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ABSTRACT 

Understanding the potential influence of environmental variation experienced by animals during 

early stages of development on their subsequent demographic performance can contribute to our 

understanding of population processes and aid in predicting impacts of global climate change on 

ecosystem functioning. Using data from 4,178 tagged female Weddell seal pups born into 20 

different cohorts, and 30 years of observations of the tagged seals, we evaluated the hypothesis 

that environmental conditions experienced by young seals, either indirectly through maternal 

effects and/or directly during the initial period of juvenile nutritional independence, have long-

term effects on individual demographic performance. We documented an approximately 3-fold 

difference in the proportion of each cohort that returned to the pupping colonies and produced a 

pup within the first 10 years after birth.  We found only weak evidence for a correlation between 

annual environmental conditions during the juvenile-independence period and cohort recruitment 

probability.  Instead, the data strongly supported an association between cohort recruitment 

probability and the regional extent of sea ice experienced by the mother during the winter the 

pup was in utero. We suggest that inter-annual variation in winter sea-ice extent influences the 

foraging success of pregnant seals by moderating the regional abundance of competing predators 

that cannot occupy areas of consolidated sea ice, and by directly influencing the abundance of 

mid-trophic prey species that are sea-ice obligates.  We hypothesize that this environmentally-

induced variation in maternal nutrition dictates the extent of maternal energetic investment in 

offspring, resulting in cohort variation in mean size of pups at weaning which, in turn, 

contributes to an individual’s phenotype and its ultimate fitness.  These linkages between sea ice 

and trophic dynamics, combined with demonstrated and predicted changes in the duration and 

extent of sea ice associated with climate change, suggest significant alterations in Antarctic 

marine ecosystems in the future.
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Introduction 1 

In most ecological contexts the environments in which animal populations exist are inherently 2 

variable.  Ecological studies of the impacts of environmental variation on animal population 3 

processes has a long and rich history and have demonstrated the direct and immediate influences 4 

of environmental variability on basic demographic processes (Turchin 2003).  A more recent 5 

area of investigation is the influence of nutritional or developmental programming on the 6 

demographic performance of individuals subjected to differing environmental conditions during 7 

the early stages of life.  Studies across a wide range of taxa are revealing that this phenomenon 8 

can result in cohorts produced during poor environmental conditions suffering reduced fitness, as 9 

indexed by survival, fecundity, or recruitment rates, compared to cohorts born under more 10 

favorable conditions (Lindström 1999).  Such cohort effects have important consequences for 11 

understanding features of population dynamics such as variability, stability, and delayed density 12 

dependence (Beckerman et al. 2003, Lindström and Kokko 2002). 13 

The study of cohort effects in long-lived, large-bodied mammals is particularly 14 

interesting because these animals have a prolonged developmental period that often extends for 15 

several years before adult body size and sexual maturity are attained.  The developmental period 16 

for such animals can be partitioned into the maternal-dependency phase, which includes the 17 

intrauterine period from conception to birth and the subsequent period of maternal provisioning 18 

through lactation and nursing.  The juvenile phase begins when an animal is weaned, thus 19 

becoming nutritionally independent, and continues until the animal attains maturity.  Because 20 

development extends over multiple seasons and years, environmental conditions influencing an 21 

individual can vary considerably from one developmental period to the next, providing an 22 
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opportunity to evaluate the relative contribution of environmental conditions during various 23 

stages of development to any realized cohort effect.   24 

Investigations of cohort effects in large mammals have been dominated by ungulate 25 

studies in temperate and high latitudes (e.g., Albon et al. 1987, Festa-Bianchet et al. 1998, 26 

Forchhammer et al. 2001).  Ungulates generally accrue body reserves during the growing season 27 

of one year, breed in autumn at maximal body mass, and nourish the fetus through the winter 28 

period of energy restriction, primarily from body reserves.  Birth occurs the following spring at 29 

the onset of the next growing season when mothers are at minimal body mass (Anderson et al. 30 

1974, Parker et al. 1993).  Mothers then feed on nutritious forages during the lactation period and 31 

gradually wean young near the end of the growing season.  Using the capital-income typology 32 

for describing reproductive investment (Jönsson 1997) and standardizing its application to the 33 

entire reproductive cycle (Stephens et al. 2009), ungulate reproduction thus represents a blend of 34 

capital investment during the intrauterine period and income investment during the post-partum 35 

maternal provisioning period.  A consequence of this capital-income sequence of energetic 36 

investment in ungulates is that the environmental conditions influencing the development of a 37 

cohort of young ungulates during the maternal dependency period span two growing seasons as 38 

well as a winter season, with the environmental conditions during the second growing season 39 

contributing to both the maternal dependency period and the initial period of juvenile 40 

independence.  41 

Demographic studies of marine mammals, particularly of large phocids, provide 42 

opportunities to expand our understanding of cohort effects to a taxon that represent secondary 43 

consumers.  These mammals have a considerably different pattern of energetic investment in 44 

reproduction from ungulates that enhances our ability to assess the relative contribution of 45 
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environmental variability experienced during the maternal-dependence and juvenile phase to any 46 

realized cohort effect (Shultz and Bowen 2004).  One of the largest phocids is the Weddell seal 47 

(Leptonychotes weddellii), which is associated with the fast ice around the coast of Antarctica 48 

and attains a body size of 500-580 kg (Wheatley et al. 2006, Proffitt et al. 2007a). Weddell seals 49 

fast during lactation (mid-October through early December) and breed at the end of the period of 50 

lactation, hence placing them at a seasonal low point in body reserves at the start of the 51 

reproductive cycle.  Implantation is delayed until mid-January to mid-February followed by a 52 

prolonged gestation period with energetic intake supporting both fetal development and 53 

replenishment of body reserves.  Birth occurs from mid-October through November, when 54 

female body mass is at its maxima at the end of the seasonal cycle, after which body reserves are 55 

rapidly transferred to the developing young during the post-partum maternal provisioning period 56 

