test 
(bottom) Estimated wheel acceleration levels 
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Part two of the wheel jitter test was planned if the analysis of the first part of the wheel jitter test showed an issue 
that warranted further investigation.  For the wheel jitter re-test, the goal was to slew one wheel at a time in the 
speed range of interest while ensuring that the remaining three wheels stay inside the jitter-safe range (e.g. +/- 400 
RPM).  This test would identify the problematic wheel and wheel speed.  The results in the following section 
demonstrate that a re-test was not warranted.    

C. Jitter Measurements 
Before examining the on-orbit wheel jitter 

measurements, the wheel speed and accelerations were 
checked to ensure the proper wheel acceleration levels 
were limited to less than 2 RPM/sec.  The top plot in  
Figure 12 shows the wheel speeds of all four wheels 
during the test.  All wheel speeds ramped up from 
close to 0 RPM, accelerated for ~3 minutes and held 
constant for ~30 minutes to download instrument data, 
to about 1000 RPM.  The bottom plot in Figure 12 
demonstrates the acceleration levels during the entire 
test were maintained to be below 2 RPM/sec for all 
four wheels. 

To reduce the number of data sets shown in the 
paper, the largest LOS measurements from all eight 
AIA telescope measurements (4 sensors, 2 axes per 
sensor) are plotted against the minimum wheel speeds 
(out of four wheels) in Figure 13.  In this figure, the 
green dotted line indicates the maximum pre-launch analysis prediction for wheel speeds less than 412 RPM, and 
the red solid line is the wheel jitter allocation for the instrument.  For the AIA telescopes, the LOS measurements 
were passed through an idealized filter (a factor of 20 rejection at low frequencies and a high-pass filter with a 
corner frequency around 4 Hz) to emulate the open-loop ISS.  The results shown in Figure 13 assume the AIA ISS 
performed as modeled.    Under this assumption, the AIA wheel-induced jitter allocation is met for wheel speeds up 
to at least 950 RPM.  For HMI, the LOS measurements were not filtered and were collected with the ISS loop 
closed.  The maximum HMI LOS jitter (from 2 axes) exceeds the wheel-induced allocation by less than 2.7 masec 
when the minimum wheel speed is between 886 and 892 RPM as illustrated in Figure 14.  The on-orbit 
measurements show that the pre-launch maximum jitter prediction did bound the worst case AIA and HMI LOS 
jitter, and the wheel speed limit can be increased to 886 RPM before violating the wheel jitter allocation.   

The HMI LOS measurements were further processed to compute the amplitude spectra.  The entire measurement 
is divided into 12-sec time segments, where the amplitude spectra for four 3-sec segments were computed and 
averaged.  During each time segment, the wheel speed was considered quasi-static with the mean wheel speed 
calculated.  The amplitude spectra versus mean wheel speed and frequency is shown as a contour plot in Figure 15.  
For ease of visualization the logarithm of the amplitudes are plotted, not the actual amplitudes.  The spectral analysis 
clearly demonstrates the wheel rocking modes effects at low wheel speeds (< 500 RPM) and tonal harmonics 
crossing the rocking modes at higher wheel speeds.  These results emphasize the importance of including rocking 
mode excitations by the broadband noise in the reaction wheel disturbance model.  Figure 15 also shows a notable 
constant disturbance at around 210 Hz which does not vary with wheel speeds.  This disturbance frequency was not 
observed in the wheel component test data.  Since all other disturbance mechanisms were turned off during the 
wheel jitter test, the source of the 210 Hz disturbance remains unclear.   

D. Summary and Jitter Mitigation Applied 
The on-orbit jitter measurements allowed the SDO team to extend the wheel speed jitter limit to +/- 850 RPM 

instead of +/-412 RPM.  Since the wheels can accumulate more momentum with the larger speed limit range, the 
period between thruster momentum unloads will be greatly increased.  The number of direction reversals each wheel 
will experience over its lifetime will be reduced, minimizing mechanical wear of the wheels at low speeds.   

For all other jitter tests, the wheel speeds were maintained below 300 RPM to keep wheel-induced jitter low.  
Table 1 provides a summary of the largest LOS measurements under 300 RPM.  These values are combined with 
predictions and allocations when compared with on-orbit jitter measurements for other jitter tests.   
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Figure 13 Max. AIA LOS jitter measurments 

 
Figure 14 Max. HMI LOS jitter measurements 

 

 
Figure 15 Contour plot of HMI measured jitter vs. frequency and wheel speeds 

 

Table 1 Wheel jitter bound under 300 RPM 

Instrument/Axis Jitter Bound [masec] 
HMI LOS Y 35 
HMI LOS Z 25 
AIA1 LOS Y / Z 10 
AIA2 LOS Y / Z 20 
AIA3 LOS Y / Z 20 
AIA4 LOS Y / Z 10 
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IV. High Gain Antenna (HGA) Jitter Tests   
Preflight analysis indicated that the HGAs would be one of the largest disturbance sources on-board the 

spacecraft. The disturbance arises from the near-impulsive torque imparted as the HGA actuators step, producing 
torques at the step rate and at integer harmonics with gradually decreasing magnitude, up to the armature natural 
frequency. The HGA actuators are stepper motors integrated with a 200:1 harmonic drive gearbox, with a step size 
of 0.0075 degrees. There are four actuators, comprising azimuth and elevation axes for the two (+Z and –Z) HGA 
antennas. They track, where the dish is pointed at the White Sands ground station target, and slew, where the dish is 
moved from one target to another during the handover season4. The actuators move at a relatively slow rate during 
tracking (up to 3 steps per second) and slewing (5.2 steps per second), which allows the jitter response from one step 
to decay somewhat before the next step is taken. Therefore the jitter response is largely determined by the response 
to a single step. Since the response does not decay to zero over that time, there is the possibility of interaction 
between steps, which can add the responses from successive steps.  