(Stirling 1969).  Thus, reproduction depends on income investment during the intrauterine period 57 

and capital investment during the post-partum maternal dependency period.  Recent energetic 58 

studies in Weddell seals confirm that feeding during the nursing period contributes nominal 59 

resources to support lactation (Wheatley et al. 2008). Thus the reliance on body reserves during 60 

the maternal provisioning period provides an unambiguous demarcation between environmental 61 

conditions that influence the maternal dependency period experienced during a single summer-62 

winter annual cycle and those experienced by newly independent juveniles during the subsequent 63 

annual cycle.   64 

Here, we use 30 years of data from a long-term demographic study of Weddell seals 65 

occupying Erebus Bay in the southern Ross Sea to test the hypothesis that environmental 66 

conditions experienced by young seals during early development, either indirectly through 67 

maternal effects and/or directly during the initial period of juvenile nutritional independence, 68 
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have long-term effects on individual demographic performance.  The objectives of this 69 

investigation included (1) characterizing variability in the probability of recruitment of cohorts of 70 

females born over periods with a wide range of environmental conditions, and (2) evaluating and 71 

contrasting the strength of correlations among indices of environmental conditions that were 72 

hypothesized to contribute to resources available during the maternal dependency and juvenile 73 

development periods.  The Erebus Bay Weddell seals represent the world’s southernmost 74 

breeding mammal population, with life history traits likely linked to marine conditions that 75 

demonstrate substantial variability over multiple times scales (Cavalieri and Parkinson 2008, 76 

Massom and Stammerjohn 2010).  These attributes, combined with the long-term study of highly 77 

detectable, known-age, individually marked seals (Hadley et al. 2007a, Rotella et al. 2009), 78 

enhance the ability to detect and understand the potential influence of environmental variation 79 

experienced during early stages of life on demographic performance. 80 

High latitude systems are thought to be particularly sensitive to climate change (Croxall 81 

et al. 2002, Parkinson 2004), and thus studies of the linkages between environmental conditions 82 

and demographic processes in Antarctic populations contribute to understanding the ecological 83 

consequences of this global phenomenon.  In this respect, the Ross Sea is of special interest, as it 84 

is one of the most productive areas of the Southern Ocean (Arrigo and van Dijken 2004), 85 

represents the most pristine marine environment remaining on the planet (Halpern et al. 2008), 86 

and, in striking contrast to trends in the Antarctic Peninsula (Vaughan et al. 2001, 2003) and 87 

Arctic regions (Parkinson and Cavalieri 2008, Walsh 2008), is experiencing an increase in sea 88 

ice coverage (Cavalieri and Parkinson 2008) and a gradual lengthening of the sea-ice season 89 

(Parkinson 2004). 90 

  91 
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Methods 92 

Study area and population 93 

The Erebus Bay study area is located in McMurdo Sound, the southernmost embayment of the 94 

Ross Sea, Antarctica (77°37'12" to 77°52'12" S, 166°18' to 167° E). Each austral spring, pupping 95 

colonies form along perennial cracks in the sea ice created by tidal movement of the fast ice 96 

against land or glacial ice. The fast ice associated with the pupping colonies is consistently 97 

present during the spring reproduction period with annual variation primarily limited to the 98 

thickness of the ice that, in turn, depends on annual variation in ice break out during the austral 99 

summer.  Pupping occurs on the ice surface from mid October through November, and mothers 100 

remain in close association with their pups throughout the 30-45 day lactation period. Females 101 

who have not yet had a pup (pre-breeders) and parous females that are skipping pupping also 102 

haul out in the study area each year.  Females come into estrous approximately 35 days after 103 

parturition, and breeding occurs within underwater territories centered on the ice cracks at each 104 

colony (Stirling 1969).  Limited data from telemetry studies suggests that most seals move north 105 

into the Ross Sea after the breeding season and remain there until returning to traditional 106 

pupping colonies in spring. The estimated number of female seals in the breeding population 107 

ranged from 438 to 623 and averaged 527 during 1982–2003 (Rotella et al. 2009).  Typically, 108 

300–600 pups are born per year at colonies in Erebus Bay, and females surviving to reproductive 109 

age have strong natal philopatry (Cameron and Siniff 2004). Age at first reproduction for 110 

females is variable and averages 7.6 ± 1.7 years (mean ± SD; Hadley et al. 2006). Upon 111 

recruiting to the breeding population, females typically produce a pup every 1.5–2.2 years, 112 

depending on previous breeding experience and environmental conditions (Hadley et al. 2007a). 113 

The oldest known animals in this population are 29 years old.  114 
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Data collection 115 

Each year from 1969 until the present, Weddell seal pups born within the Erebus Bay study area 116 

have been individually marked (usually within several days of birth) with plastic livestock tags 117 

attached to the interdigital webbing of each rear flipper. From 1969 to 1981, the proportion of 118 

pups that were tagged varied, but since 1982 all pups in the study area have been tagged. In 119 

addition, most seals with a broken or missing tag were retagged, and untagged adults were 120 

tagged opportunistically upon sighting and capture. The majority of the tagging effort occurred 121 

from approximately 15 October to 15 November each year, during the peak of parturition, when 122 

colonies were visited every two to three days to tag newborn pups.   Beginning in early 123 

November of each year, six to eight resighting surveys were carried out throughout the study 124 

area with surveys typically separated by three to five days and field work ending by mid-125 

December. Seals in this population could be readily approached within 0.5 m, and thus, 126 

observers were able to read tags on all marked animals that were observed.  127 

Response variable (the proportion of female pups recuited by 10 years of age) 128 

The response variable of interest was the proportion of females from a given birth cohort that 129 

recruited to the breeding population by age 10.  The choice of age 10 represents the best 130 

compromise that captures most recruitment while maximizing the number of cohorts that could 131 

be included in the analysis, as Hadley et al. (2006) found that 93% of breeding females produce 132 

their first offspring by age 10.  Weddell seals have strong philopatry to their birth colony with 133 

little evidence of permanent dispersal (Cameron and Siniff 2004), and the vast majority of all 134 

young tagged in the Erebus Bay colonies are never detected after their birth year (Hadley et al. 135 

2007b), thus it is likely that seals that have not recruited into the breeding population by age 10 136 

died. The uninterrupted multi-decadal research effort using consistent tagging and resight 137 
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methodology, combined with strong philopatry of female seals to their natal area (Cameron and 138 

Siniff 2004) and nearly perfect detection probability of reproducing females  (Hadley et al. 139 

2006), provided high-quality encounter histories of females born in the Erebus Bay colonies for 140 

developing the response variable.  Using these individual encounter histories we developed a 141 

dichotomous response variable by assigning a 0 or 1 to each tagged female pup in each cohort 142 

based on whether she recruited by age 10 or not. Based on those 0’s and 1’s we thus obtained an 143 

estimate of the proportion of females in each cohort that recruited.  The numbers of pups 144 

annually tagged prior to 1980 were considered too low to provide a representative sample of the 145 

cohort, and 2009 was the most recent year for which resight data were available.   Hence we 146 

included 20 cohorts from 1980 through 1999 in the analysis. 147 

Environmental covariates 148 

We evaluated seasonal covariates at three spatial scales that indexed environmental variation we 149 

suspected may influence primary production and other attributes of the marine system that result 150 

in variation in prey availability, and the distribution and abundance of other predators that 151 

compete for the same fish resources with Weddell seals. We considered these covariates for two 152 

time periods to evaluate the relative importance of environmental conditions during the maternal 153 

dependency period and the initial period of juvenile nutritional independence.   154 

Southern Oscillation Index (SOI) 155 

At the broadest scale there is strong evidence that the El Niño/Southern Oscillation (ENSO) 156 

phenomenon in the tropical Pacific linearly covaries with Antarctic sea ice fields and that this 157 

teleconnection is the most significant link with extra-polar climate variability (Yuan 2004; Yuan 158 

and Li 2008). We used the Southern Oscillation Index (SOI), which describes the ENSO 159 

atmosphere–ocean interactions in tropical and subtropical latitudes (Stenseth et al. 2003), and 160 
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calculated a three month running average of the monthly SOI for summer (Dec-Feb, SOIs) and 161 

winter (July-Sept, SOIw) periods (http://www.bom.gov.au/climate/current/soihtm1.shtml).  SOI 162 

is negatively associated with atmospheric pressure and sea-surface temperatures and is positively 163 

associated with the extent and concentration of sea ice (Yuan 2004). SOI generally is in phase 164 

with pupping rates in the study population (Testa et al. 1991) and positively correlated with the 165 

size of the population (Rotella et al. 2009) and seal body mass (Proffitt et al. 2007a).  Thus, we 166 

predicted that SOI would be positively related to measures of cohort demographic performance, 167 

such as the probability of recruitment.   168 

Antarctic Dipole (ADP) 169 

A second climate mode index, the Antarctic Dipole (ADP), was also considered as it represents 170 

the ENSO ‘footprint’ at the southern high latitudes, but has its own characteristics in space and 171 

time and persists after tropical forcing has diminished (Yuan and Li 2008).  Similar to SOI, we 172 

calculated a three-month running average of the Antarctic Dipole for summer (Dec-Feb, ADPs) 173 

and winter (July-Sept, ADPw). ADP is a more recently developed climate mode and has not yet 174 

been employed much in biological studies, but we expected probability of recruitment to have 175 

the same relationship with ADP as with SOI.  176 

Sea ice extent (SIE) 177 

At the intermediate spatial scale of the Ross Sea sector, defined as that portion of the Southern 178 

Ocean between 160°E and 130°W, we considered measures of summer and winter sea-ice extent 179 

(SIE) as estimated from passive microwave satellite images (DMSP SSM/I, NASA team 180 

algorithm; ftp://sidads.colorado.edu/pub/DATASETS/seaice/polar-stereo/trends-181 

climatologies/ice-extent/nasateam/) (Cavalieri et al. 1991).  Winter sea-ice extent (SIEw) was 182 

defined as the September average and summer sea-ice extent (SIEs) was defined as the February 183 
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average; September and February are typically the months of maximum and minimum sea ice 184 

coverage, respectively, both in the Ross Sea and in the Southern Ocean as a whole (Cavalieri and 185 

Parkinson 2008).  Extensive compacted sea ice during summer reduces the amount of open water 186 

available for phytoplankton blooms and atmospheric contributions of CO2 to ocean waters 187 

(Arrigo and van Dijken 2007).  Reduced primary production would likely cascade up the food 188 

chain, reducing the abundance of prey for apex predators like Weddell seals (Proffitt et al. 189 

2007a,b) and resulting in a negative correlation between SIEs and probability of recruitment.  190 

Alternatively, increased sea-ice extent in summer may decrease the abundance of  birds and 191 

whales in the ecosystem, competing predators that are not as well adapted to dense sea ice. This 192 

would suggest a positive rather than negative correlation between SIEs and probability of 193 

recruitment.  Similarly, extensive sea ice during the winter would shift distributions of most 194 

predators further north, providing more extensive areas for Weddell seals to forage during the 195 