As a result of the potential for problematic HGA induced jitter that was identified during pre-launch analysis, 
several jitter mitigation algorithms were implemented to reduce the jitter response due to step interaction: random 
step delay, stagger stepping, and the HMI No-Step Request (NSR) flag. Random step delay causes each commanded 
step of each of the 4 actuators to be delayed for a certain pseudo-random number of counts, so that actuator pulses at 
a constant rate do not “ring up” critical modes. Stagger stepping forces the +Z and –Z actuators to operate in 
staggered ACS cycles, so that simultaneous +Z and –Z actuator commands do not interact to produce increased 
jitter. The NSR flag, when issued by the HMI just prior to acquiring an image, requests a one-exposure-long delay 
before any of the actuators are commanded to step. The goal of the HGA flight jitter measurement was to see if the 
actual jitter was low enough to allow one or more of the mitigation algorithms to be switched off.  Note that all of 
the mitigation strategies delay the motion of one or more gimbals. The peak rate required to follow the nominal 
antenna pointing profile is 43 degrees per hour. However, since the mitigation algorithms cause the gimbals to lag 
the desired profile, the actuators must be allowed to move at a higher than nominal rate (as much as 140 degrees per 
hour) in order to catch up to the desired profile after a delay.    

The largest jitter response seen in pre-flight analysis was two times the single-step response, depending on the 
precise timing between sequential steps. A jitter dependence on HGA angle was also found as the coupling to 
various jitter-sensitive modes changed. Therefore, the test strategy employed to assess the jitter level on-orbit was to 
measure the single-step response to moves of each of the four actuators, at a range of joint configurations.  

The allocations to HGA induced jitter are 106 masec of the AIA’s overall pointing budget, and 94 masec of the 
HMI’s. The AIA has a 95% data continuity budget (5% of the images can be degraded, and the science requirements 
will still be met).  This budget was all allocated to HGA induced jitter, so the HGA requirement is that the AIAs 
meet the 106 masec allocation for at least 95% of the time. The HMI has an image registration requirement 
(sequential images are batch processed), so that no image can exceed the jitter requirement without causing the 
entire sequence to be lost. Therefore the HMI requirement must be met for every image. 

A. Pre-launch Analysis 
The pre-launch jitter predictions were created using a time-domain simulation of the SDO structural dynamics 

model, running inside a MATLAB® Simulink® nonlinear model of the stepper motor actuators. The actuator 
simulation was based on a Simulink model developed by the motor manufacturer, SpaceDev of Durham, NC, for 
loads analysis. The model includes the nonlinear unpowered holding (detent) torque, the powered holding torque, 
and friction acting on the rotor and output shaft2. The SDO structural dynamics model was used for the HGA jitter 
analysis.  The unpowered armature has a natural frequency of 66 Hz, which increases to 72 Hz when the windings 
are powered.  

The structural dynamics model was verified using a number of component and integrated tests, including modal 
testing and tap testing of the system at various levels of integration. The HGA model was calibrated and verified 
using a number of tests. The actuator model was verified using measurements of the winding voltage and current 
during operation, which provided data about the electrical and mechanical response of the system on the drive side 
of the gearbox (the winding electrical dynamics and the rotor ringing). The actuator was operated on a dynamometer 
(a Kistler 6DOF force measurement table) to verify the behavior outside the gearbox (the effective gearbox 
stiffness). A tap test was also performed on the HGAS antenna, to verify the HGAS Finite Element model natural 
frequencies. Finally, the entire HGA subsystem (boom, actuator, flight dish) was mounted to the Kistler table and 
driven through representative profiles to verify the Simulink jitter analysis2. 

The AIA and HMI instruments incorporate active steering mirrors that partially compensate for LOS error, up to 
about 20 Hz. The ISS reduces low-frequency error, so that the jitter is dominated by the response in the 40-60 Hz 
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frequency range. This response is exacerbated by the fact that the telescope was designed to be as stiff as possible, 
with the result that all of the modes of the bus and the instruments start around 30 Hz, leading to multiple closely 
spaced modes in the 50 to 70 Hz range, which reinforce each other and lead to dynamic response that is 4-5 orders 
of magnitude larger than an equivalent inertia rigid body.  Note that this is also where armature dynamics come into 
play. 

Since the finite imaging time acts to filter out jitter response below a certain frequency, a moving average jitter 
computation is performed to account for the effect of the imaging processing (see Eqn 2). Representative exposure 
times are assumed; 0.1, 0.3, and 0.5 seconds for the AIA, 0.15 seconds for HMI. For each exposure time, a section 
of time response data equal to the exposure time is taken, the mean is removed, and RMS response is computed. The 
time window is then advanced one sample time, and the computation repeated. The result is a time history of the 
moving average RMS over the specified exposure time. The peak jitter over the entire profile is extracted, 
corresponding to a worst-case alignment of an exposure with the HGA induced jitter.   

Figure 16 plots the AIA peak single-step predicted response from the post-CDR model generation as a bar chart. 
Each of the four groups corresponds to one of the actuators. Each of the bars in the group associates to one of six 
model configurations, with a corresponding set of four actuator angles listed as +Z azimuth, +Z elevation, -Z 
azimuth, and -Z elevation. For all but one of the models, the nominal fuel level is assumed in the model, with one 
model assuming a 5% full fuel level. Note that there is a significant variation in the jitter level imparted by each of 
the actuators, from 20 to 103 masec. The +Z elevation actuator generally produces the highest jitter over all 
configurations. That actuator also has significant variation with configuration, from 80 to 103 masec. Other 
actuators, while having a lower peak jitter, have a proportionally greater change in jitter with configuration. The 
range is not due to the variation of static inertia of the antenna, but to the way that the actuator couples into 
observatory modes in the 50-70 Hz range. Therefore the peak jitter is not a smooth function of joint angle. 

The predicted HMI jitter is shown in Figure 17. The jitter is presented for the shortest (worst case) exposure 
time, for single step responses from each of the 4 actuators, for the same six configurations as previous. It varies 
from less than 20 masec for the azimuth actuators, to 69 masec for the +Z elevation actuator, quite a bit lower than 
the AIA peak jitter. The variation with actuator configuration is generally lower than for the AIAs as well. As will 
be shown, the actual HMI jitter has significant variability with configuration. The AIA model is quite detailed, but 
the HMI model is less so, and this is likely leading to incorrectly modally sparse behavior in the critical frequency 
range for the latter instrument. 

 

 
Figure 16 Pre-launch prediction of HGA-induced 
AIA jitter for a single step (maximum over 
telescope and axis). 

 
Figure 17 Pre-launch prediction of HGA-induced 
HMI jitter for a single step (maximum over axis). 