Antarctic winter with less competition, thus, we also predicted a positive correlation between 196 

SIEw and probability of recruitment.  197 

Open water index (OWI) 198 

At the most restricted spatial scale, we developed three seasonal covariates for the 804,000 km2 199 

ocean area of the Ross Sea that included the continental shelf and slope.  Covariates describing 200 

summer (Oct to May) and winter (June-Sept) variation in open water within the Ross Sea were 201 

developed using the same passive microwave satellite data employed in constructing sea-ice 202 

extent covariates for the Ross Sea sector.  Satellite data from alternate days for each seasonal 203 

period were processed with all pixels that were classified as open water (<15% sea-ice 204 

concentration) summed to obtain an estimate of total open water area within the Ross Sea for that 205 

day. The daily values were then summed to index the extent and duration of open water for the 206 



 12 

summer (OWIs) and winter (OWIw) periods.  No satellite data were available from 3 December 207 

1987 thru 12 January 1988; therefore, we estimated 1987-88 OWIs using the correlation between 208 

the OWIs derived from complete data sets for the other 19 years in the time series and the OWIs 209 

values obtained with the period of missing data in the 1987-88 data omitted.  Similar to SIEs, the 210 

influence of OWIs on probability of recruitment could be positive due to influences on primary 211 

production or negative due to increased abundance of competing fish predators.  The OWIw 212 

covariate captures variation in the Ross Sea polynya as well as several smaller polynyas along 213 

the western Victoria Land coast that are maintained by strong katabatic winds originating on the 214 

Antarctic continent (Jacobs and Comiso 1989). While we suspect that the substantial annual 215 

variation in these polynyas influences the marine ecosystem and Weddell seals, the paucity of 216 

studies focused on the winter ecology of this food web makes it difficult to predict the direction 217 

of influence of OWIw on measures of reproductive performance of females. 218 

Prevalence of first-year ice (FYI) 219 

Microbial communities that grow in close association with sea ice contribute substantially to 220 

annual primary production in the Ross Sea and account for up to 25% of total annual primary 221 

production in ice-covered waters (Arrigo and Thomas 2004).  Most of this production occurs on 222 

the bottom of first-year sea ice that allows adequate sunlight penetration, with blooms of ice 223 

algae and bacteria occurring in spring prior to phytoplankton blooms (Garrison et al. 1986). 224 

Hence, we developed a third covariate at the scale of the Ross Sea to index the prevalence of 225 

first-year sea ice in spring (FYIs), when sea ice microbial communities would be most 226 

productive. We used the passive microwave satellite images processed to quantify open water, as 227 

previously described, and identified the date during the summer of year t-1 with the maximum 228 

open water, then  took the amount of open water on that date and subtracted the minimum area of 229 
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open water quantified from daily images acquired the subsequent winter. We assumed this 230 

quantity indexed the maximum area that could potentially contain first-year ice in spring of year 231 

t.  Because sea ice microbial communities contribute to annual primary production, and likely 232 

have a positive effect on crystal krill that are considered ice-obligate grazers, we predict that 233 

FYIs would be positively correlated with probability of recruitment.  234 

 Before employment in modeling, values for each of the environmental covariates were 235 

centered to have a mean of 0 and rescaled to have a standard deviation of 1.0. We assessed co-236 

linearity among environmental covariates by calculating pair-wise correlations and variance 237 

inflation factors.  We also evaluated each time series of environmental covariates for temporal 238 

autocorrelation using a wide range of time lags. 239 

A priori and exploratory models 240 

In order to evaluate the relative contribution of environmental variation during summer and 241 

winter seasons and between the periods of maternal provisioning and the initial year of juvenile 242 

independence, we constructed four a priori model suites for confrontation with the data: summer-243 

maternal (Mats), winter-maternal (Matw), summer-juvenile (Juvs), and winter-juvenile (Juvw).  244 

For the two seasonal model suites associated with the maternal provisioning period we 245 

developed a series of regression models that included combinations of the 5 summer 246 

environmental covariates (SOIs, ADPs, SIEs, OWIs, FYIs) and another suite using combinations 247 

of the 4 winter environmental covariates (SOIw, ADPw, SIEw, OWIw) measured during year t-1 248 

for the cohort born in year t.  These models reflect the environmental conditions experienced by 249 

the mothers of pups born in that cohort when the mothers were accruing resources to nourish the 250 

pup while in utero and during the post-partum nursing period when mothers were fasting.  Two 251 

additional model suites were similarly constructed for the juvenile-independence period using 252 
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the environmental covariates measured during year t that reflected environmental conditions 253 

experienced by the pups during their first summer and winter seasons of nutritional 254 

independence.   255 

To reduce the risk of over-fitting models (Knape and de Valpine 2010), we constrained 256 

all a priori models within each suite to include a maximum of only one environmental covariate 257 

from each of the 3 spatial scales (climate mode-SOI, ADP; Ross Sea sector-SIE; Ross Sea-OWI, 258 

FYI), as well as employing  a null intercept-only model.  This resulted in a total of 18 models in 259 

each of the summer-maternal and summer-juvenile suites and 12 total models in the winter-260 

maternal and winter-juvenile suites.  We kept our a priori model lists simple and considered only 261 

additive combinations of covariates because knowledge of environmental variation in the Ross 262 

Sea and its effects on the marine ecosystem is limited, providing little guidance for developing 263 

interaction models, especially given the number of cohorts available for this analysis. 264 

 Once we completed analysis of a priori models, we evaluated all possible combinations 265 

of those environmental covariates from each a priori model suite that were well-supported by the 266 

data in an exploratory analysis to further evaluate the relative contribution of environmental 267 

variability during the maternal-dependency and juvenile-independence periods. We also 268 

evaluated a duplicate set of these exploratory models that included a cohort size covariate as we 269 

speculated that cohort size might capture important annual environmental variation not described 270 

by our suite of environmental covariates.  Not all reproductively mature females produce a pup 271 

every year and breeding probabilities (Hadley et al. 2006), as well as temporary emigration rates 272 

(Cameron and Siniff 2004), display considerable annual variation that might be associated with 273 

variability of food resources available to the females during the year prior to the pupping season, 274 
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when conception, implantation, and gestation would occur.  Thus we expected a positive 275 

correlation between cohort size and recruitment probability. 276 

Data analysis 277 

We modeled the number of female pups from each cohort that recruited into the breeding 278 

population by age 10 using a logistic-binomial model (Gelman and Hill 2007), where the number 279 

of females that recruited from a given cohort was the number of ‘successes’ and the size of the 280 

cohort was the number of possible successes.  We evaluated support for each model within a 281 

suite and among suites using an information-theoretic approach and Akaike’s Information 282 

Criteria (AIC) adjusted for possible overdispersion (QAIC) and sample size (QAICc).  We 283 

estimated overdispersion as the smallest dispersion value that was obtained when we evaluated 284 

the most complex models in each of our 4 suites, using a logistic model of the counts and a 285 

quasibinomial distribution of errors (Gelman and Hill 2007).  The most complex models were 286 

evaluated with and without cohort size as a covariate.  We next evaluated each of the competing 287 

models using the logistic-binomial model and adjusted the resulting AICc scores and standard 288 

errors using our estimate of over-dispersion.  We evaluated the strength of support for each of 289 

the competing models both within and among suites.  When calculating QAICc values, we added 290 

1 to the number of parameters in the model being used, to account for the fact that we had to 291 

estimate the amount of over-dispersion.  Finally, to provide an approximate measure of the 292 

proportion of deviance explained by covariates in the top model, we used analysis of deviance to 293 

compute the ratio of differences in quasi-log-likelihood values and to provide a deviance-based 294 

r2 metric for covariates of interest (Skalski et al. 1993).  The numerator contained the difference 295 

in values for the top model and the intercept-only model. The denominator was the difference in 296 

values for the global model and the intercept-only model. 297 
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 298 

Results 299 

We obtained data from 4,178 female pups born into 20 different cohorts that were each 300 

monitored to determine how many of the females recruited to the pup-producing portion of the 301 

population within 10 years of birth.  The cohorts under investigation here were born during the 302 

period 1980-1999 and, with the exception of 1981 when only about 50% of the pups were tagged 303 

due to early ice breakout, contained 165 to 275 female pups each year (mean = 209 females, SD 304 

= 22).  The proportion of a cohort that recruited within 10 years averaged 0.20 (SD = 0.07) and 305 

ranged from 0.11 to 0.36 (Table 1).  Data on environmental conditions during the maternal-306 

provisioning and juvenile-dependency periods were available for all 20 cohorts, and conditions 307 

varied among years (Fig. 1).  During the maternal-provisioning period, summer environmental 308 

covariate values had pair-wise-correlation values that averaged -0.06 (SD = 0.36; range from -309 

0.55 to 0.45) and variance inflation factors that ranged from 1.33 to 1.82.  During the juvenile-310 

dependency period, summer environmental covariate values had pair-wise-correlation values that 311 

averaged 0.02 (SD = 0.33; range from -0.40 to 0.59) and variance inflation factors that ranged 312 

from 1.29 to 2.40.  Correlations and variance-inflation factors for winter environmental 313 

conditions were similar to those for summer covariates.  We did not find evidence of important 314 

levels of temporal autocorrelation among environmental covariates, as auto-correlation function 315 

values at lags of 1 to 13 years were modest: for lag 1 year, values averaged 0.04 (SD = 0.25, 316 

range = -0.40 to 0.35).  We estimated over-dispersion in the counts of the number of recruits per 317 

cohort as 1.90. Accordingly, we used QAICc based on an over-dispersion value of 1.90 in model-318 

selection and to inflate variances and confidence intervals.  In each suite, there was strong 319 

evidence that it was important to consider environmental covariates when modeling the 320 
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proportion of the cohort that went on to recruit to the breeding population within 10 years of 321 

being born.  Accordingly, the intercept-only model received little support within each suite 322 

(ΔQAICc > 14.8, Table 2).   323 

Summer-maternal covariate suite 324 

The top 2 models both included the Antarctic Dipole (ADPs) and open water index (OWIs), and 325 

the 2nd best model also included sea ice extent (SIEs). The 3rd best model contained first year ice 326 

(FYIs) and SIEs.  Other models in this suite were not well supported by the data in within-suite 327 

model comparisons (ΔQAICc > 4.3, Table 2), and Southern Oscillation Index (SOIs) did not 328 

appear in any well-supported models in the suite (ΔQAICc > 4.64).  In the top model, estimates 329 

indicated that a female pup’s probability of recruiting was positively related to the ADPs 330 

( ADPMat−β̂ = 0.16, SE = 0.06, Fig. 2) and negatively related to OWIs ( OWIMat−β̂ = -0.21, SE = 0.06) 331 

during the maternal provisioning period, which was in accordance with our predictions regarding 332 

these environmental covariates.  Although SIEs was in the 2nd- ranked model the estimated 333 

coefficient was small and may have been positive or negative ( SIEMat−β̂ = 0.025, SE = 0.070). 334 