B. Jitter Test Descriptions 
The HGA on-orbit jitter test consisted of a sequence of moves of each antenna independently. Two stepping 

profiles were tested: single steps of each of the four actuators, and a sweep through the actuator rates from zero to 
the maximum tracking rate of 140 degrees per hour. The inactive antenna was put in the home position (azimuth and 
elevation gimbals are at 0 deg). The other was slewed to a defined starting angle. At each angle, the actuator was 
commanded to take two steps in azimuth and two in elevation, with a 10 second dwell between steps to ensure that 
the response has decayed before the next step is taken. Then the swept rate test was performed. The swept rate test 
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was intended to find the peak jitter as a function of step rate. The actuators could not be stepped at a continuously 
varying rate, so a set of constant rate segments was used. Eleven rates between 13.5 and 140 degrees per hour (0.5 to 
5.2 steps per second) were commanded. Each step rate was held for 10 seconds. The total distance moved during the 
test was 1.7 degrees. The antenna then moved at maximum slew rate to the next test configuration, then dwelled to 
allow the observatory to quiet. The starting configurations were taken from the azimuth at 90 degree intervals, and 
the elevation actuator at (-45, 0, 45) degree configurations. A total of 23 configurations (encompassing +Z and -Z 
moves) were tested.  

The jitter was measured using the same instruments as for the reaction wheel tests.  The wheels were operating at 
low speed during the HGA test, with a small but non-negligible contribution. The maximum jitter introduced by the 
wheels, as determined by post-launch data processing, is given in Table 1. The tests were run with the No-Step 
Request flag, the stagger step flag, and the step delay flags off (algorithms not operating), in order to ensure that the 
gimbals achieved the desired step rates. 

C. Jitter Measurements 
The measured single-step AIA jitter is plotted in Figure 18. Two aspects are immediately apparent. First, the 

peak jitter is significantly higher than the pre-launch prediction shown in Figure 16, 140 masec versus 103 masec. 
The ratio, indicating the magnitude of the prediction error, is 1.35. Second, there is more variability in the elevation 
actuator induced jitter than indicated by the pre-flight model, from a minimum of 45 to a maximum of 140 masec, 
compared to the prediction of about 80 to 103 masec. The azimuth induced jitter, by contrast, shows less variation 
with configuration than the prediction. The measurements also indicate that a 180 degree flip of the gimbal has a 
significant effect on the induced jitter magnitude. 

The Power Spectral Density (PSD) of the AIA response for the (0,0,0,0) configuration is plotted in Figure 19. 
The blue curve is the predicted PSD, and the green curve is the measured PSD. The top plot shows the running 
integral of the PSD, thus indicating the frequency ranges which contribute most of the energy to the response. The 
plots show that the dominant source of energy is in the 50-60 Hz range. The pre-launch prediction captures the 
frequency range that dominates jitter, but under-estimates the magnitude. 

 

 
Figure 18 Measured HGA-induced AIA jitter for 
a single step (maximum over telescope and axis). 

 
Figure 19 PSD of peak AIA response for the home 
configuration, simulation (blue) and measurement 
(green). 

 
The measured single-step HMI jitter is plotted in Figure 20. The maximum single-step jitter is 165 masec, 

induced by the -Z elevation actuator at the (180, -45) configuration. The peak predicted jitter is 69 masec, implying 
a prediction magnitude error of 2.4. As mentioned previously, this error is due to the use of an insufficiently detailed 
model of the HMI in the observatory FEM. Figure 21 shows the PSD for the HMI jitter at the (0,0,0,0) 
configuration. Blue is the prediction, green is the measurement. Once again, the prediction captures the frequency 
range dominating the response, but significantly under-predicts the magnitude. 

The pre-launch prediction was that the peak jitter during constant rate operation was approximately 2 times the 
single-step jitter. The maximum of the AIA moving average responses during the acceleration slew was 2.6 times 
higher than the peak single-step response. The peak HMI slew response was 1.9 times the peak single step response. 
The higher measured ratio is due to the fact that the tests were conducted with all the mitigation algorithms disabled. 



 
American Institute of Aeronautics and Astronautics 

 
 

14 

 
Figure 20 Measured HGA-induced HMI jitter for 
a single step (maximum over telescope and axis). 

 
Figure 21 PSD of peak HMI response for the 
home configuration, simulation (blue) and 
measurement (green). 

D. Post-test Analysis 
The flight measurements show significant variation in jitter with respect to configuration. Pre-launch analysis 

evaluated different configurations than were run during the flight measurements. It is therefore impossible to 
separate prediction differences due to model error from differences due to configuration. In order to isolate the 
effects of model error, the jitter analysis was repeated, post-test, for the angles that were tested in flight. The finite 
element model was used to create a Normal Modes representation for each of the 22 configurations tested. The 
model was identical to that used for the pre-launch analysis, with the exception of the joint angles. The single-step 
jitter analysis was repeated for each configuration. 

The simulated and measured single step jitter for the 22 flight configurations are plotted in Figure 22 (AIA) and 
Figure 23 (HMI). For each plot, the vertical axis shows the joint configuration, the green and blue bars are the 
measured response to elevation and azimuth steps, respectively, and the magenta and red bars are the simulated 
response to elevation and azimuth steps, respectively. Note that only one of the HGAs (+Z or –Z) was tested at one 
time, corresponding to the boom with non-zero joint angles. So, for the first 10 configurations, with the +Z antenna 
at home and the –Z antenna slewed to the starting angles indicated, the two actuators on the –Z boom were stepped. 
Examining the AIA results, the simulation generally produces acceptable predictions. The largest responses come 
from the elevation actuator, and the simulation response is almost always larger than the measured response, as 
desired. The largest simulated response exceeds the largest measured response, although they occur at different 
configurations. 

The result is different for the HMI (Figure 23). Here, the elevation actuator produces the largest response, as 
before, but the measured response exceeds the simulation response for most cases. Additionally, the simulation 
predicts that the largest responses, on average, come from the +Z boom. However, the measurements show that the –
Z boom produce the larger HMI response.  As mentioned previously, the HMI response was less detailed than the 
AIA response. It is likely that the coarse HMI model did not have the fidelity needed to capture the modal structure 
within the instrument that is excited by the 50-70 Hz actuator disturbances.  
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Figure 22 Measured versus post-launch simulation of single-step HGA-induced AIA jitter. 