Summer-juvenile covariate suite 335 

As in the summer-maternal suite, the top model in the summer juvenile covariate suite included 336 

the Antarctic Dipole (ADPs) and the open water index (OWIs). The top 6 models all included 337 

ADPs and up to 1 or 2 other covariates; these were the only models receiving any weight in this 338 

suite as all other models had ΔQAICc > 11.9 (Table 2).  The estimated coefficients for ADPs 339 

were relatively stable among models and supported the prediction that a female pup’s probability 340 

of recruiting was positively related to ADPs (top model: ADPJuv−β̂ = 0.25, SE = 0.06, Fig. 2).  341 

Estimated coefficients for all other environmental covariates were small and imprecisely 342 

estimated.   343 
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Winter-maternal covariate suite 344 

Sea ice extent (SIEw) was in all models within 7.52 QAICc units of the top model in the winter-345 

maternal suite.  The top model contained only SIEw, whereas other well-supported models 346 

included 1 or 2 additional covariates (Table 2).  The estimated coefficients for SIEw in this suite 347 

of models supported the prediction that a female pup’s probability of recruiting was positively 348 

related to SIEw (top model: SIEMat−β̂ = 0.26, SE = 0.05, Fig. 2).  It appears that other top models in 349 

the suite gained support from the data because they included SIEw: the estimated coefficient for 350 

SIEw remained stable and relatively large among well-supported models, while coefficients for 351 

other covariate effects were smaller in magnitude and imprecisely estimated.  For example, in the 352 

2nd-best model in the suite, ADPMat−β̂  = 0.09 (SE = 0.07) whereas SIEMat−β̂ = 0.21 (SE = 0.07). 353 

Winter-juvenile covariate suite 354 

As was found for the winter-maternal suite, sea ice extent (SIEw) was in all models within 14.38 355 

QAICc units of the top model in the winter-juvenile suite (Table 2), and the estimated coefficient 356 

associated with SIEw was relatively stable and positive (top model: SIEJuv−β̂ = 0.34, SE = 0.08, 357 

Fig. 2).  SOIw was in the top two models (ΔQAICc < 0.52), but, contrary to our prediction, had 358 

an estimated coefficient that provided evidence that recruitment probability was negatively 359 

related to SOIw ( SOIJuv−β̂ = -0.15, SE = 0.07).  The coefficient for OWIw was estimated 360 

imprecisely enough that it could have been positive or negative.   361 

Comparing across suites 362 

When models from the four suites were compared against one another, the data provided the 363 

strongest support for models in the winter-maternal suite.  The top six models (cumulative model 364 

weight = 0.77) were all from the maternal-winter suite and all were within 2.42 QAICc units of 365 

the best model, which contained only sea ice extent (SIEw) in the winter-maternal period (Table 366 
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3).  The top model from the summer-maternal period was the 7th-best model (ΔQAICc = 3.41), 367 

and the best model from the winter-juvenile period was the next best (ΔQAICc = 3.85).  Models 368 

from the summer maternal suite had a cumulative model weight of 0.09, with juvenile winter and 369 

summer model suites having cumulative model weights of 0.09 and 0.05, respectively.  Thus, the 370 

evidence was strong that a female pup’s eventual recruitment probability was most strongly tied 371 

to environmental conditions that the mother experienced during the winter the pup was in utero.  372 

The cumulative weight for models containing the covariate for sea ice extent for the winter 373 

maternal period, Matw-SIEw covariate was 0.77 and was most strongly related to the probability 374 

of a female pup recruiting.  In contrast, for other winter environmental covariates, cumulative 375 

model weights ranged from 0.20 to 0.26.  In the top model, 61% of the deviance was explained 376 

by Matw_SIEw, which represents an approximate r2 value for this model.  As recommended by 377 

one reviewer, we also evaluated additional models that considered the size of the recruited 378 

population of females in either year t or year t-1 as possible covariates to explore potential 379 

density-dependent effects.  We evaluated whether the data supported adding population size or 380 

the natural logarithm of population size in year t or year t-1 to the top a priori model. None of the 381 

4 models performed as well as the top model, and 95% CIs for estimated effects of abundance 382 

variables overlapped zero in all cases.  383 

Exploratory modeling 384 

We evaluated all possible combinations of 6 different environmental covariates that were 385 

supported by the data in our assessments of the a priori model suites (64 models).  These 386 

covariates included Matw-SIEw (the only variable receiving support from the data in the top 387 

model); Mats-ADPs and Mats-OWIs (the two variables that were in the only summer-maternal 388 

model that was within 5 QAICc units of the top model in among-suite comparisons); and Juvw-389 
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OWIw, Juvw-SIEw, and Juvw-SOIw (the three variables that were in the only winter-juvenile 390 

model that was within 5 QAICc units of the top model in among-suite comparisons).  We also 391 

include a duplicate set of models that included cohort size, resulting in a total of 128 exploratory 392 

models.  This analysis reinforced the results of the a priori analysis with respect to important 393 

environmental covariates, but also provided strong support for including cohort size (Fig. 3).  394 

The top-ranked exploratory model included cohort size and Matw-SIEw; the top-ranked a priori 395 

model that included only Matw-SIEw had a QAICc score that was 13.38 units worse.  Thirty-eight 396 

different models were within 5 QAICc units of the top-ranked exploratory model.  All of these 397 

models included cohort size, and 32 of the 38, including all models within 3 QAICc units of the 398 

top exploratory model, also contained Matw-SIEw.  While other environmental covariates 399 

appeared in various combinations in these top-ranked models, cumulative model weights for 400 

models pertaining to each of the additional covariates were modest (weights ranged from 0.26 to 401 