 
Figure 23 Measured versus post-launch simulation of single-step HGA-induced HMI jitter. 
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E. Summary and Jitter Mitigation Applied 
The summary of the measured HGA induced jitter is shown in Table 2.  The table shows the moving average 

responses of the four AIA telescopes, and the HMI telescope, in both Y and Z axes, in units of masec. The shortest 
(worst-case) exposure times are used, 0.1 second for AIA and 0.15 seconds for HMI.  The cases presented for the 
test results include the peak jitter over configuration for azimuth and elevation single-step, and the rate slew test.  
For AIA, the numbers represent the 95% LOS jitter, that is, a value for which the LOS is lower 95% of the time. For 
HMI, the response given is the peak response. For all test cases, the reaction wheel disturbances given in Table 1 are 
assumed to be present, at their bounding values, and are subtracted out in quadrature. The cases presented from the 
simulation are the maximum single-step jitter from azimuth and elevation actuator steps. The table also shows the 
allocation, and the margin computed from the test 95% (for AIA) and peak (for HMI). When the test value is lower 
than the allocation, the margin is the requirement divided by the test minus 1. When the test value is above the 
allocation, the margin is the test divided by the requirement minus 1. 

The AIA results show better margins than the HMI, as was suggested by the single-step jitter results comparison.  
The worst jitter response occurs for the ATA 3 telescope in the Z axis, which at 130.7 masec is 23.3% over the 106 
masec allocation.  There is only one other negative margin, for the ATA2 telescope in the Z axis. These axes of 
these two telescopes were found in the pre-launch analysis to be the most sensitive to HGA jitter.  The HMI jitter is 
substantially higher. Both axes have negative margin, with the Y axis 20.3% above the requirement and the Z axis 
high by 120.4%.  This is partially due to the use of the peak jitter rather than the 95% jitter level, and partially due to 
higher HMI jitter for the same actuator disturbance. 

Table 2 HGA induced jitter summary [masec] 

Case 
ATA1 ATA2 ATA3 ATA4 HMI 

Y Z Y Z Y Z Y Z Y Z 

Test 

Az 15.9 13.0 9.9 19.8 14.2 15.8 13.1 13.5 41.9 26.6 
El 36.7 71.7 37.4 139.1 38.0 136.9 44.5 77.0 88.3 163.4 

95%/Peak 41.3 71.1 39.1 122.4 44.1 130.7 45.6 75.5 113.1 207.2 

Sim 
Az 68.7 61.5 45.0 32.4 43.3 33.5 45.3 38.5 20.9 40.1 
El 91.5 76.5 203.0 72.1 197.5 75.0 101.8 42.6 113.4 36.4 

Alloc 106.0 106.0 106.0 106.0 106.0 106.0 106.0 106.0 94.0 94.0 
Margin 156.8 49.0 170.8 -15.5 140.2 -23.3 132.7 40.4 -20.3 -120.4 

 
The comparison of single-step prediction to measurement shows that there is some model error. The peak measured 
AIA response is as much as 1.8 times higher than the prediction, while the peak HMI response is as much as 4.5 
times higher. The error in both instruments arises because the model does not correctly capture the interaction of the 
observatory modes and the actuator disturbance harmonics (due to errors in modal spacing and/or modal gain). The 
HMI error is larger because the coarse finite element model exacerbates these characteristics.  
 The HGA jitter tests show that flight measurements are higher than pre-flight predictions at various HGA joint 
configurations, despite several levels of analysis conservatism, on assumed damping and reserved margin. As a 
result, HGA jitter mitigation options (stagger-stepping and NSR flags) were enabled to meet instrument LOS jitter 
requirements.  As discussed extensively in Ref. 4, the mitigation algorithms work as expected and greatly reduce 
HGA-induced jitter in science images.   

V. EVE Instrument Filter Wheel Jitter Test 
The EVE instrument contains four filter wheel (FW) mechanisms that weigh less than two lbs each.  Each FW 

rotates to one of five positions right before science imaging time.  Its rotation usually takes two seconds to traverse 
from one filter position to the next, subtending an angle of 72 deg, and to rewind from the final filter to the first 
requires ten seconds to complete. This is accomplished by a stepper mechanism that operates at a nominal rate of 
125 pulses/sec (PPS), but the step rate can be varied on orbit. Its spin axis is parallel to the SDO LOS (X-axis) that 
points toward the sun.  The EVE FW is the third largest disturbance contributor after the HGAs and the reaction 
wheels.  Since EVE does not have tight jitter requirements, the jitter team was not concerned by the EVE self-
induced jitter, but the FWs can induce large mechanical vibrations in the AIA and HMI science instruments.   
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 The EVE FW operates much less frequently than wheels and HGA gimbals. Each FW is expected to move only 
10 seconds per day in a 40-min window. Although the FWs move infrequently, the HMI science data can still be 
significantly impacted by the FW-induced disturbances.  For example, a short period (e.g. seconds) of large jitter can 
cause HMI to lose an entire 4-minute data record.  If HMI loses one or two 4-minute data records every day due to 
EVE FW movements, it cannot meet its data continuity requirement.  Based on pre-flight jitter analysis, large jitter 
disturbances are expected to occur only if the EVE FW step rate coincides with one of the observatory structural 
modes.  During the on-orbit jitter test, the SDO jitter team varied the EVE FW step rate to investigate if the nominal 
rate (125 PPS) caused larger LOS errors than other available step rates.   

A. Pre-launch Analysis 
The pre-launch EVE FW analysis was first performed using a simple, physical-based stepper motor model, 

applying torque only around the spin axis.  However, the EVE stepper mechanism contained internal dynamics that 
can only be revealed by test data.  To more accurately characterize the disturbance forces and moments, a test of the 
mechanism was conducted at GSFC where the FW induced-forces and moment were measured at various spin rates.  
Figure 24 shows the FW mechanism mounted on a Kistler dynamometer table.  A representative set of test data 
collected at 125 PPS is shown in Figure 25 for the spin axis torque.  This figure also illustrates the amplitude 
spectrum of the spin-torque data, where the peak disturbance occurs at the spin rate frequency. The actual 
disturbance data contains three-axis force and moment disturbance with a wide range of harmonics. Some may be 
due to anti-backlash gears operating at high frequency.  The jitter team decided that the mathematical model 
developed was unable to accurately duplicate the test5.  Thus, the test data was used directly in the spacecraft jitter 
analysis, ignoring the simple model of the stepper mechanism.   

 

 
Figure 24 EVE Filter Wheel Test Set-up 

 
Figure 25 (top) Spin-axis torque data (bottom) 
Amplitude spectrum of torque data 

 

The EVE FW pre-launch jitter analysis was a straight forward transient response analysis where forcing 
functions were applied directly to the observatory dynamic model and displacement responses were computed. The 
disturbance test data were used directly as forcing functions.  It should be noted that only one of the four FWs was 
tested to provide disturbance measurements. In addition, the EVE dynamic model is a simple lumped mass on the 
spacecraft with no detailed mechanism and instrument modeling.  The pre-launch analysis was performed by 
applying the measured disturbances for one FW at the EVE lump mass node.  This analysis did not include a model 
uncertainty factor but is required to meet the allocation with 100% margin as presented in Section II-C.  In order to 
account for frequency uncertainty in the FEM, a +/-10% of model frequency smearing was performed by a simple 
scaling of the mode frequency in 1% increments (e.g. 0.90, 0.91, … 1.01, 1.02) and repeating the time-domain 
transient analysis for all cases.  There is no guarantee that the maximum or minimum point is located by the chosen 
frequency scaling, but the combination of the worst-case frequency sensitivity result with the required analysis 
margin was expected to bound the actual maximum LOS jitter induced by EVE FWs.   

The effect of how FW step rates impact performance was studied using four rates that would be tested on-orbit: 
125 (baseline),  111,   100,  and  91 PPS.  For each rate, the entire analysis was repeated, including all frequency 
sweeping/scaling. From the frequency sweeping results, the largest values were chosen as pre-launch predictions.  
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Table 3 shows the range of these predictions over the four stepper rates which can vary by a factor of two depending 
on step rate.  The largest HMI LOS jitter prediction is slightly higher than the self-imposed 100% margin against 
EVE-induced jitter allocation.  This exceedance provided another motivation for testing the EVE FW at different 
rates on orbit to ensure that the nominally chosen rate does not exceed the jitter allocation.     
 

Table 3 Range of pre-launch EVE FW induced jitter from all step rates 

 
LOS Jitter (masec, RMS) 

  Prediction Allocation with 
100% margin Allocation 

AIA LOS 
(masec) 12.0 – 31.8 32 64 

HMI LOS 
(masec) 15.5 – 29.8 24.7 49.4 

 

B. Jitter Test Descriptions 
 Each of the four EVE FW was commanded to spin at a pre-specified rate for a full revolution while the AIA and 
HMI sensors recorded jitter data.  The four specified test step periods were 8, 9, 10, and 11 milli-seconds which 
corresponded to test rates of 125 (nominal), 111.1, 100, and 90.9 PPS.   

At each step rate, the four filter wheels were commanded to rotate a full revolution (~10 seconds), one at a time.  
There was about a five second rest time injected between each wheel rotation.  The following table details the test 
sequence: 

Table 4 EVE filter wheel jitter test sequence 

Start time required  Stop   
00:00.0 00:30.0 00:30.0 Start AIA/HMI Diagnostic Mode 
00:30.0 00:01.0 00:31.0 Start EVE RTS command 
00:31.0 00:09.6 00:40.6 Rate 1/EVE FW 1 
00:40.6 00:05.0 00:45.6 Dwell time 
00:45.6 00:09.6 00:55.2 Rate 1/EVE FW 2 
00:55.2 00:05.0 01:00.2 Dwell time 
01:00.2 00:09.6 01:09.8 Rate 1/EVE FW 3 
01:09.8 00:05.0 01:14.8 Dwell time 
01:14.8 00:09.6 01:24.4 Rate 1/EVE FW 4 
01:24.4 00:05.0 01:29.4 Dwell time 
01:29.4 14:54.0 16:23.4 Stop data collection and download data 

        
16:23.4 10:00.0 26:23.4 Down time between tests 

 
To provide multiple data samples for analysis, each step rate was tested three times, so the above sequence was 
repeated three times.   

The EVE FW jitter test was performed in the ACS Science Mode.  During this test, the reaction wheel speeds 
were kept low (<~300 RPM), and other disturbance sources (HGA, AIA mechanisms, and HMI mechanisms) were 
stopped in order to isolate the FW disturbance signatures. The HMI instrument ISS loop was closed to emulate 
nominal operating condition.   
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C. Jitter Measurements 
The EVE jitter test LOS errors for AIA and HMI are shown in Figure 26 and Figure 27, respectively.  In both 

figures, the blue solid line is the LOS error measurement which includes both wheel and EVE FW disturbances.  
During this test, the wheels were operating at low speeds (<300 RPM) to minimize wheel-induced jitter while 
varying the chosen EVE FW step rates.  The black vertical lines separate the test periods for the four different FW 
step rates.  Within each test period (or two vertical lines), the start time of each FW’s rotation is marked by a star 
symbol.  Groups of four stars appear in the figures demonstrating four FWs rotating sequentially.  Since each rate 
test was repeated three times, three groups of four stars appear between black vertical lines.   

For comparison to analysis prediction, the largest wheel-induced jitter measurement, less than 300 RPM in Table 
1,  was added to the pre-launch, worst-case EVE FW jitter prediction as shown by the green dotted line.  The same 
largest wheel measurements were also combined with the instrument jitter allocations, plotted as the red solid line in 
Figure 26 and Figure 27.  The AIA measurements in Figure 26 show the pre-launch prediction does bound the 
largest LOS error for all four FW step rates, and the EVE mechanism jitter allocation is met.  The jitter level sensed 
by HMI is much higher than AIA during the EVE FW jitter test as shown in Figure 27, since HMI and EVE are 
mounted on the same +Z face of the SDO instrument deck, where as AIA is mounted on the opposite side (-Z face) 
of the deck.  The HMI LOS errors are above the pre-launch worst-case prediction but below the jitter allocation for 
three tested rates (125, 111, and 91 PPS).  The jitter allocation is only slightly exceeded for the 100 PPS rate.   