0.48) and lower than the cumulative weight of 0.90 for models containing Matw-SIEw.  Model-402 

specific coefficient estimates for cohort size and Matw-SIEw were positive in all cases, and 403 

model-averaged estimates had 95% confidence limits that only included positive values 404 

(  
ˆ

cohort sizeβ = 0.004, unconditional SE = 0.001, 95% confidence limits = 0.002 to 0.007; ,
ˆ
W M SIEβ − = 405 

0.165, SE = 0.083, 95% confidence limits = 0.003 to 0.327).  Model-averaging produced 95% 406 

confidence limits that overlapped zero for coefficients associated with all other covariates 407 

considered in exploratory modeling: ( ,
ˆ

S M ADPβ − = 0.01, SE = 0.04, 95%CI = -0.06 to 0.08; ,
ˆ

S M OWIβ −  408 

= -0.05, SE = 0.07, 95%CI = -0.19 to 0.09; ,
ˆ
W J OWIβ − = 0.09, SE = 0.07, 95%CI = -0.04 to 0.23; 409 

,
ˆ
W J SIEβ − = 0.09, SE = 0.09, 95%CI = -0.09 to 0.27; ,

ˆ
W J SOIβ − = -0.08, SE = 0.07, 95%CI = -0.22 to 410 

0.06).  When we used model averaging to evaluate the effects of changing cohort size and Matw-411 

SIEw, we found that the proportion predicted to recruit for the smallest observed cohort size (n = 412 
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345 pups) ranged from 0.12 (SE = 0.02) to 0. 21 (SE = 0.03), as conditions changed from the 413 

lowest to the highest levels of Matw-SIEw.  For the maximum cohort size observed (n = 546 414 

pups), predicted proportions ranged from 0.21 (SE = 0.04) to 0.34 (SE = 0.04) (Fig. 3). 415 

 416 

Discussion 417 

Using data from 20 cohorts of tagged female Weddell seal pups and 30 years of observations of 418 

the tagged seals, we documented an approximately 3-fold difference in the proportion of each 419 

cohort that returned to the Erebus Bay pupping colonies and produced a pup within the first 10 420 

years after birth.  The strong support in the data for a priori models correlating this inter-annual 421 

variation in recruitment probability and environmental covariates we hypothesized could 422 

influence regional ecosystem trophic dynamics provides evidence of a substantial cohort effect 423 

and contributes to the growing body of literature demonstrating the effects of environmental 424 

conditions during the early stages of life on the subsequent demographic performance of 425 

individuals later in life (Forchhammer et al. 2001, Reid et al. 2003, Nevoux et al. 2010).   426 

Proximate mechanism for cohort effect 427 

Recruitment probability is a combination of prebreeding survival probability and age-specific 428 

breeding probability.  Long-lived mammals tend to have low and variable juvenile survival with 429 

much less variable breeding probability (Gaillard et al. 2000).  In contrast to many studies of 430 

long-lived mammals in both terrestrial and marine systems that have documented relatively low 431 

and variable juvenile survival during the maternal dependency period (Gaillard et al. 2000 432 

Chambellant et al. 2003), Weddell seal pups have exceptionally high survival to weaning 433 

(Proffitt et al. 2010). Estimating annual post-weaning juvenile survival rates in Weddell seals, 434 

however, is challenging because, like many other marine birds and mammals, juvenile Weddell 435 
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seals temporarily emigrate from natal sites during the lengthy immature period resulting in low 436 

detection probabilities (Testa and Siniff 1987).  Despite this limitation, several analyses of the 437 

mark-resight data from the Erebus Bay population have documented substantial annual variation 438 

in juvenile survival estimates for the first several years of independence (Hastings et al. 1999, 439 

Cameron and Siniff 2004, Hadley et al. 2006).   All studies have consistently estimated mean 440 

annual survival as approximately 0.50-0.60 for the first two years of life, despite difference in 441 

analytical methodology and length of the time series used.  Although substantial annual variation 442 

in age-specific recruitment probability has also been documented in this population (Hadley et al. 443 

2006), we suspect that variation in juvenile survival is the predominant contributor to variation in 444 

the proportion of a cohort that recruits and plan to initiate an evaluation of cohort-based variation 445 

in survival rates to assess this hypothesis. 446 

 Although we hypothesize that cohort-based variation in juvenile survival is the primary 447 

demographic mechanism driving variation in the probability of recruitment by age 10 among 448 

Weddell seal cohorts, we found only weak evidence for a correlation between annual 449 

environmental conditions during the initial year of juvenile-independence and cohort recruitment 450 

probability.   Instead, the data strongly support an association between cohort recruitment 451 

probability and environmental conditions that the mother experienced during the winter the pup 452 

was in utero.  These results, therefore, suggest that the primary driver of the observed cohort 453 

effects were indirect maternal environmental effects rather than direct environmental effects 454 

experienced by the juveniles during their first years of nutritional independence (Maestripieri and 455 

Mateo 2009). 456 

 The most widely recognized maternal effect in mammals is the influence of maternal 457 

nutrition on offspring size and growth (Maestripieri and Mateo 2009).  This topic has been 458 
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investigated in a variety of pinnipeds where females invest a substantial proportion of their body 459 

mass in offspring through lactation (Bowen 2009).  Weddell seal females invest approximately 460 

40% of their post-parturition body mass in their pup during the 30-45 day nursing period, with 461 

pups typically tripling in mass from birth to weaning (Wheatley et al. 2006).  Several 462 

investigations of Weddell seals have demonstrated a strong positive correlation between post-463 

parturition maternal body mass and pup mass at weaning (Wheatley et al. 2006, Proffitt et al. 464 