By comparing the star markers that denote the mechanism start times to the LOS measurements, it is clear that 
the four FWs do not generate equal amount of disturbances.  For HMI LOS and a EVE FW rate of 125 PPS, FW #4 
appears to generate more jitter than the first three wheels.  This behavior could partly due to the fact that the jitter 
generated by the first three FWs had not completely subsided and interacted constructively with the fourth FW 
disturbances to create more jitter. However, given all three FW #4 movements showed an increased jitter level, it is 
very likely that the FW #4 does generate a higher disturbance level at 125 PPS by exciting an observatory mode that 
negatively impacts the HMI LOS.  Similarly for a step rate of 111 PPS, FW #1 and #4 create larger HMI jitter than 
FW #2 and #3.  Since the EVE dynamic model did not model the four FW mechanisms separately, the pre-launch 
analysis could not have predicted the LOS jitter variations generated by the different FWs.   In addition, the HMI 
model has less model fidelity (as discussed in Section IV) than AIA, so the HMI dynamic behavior around the EVE 
step rate frequencies (91-125 Hz) was probably not characterized accurately enough to capture the high frequency 
dynamic interactions with the EVE FWs.  With that said, if the team uses a step rate of 91 PPS to operate the EVE 
FWs, the HMI measured response would be significantly lower than using other step rates.   

The amplitude spectra of the HMI LOS measurements were computed to understand the frequency content of the 
jitter response.  As illustrated by Figure 28, the primary disturbance response occurred at the FW step rate frequency 
as predicted in the pre-launch analysis.  Harmonic disturbances with frequencies higher than the HMI sensor 
Nyquist frequency (256 Hz) are aliased, but their amplitudes are much smaller than the amplitude at the selected 
step rate.  The unknown persistent LOS error around 210 Hz, seen previously in the RWA jitter response, is again 
present in the amplitude spectrum plot.   
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Figure 26 EVE Jitter Test: AIA LOS Error 

 
Figure 27 EVE Jitter Test: HMI LOS Error 
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Figure 28 HMI amplitude spectrum during EVE Jitter Test 

D.     Summary and Jitter Mitigation Applied 
The EVE jitter tests demonstrated that a lower EVE step rate (91 PPS) introduces less jitter than the nominal step 

rate (125 PPS).  However, the EVE FW-induced jitter operating at the nominal rate was acceptable to all instruments 
and met its jitter allocations.  Additionally, since the FW environmental and functional tests were performed at the 
nominal step rate, the SDO team decided to maintain the FW step rate and avoided using a new step rate with fewer 
ground tests. 

 

VI. AIA Jitter Test 
The AIA instrument on board SDO consists of four telescopes. Figure 29 shows their locations and orientations 

with respect to the spacecraft and the reference coordinate system.  
 

                                   
Figure 29 SDO and AIA telescope locations 
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Each AIA telescope is consisted of 3 different moving mechanisms: a filter wheel (FW), a shutter, and an aperture 
selector (AS) mechanism.  Moving components in these mechanisms are rotating circular disks with various sizes, 
shape, mass, and inertia. These disks are driven by brushless DC motors, with speed control based on given 
commutation steps per revolution.  The mechanism commutations frequencies are summarized below: 
 
Mechanism Filter Wheel Shutter Aperture Selector 
Commutation Frequency 71 Hz 60 Hz 142 Hz 
   

The AIA FWs have the largest moving parts among the three AIA mechanisms. Each FW has 5 positions with 
move time of one second between adjacent positions. Although operated at relatively low speed of about 0.22 Hz 
spin rate, the commutation frequency of the AIA FW was set at ~71 Hz which can interact with higher frequency 
observatory modes.  In addition, the AIA FW induced disturbance has start and stop peaks 20 times larger than those 
produced by the other AIA mechanisms.  Based on the pre-launch predictions, the AIA FW induced disturbance was 
well within its jitter allocation for the HMI LOS.  However, larger AIA LOS jitter could be generated if one or more 
actual observatory modes coincide with the AIA FW commutation frequency.  The SDO team designed the AIA 
jitter test to verify that the FW-induced jitter is acceptable to all instruments as predicted by pre-flight jitter analysis. 
This knowledge would assist the AIA team in designing their observation sequences to minimize the effects of AIA 
FW disturbances. 

A. Pre-launch Analysis 
The AIA FW analysis was performed similarly to the EVE FW analysis.  One of the AIA FWs induced vibration 

disturbances were measured at Lockheed Martin.  The test set-up is shown in Figure 30 with the spin torque test data 
shown in Figure 31.  Unlike the EVE FW disturbances, the most noticeable features in the AIA FW disturbance test 
data are the large amplitudes corresponding to the torque pulses required to start and stop the rotating mechanism. 
The sinusoidal signature from the commutation steps can also be seen in the measurement data and is most 
prominently observed over the coasting periods when the FW is essentially at its constant spin rate.  The amplitude 
spectrum plotted on the bottom of  Figure 31 illustrates the largest AIA FW disturbance during the coasting period is 
close to the commutation frequency. 

   
 

 
Figure 30 AIA filter wheel test set-up 

 
Figure 31 (top) AIA spin torque data (bottom) 
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Table 5  Range of Pre-launch AIA FW Induced Jitter From Sensitivity Analysis 

  Prediction Allocation with 
100% margin Allocation 

AIA LOS 
(masec) 63.9 - 94.9 42 84 

HMI LOS 
(masec) 17.7 – 27.8 27.8 55.6 

 
The largest “worst case” AIA LOS prediction exceeds the jitter allocation.  Further investigation on the results 

show that the motor commutation disturbance has a frequency close to several observatory structural modes and can 
introduce large excitations for the AIA instrument.  The situation is exacerbated when three of the wheels move at 
the same time (i.e. “worst case” operation).  It should be emphasized that the jitter performance during the “nominal 
case” operation meets all jitter allocations.  Since three out of four AIA FWs moving simultaneously is an infrequent 
event, and since the HMI LOS jitter allocation is met, not satisfying the AIA LOS jitter allocation during the “worst 
case” scenario was determined a minor impact on the AIA science objective.  If the AIA FW commutation 
frequency does indeed excite AIA structural modes, this effect can be detected on orbit.  The AIA team could 
consider redesigning  their observing sequences to minimize the AIA FW-induced jitter.       

B. Jitter Test Descriptions 
During the AIA jitter tests, the AIA team commanded their synoptic observation sequence where FWs, shutters, 

and aperture selector (AS) moved in a prescribed profile in a 10-sec window.  The movement profile is described in 
detail in Table 6.  In normal operations, the AIA FWs rotated back and forth between a couple of positions.  After 
running the synoptic sequence to characterize the jitter response for the default observing sequence, the AIA team 
commanded each FW sequentially to move back and forth (Table 7)  in order to individually measure the jitter 
associated with the starting and stopping of the FWs.   

Both HMI and AIA provided diagnostic data to measure jitter performance, similar to other jitter tests.  All the 
commands to AIA and HMI to turn on data collection, stop data collection, and download the data were sent from 
the SDO Mission Operations Center.  After turning on the instrument diagnostic data collection, the AIA team sent a 
command to start their synoptic sequence and repeat this sequence six times.  Then, a command was sent to start the 
FW jitter test sequence which was also repeated six times.  During the AIA jitter test, the HMI instrument ISS loop 
was closed, the wheels were kept at low speeds (<300 RPM), and the HGA gimbals and EVE FWs were fixed to 
isolate jitter induced by the AIA mechanisms.   
 

Table 6 AIA Synoptic Sequence timeline 

  AIA Telescope 
start time required  stop 1 2 3 4 

00:00.0 0:00:10 00:10.0 Start Instrument Diagnostic Data 
0:00:10 0:00:10 00:20.0 Start AIA Jitter Test Sequence 
00:20.0 00:01.0 00:21.0 FW move    FW move    
00:21.0 00:02.0 00:23.0 Idle   Idle    

00:23.0 00:02.0 00:25.0 
Shutter 

exposure     
Shutter 

exposure     

00:22.5 00:01.0 00:23.5    
FW + AS 

move    FW move  

00:23.5 00:02.0 00:25.5   
Shutter  
set-up     

Shutter 
set-up  

00:25.5 00:02.0 00:27.5    
Shutter 

exposure     
Shutter 

exposure  
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00:25.0 00:01.0 00:26.0 FW move    FW move    
00:26.0 00:02.0 00:28.0 Idle   Idle    

00:28.0 00:02.0 00:30.0 
Shutter 

exposure     
Shutter 

exposure     

00:27.5 00:01.0 00:28.5    
FW + AS 

move    FW move  

00:28.5 00:02.0 00:30.5   
Shutter  
set-up     

Shutter 
set-up  

00:30.5 00:02.0 00:32.5    
Shutter 

exposure     
Shutter 

exposure  
00:32.5 00:12.5 00:45.0 IDLE 

 

Table 7 AIA FW jitter test timeline 

  AIA Telescope 
start time required  stop 1 2 3 4 

00:45.0 00:01.0 00:46.0 FW Move       
00:46.0 00:05.0 00:51.0 IDLE 
00:51.0 00:01.0 00:52.0 FW Move       
00:52.0 00:05.0 00:57.0 IDLE 
00:57.0 00:01.0 00:58.0   FW move     
00:58.0 00:05.0 01:03.0 IDLE 
01:03.0 00:01.0 01:04.0   FW move     
01:04.0 00:05.0 01:09.0 IDLE 
01:09.0 00:01.0 01:10.0     FW Move   
01:10.0 00:05.0 01:15.0 IDLE 
01:15.0 00:01.0 01:16.0     FW Move   
01:16.0 00:05.0 01:21.0 IDLE 
01:21.0 00:01.0 01:22.0       FW move  
01:22.0 00:05.0 01:27.0 IDLE 
01:27.0 00:01.0 01:28.0       FW move  
01:28.0 00:12.0 01:40.0 IDLE 

 

C. Jitter Measurements 
The maximum AIA LOS jitter (over four telescopes and two LOS axes) during the AIA jitter test is shown in 

Figure 32.  The left portion of the figure illustrates the measured jitter during the AIA Synoptic Sequence where two 
AIA FWs move at the same time.  The FW-alone jitter measurements are plotted in the right portion of the figure, 
where six sets of FW movements can be easily seen.  After two sets of the FW sequence were performed, the sensor 
data was downloaded to the ground before starting another two sets of tests.  In between two sets of the FW 
sequence, a pause of 20 sec was supposed to be inserted to separate the test sets.  However, due to a programming 
error in the test setup, the first pulse of the second set was commanded before the 20-sec break takes place.  
Therefore, there are 9 peaks in the first and 7 peaks in the second FW sequence set, corresponding to when each 
AIA FW started/stopped.  The line width makes the start and stop pulses indistinguishable.  Interestingly, the FW in 
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AIA telescope #1 generated much lower jitter than the other three filter wheels.  This result could indicate that AIA 
FW#1 may be better balanced than the other FWs.     

More importantly, Figure 32 shows the pre-launch prediction plus largest wheel-induced jitter (under 300 RPM) 
envelops the maximum AIA LOS error (blue line) for all step rates tested.  The AIA mechanism-induced jitter 
during the standard synoptic sequence also meets the jitter allocation (red line) with significant margin.  Although 
the “worst case” operational scenario, where three FWs move at the same time, was not exercised during jitter 
testing, the results from the synoptic sequence with two FWs moving at the same time provide some confidence that 
the AIA jitter allocation can be met in the “worst case” scenario.  From the on-orbit test data, the team determined 
the likelihood of the AIA FW commutation frequency exciting a major observatory mode to be low.   

Figure 33 illustrates the maximum HMI LOS jitter (over the tip/tilt axes) measured during the AIA jitter test.  
The HMI LOS measurements show that it is relatively insensitive to the AIA mechanism movements, including the 
FW.  It is difficult to distinguish between AIA FW-induced and reaction wheel-induced jitter in the HMI LOS 
measurements.  The HMI LOS jitter allocation is met in this case with the pre-launch prediction bounding the on-
orbit HMI LOS errors. 

Since AIA LOS measurements showed greater responses to the AIA mechanism-induced disturbances, the 
spectral analysis was performed on the AIA LOS sensor, instead of the HMI LOS data as for previous jitter test 
results.  The AIA Telescope 1 sensor measurements, sampled at 256 Hz, were used for the spectral analysis.  The 
amplitude spectra for the synoptic sequence and three sets of two FW jitter sequences are shown in Figure 34.  The 
LOS jitter associated with the FW commutation frequency at ~71 Hz has the largest disturbance amplitude for both 
the synoptic sequence (blue line) and FW jitter sequences as expected.  The shutter commutation frequency at ~60 
Hz is also present in the spectrum plot for the synoptic sequence.  The aperture selector’s commutation frequency is 
140 Hz which is slightly above the sensor Nyquist frequency and not observable at the aliased frequency (20 Hz).  
There is an ~81 Hz disturbance appearing for all AIA test sequences.  This disturbance is likely to be the aliased 210 
Hz disturbance with unidentified source that is present in all jitter test data.    

 
Figure 32 Maximum AIA LOS during AIA Jitter Test 
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Figure 33 Maximum HMI LOS during AIA Jitter Test 

 
Figure 34 AIA Telescope #1 amplitude spectrum for AIA Jitter Test 
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D. Summary and Jitter Mitigation Applied 
The on-orbit jitter measurements show AIA mechanism induced disturbances are acceptable to both AIA and 

HMI.  The FW commutation frequency disturbance does not cause AIA LOS to violate jitter requirement.  The 
Synoptic sequence test data also shows that the AIA jitter allocation is met with a good margin.  Therefore, no 
additional mitigation plan was required to reduce AIA FW disturbances.  

VII. Summary and Conclusion 
The largest LOS measurements with no HGA jitter mitigations applied (and therefore the  largest gimbal rate is 

limited to 43 deg/hr)  and instrument jitter allocations are summarized in Table 8.  In this table, the reaction wheel 
speed limit is set to 850 RPM, and the EVE step rate is the nominal rate of 125 PPS.  The HMI instrument 
mechanism induced-jitter was not measured during the on-orbit jitter test, since its impact was determined to be 
small.  The LOS jitter due to the HMI mechanism is assumed to be the same as its jitter allocation as a worst case 
bound.   There are other minor jitter contributing sources such as the wheel torque noise and sensor quantization 
noise that are also included in this table.  These other jitter sources were present during the reaction wheel jitter test, 
and therefore, the LOS errors induced by them were included in the largest reaction wheel LOS measurements.   If 
SDO were to operate with no HGA mitigation method, the total HMI LOS jitter (root-sum-squared of all measured 
jitter contributions) would violate the HMI jitter requirement.  As a result, the HGA stagger step and the HMI NSR 
flag were used to reduce HGA-induced jitter. 

Table 9 summarizes the largest jitter measurements with HGA jitter mitigation strategies implemented.  Using 
these strategies, the HGA gimbals were allowed to have a maximum step rate of 140 deg/hr.  The increased gimbal 
rate causes the AIA LOS HGA jitter to increase above its allocation, but since moving the HGA at this maximum is 
an infrequent occurrence, AIA can still meet its jitter requirement of 95% data collection continuity.  Activating the 
HMI NSR flag effectively reduces the HMI HGA jitter by a factor of 3 based on analysis and on-orbit test data4.  
This mitigation method allows the HMI to meet its jitter requirement.  It should be noted that if only the HMI NSR 
flag is used, the HGA pointing algorithm should not reject any requests under the current operational condition4.  
However, if the AIA NSR is also used, the AIA requests will be made at different times than the HMI NSR, 
accumulating  too many requested pauses in HGA tracking. In this case,  some of the AIA requests would be 
rejected in order to maintain lock on the ground station.  To simplify the operational scenario, the SDO team decided 
to turn only the HMI NSR flag on and leave the AIA NSR flag off.      

 

Table 8 Maximum LOS measurements (with no HGA mitigation) and instrument allocations  

Jitter Source 
Max AIA LOS 
Meas. (masec) 

AIA Alloc. 
(masec) 

Max HMI LOS 
Meas. (masec) 

HMI Alloc. 
(masec) 

RWA (<=850 RPM) 35.4 70.0 36.5 62.6 
HGA (<= 43 deg/hr) 125.3 106.0 165.8 94.0 
EVE (125 PPS) 21.1 64.0 43.1 49.4 
AIA 47.3 84.0 18.8 55.6 
HMI 28.0 28.0 33.4 33.4 
Other sources in RWA Meas. 28.8 in RWA Meas. 14.1 
RSS Total 142.9 170.0 179.3 140.0 

 

Table 9 Maximum LOS measurements (with HGA mitigation) and instrument allocations 

Jitter Source 
Max AIA LOS 
Meas. (masec) 

AIA Alloc. 
(masec) 

Max HMI LOS 
Meas. (masec) 

HMI Alloc. 
(masec) 

RWA (<850 RPM) 35.4 70.0 36.5 62.6 
HGA (<= 140 deg/hr) 130.7 106.0 69.1 94.0 
EVE (125 PPS) 21.1 64.0 43.1 49.4 
AIA 47.3 84.0 18.8 55.6 
HMI 28.0 28.0 33.4 33.4 
Other  In RWA Meas. 28.8 In RWA Meas. 14.1 
RSS Total 147.7 170.0 97.1 140.0 
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The four main objectives of the jitter tests were achieved after the completion of the jitter test: 
1. The acceptable reaction wheel operational speed range during Science Mode was extended to +/-850 

RPM from +/-412 RPM.  
2. The HGA jitter mitigation methods included implementing the stagger stepping option and the HMI 

NSR flag.   
3. The EVE FW step rate remained at the nominal 125 PPS. 
4. The AIA instrument mechanisms generated acceptable disturbances to AIA and HMI.  The AIA team 

was not required to redesign the instrument’s observation sequence.   
Some of the important lessons learned from managing and analyzing SDO jitter are summarized below:     
• For jitter sensitive missions (sub-arcsecond level requirements): 

– Early jitter assessment to identify what protective steps are necessary.   
– Instrument mechanisms: ability to vary step frequency or commutation frequency on-orbit to 

avoid exciting structural modes 
– Reaction wheel: include wheel structural amplifications in disturbance model especially if wheels 

are operated at low wheel speeds to minimize jitter.  Evaluate the effect of the broadband noise 
signature. 

– HGA: consider micro-stepping and implement pointing algorithm to allow random and stagger 
stepping 

– Provide for coordination between telescope and mechanism operations 
– Every disturbance source should be measured as early as possible 

• High modal density can create amplification that greatly exceeds typical back-of-the-envelope estimates 
– Typical estimate is that dynamic amplification Q=500 (for a 0.1% damped structure) above rigid 

body motion 
– SDO structure exhibited amplification of 103-104 in 30-80 Hz region above rigid body motion 

• Jitter is a system level problem that cannot be treated adequately at the component level  
– Allocate separate budget for jitter modeling and analysis work  
– Jitter requirement should be set at the detector (using integrated model) and not at instrument 

mounting interface 
– Plan model verification, validation, and calibration work early 

• Requirements on model fidelity are needed on FEM to address jitter  
• On-orbit jitter test and mitigation strategies should be included in the overall jitter management program 

The SDO project took the extraordinary step to measure jitter on orbit.  This unique on-orbit test data has 
provided, and will continue to provide, invaluable engineering data for validating jitter model and analysis 
approaches.   
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