2007a), similar to studies of other phocid species (Arnbom et al. 1997, Mellish et al. 1999).  In 465 

addition, Proffitt et al. (2007a,b) found correlations between annual variation in oceanographic 466 

and sea ice conditions and maternal post-parturition body mass, as well as annual mean pup 467 

weaning mass.  Correlations between pup weaning mass and environmental variation 468 

experienced by female southern and northern elephant seals have also been reported (Vergani et 469 

al. 2001, LeBoeuf and Crocker 2005), with all these investigators concluding that pup weaning 470 

mass reflected foraging success of parturient females during the previous year.  Given the 471 

evidence of a positive relationship between size of progeny and survival during the initial period 472 

of nutritional independence in pinnipeds (Hall et al. 2001, Beauplet et al. 2005, McMahon and 473 

Burton 2005), as well as ungulates (Albon et al. 1987, Clutton-Brock et al. 1992, Festa-Biachet 474 

et al. 1998), we conclude that annual variation in food resources available to pregnant females 475 

was likely the driver of variation in recruitment probability among cohorts. 476 

Interpretation of environmental and cohort covariates 477 

While we found consistent support from the evaluation of a priori model suites for a relationship 478 

between the probability of recruitment and the Antarctic Dipole in summer and sea-ice extent in 479 

winter for both the maternal provisioning and juvenile independence periods, the comparison of 480 

models across suites, as well as exploratory analyses, indicated overwhelming support in the data 481 
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for the importance of including the winter sea-ice-extent covariate.  In addition, there was almost 482 

no support in the data for relationships between probability of recruitment and environmental 483 

covariates we hypothesized would be linked to primary production (summer indices of sea ice 484 

extent, open water, and first year ice).  These results are consistent with Ainley et al.’s (2006) 485 

hypothesis that the Ross Sea marine ecosystem is strongly structured from the top down.  During 486 

the open water season,  the Ross Sea supports some of the highest densities of top trophic level 487 

species found in marine environments (Smith et al. 2007), including Adélie (Pygoscelis adeliae) 488 

and emperor (Aptenodytes forsteri) penguins, snow petrels (Pagadroma nivea), minke whales 489 

(Balaenoptera acutorostrata), killer whales (Orcinus orca), and Weddell seals.  In addition, the 490 

large Antarctic toothfish (Dissostichus mawsoni) is a major component of the fish assemblage in 491 

the Ross Sea (Eastman 1993) and although population estimates are not available, limited 492 

scientific fishing and the recent development of a commercial fishery in the region indicates their 493 

numbers are substantial (Dunn and Hanchet 2006).  Ainley et al. (2006) suggests that predation 494 

by this unusually abundant predator community depletes the mid-trophic level (silverfish and 495 

crystal krill), resulting in light grazing pressure on phytoplankton that is inferred from satellite-496 

based assessments of chlorophyll concentrations (Arrigo and Thomas 2004).   497 

 Because all of these predators feed heavily on silverfish (Smith et al. 2007), strong 498 

exploitative, and potentially interference competition, between Weddell seals in the Ross Sea and 499 

other members of the apex predator community is likely during the brief summer open-water 500 

period.  Most of these predators, however, cannot occupy areas of consolidated sea ice and hence 501 

move north out of the Ross Sea in the autumn, as sea ice begins to build and consolidate.  Only 502 

emperor penguins, Antarctic toothfish, and Weddell seals remain in the Ross Sea during the 503 

annual periods of extensive sea ice (Smith et al. 2007).  Competition between Weddell seals and 504 
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emperor penguins during the prolonged Antarctic winter is largely minimized by temporal and 505 

geographic differences in habitat use (Burns and Kooyman 2001), and although Antarctic 506 

toothfish may compete with Weddell seals for silverfish, Weddell seals also prey on Antarctic 507 

toothfish (Ainley and Siniff 2009).  Thus, we suggest that sea-ice extent indirectly influences 508 

Weddell seals by moderating the abundance of competing predators in the Ross Sea, and 509 

hypothesize that changes in abundance of predators underlie the strong correlation between 510 

winter sea-ice extent and probability of recruitment of female pups observed in this study.  511 

Because both of the two main mid-trophic species (crystal krill and Antarctic silverfish) that 512 

either indirectly or directly influence prey availability for Weddell seals have important life 513 

history stages linked to sea ice (Vacchi et al. 2004), it is also possible that variability in winter 514 

sea-ice extent influences the abundances of these species, thus contributing to annual variability 515 

of prey resources for Weddell seals.  These linkages between sea ice and trophic dynamics, 516 

combined with demonstrated and predicted changes in the duration and extent of sea ice due to 517 

climate change (Cavalieri and Parkinson 2008, Massom and Stammerjohn 2010), suggest 518 

significant changes in the Ross Sea ecosystem in the future. 519 

 While winter sea-ice extent was the dominant environmental covariate receiving support 520 

from the data in our analyses, the data also provide modest evidence supporting our hypothesis 521 

that the probability of recruitment is positively correlated with the summer Antarctic Dipole 522 

covariate.  This climate mode is specific to the high latitude southern oceans and has only 523 

recently been developed; thus it has seen very limited use in biological studies compared to the 524 

commonly used Southern Oscillation Index for the tropical Pacific (Stenseth et al. 2003).  A 525 

number of investigations of Antarctic and sub-Antarctic marine birds and mammals have 526 

demonstrated correlations between SOI and various demographic measures and indices of body 527 
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condition (Wilson et al. 2001, McMahon and Burton 2005).  Thus, the evidence is strong that 528 

this global climate index influences biotic components of marine systems.  Despite evidence 529 

from previous studies of the influence of SOI on the biology of the Erebus Bay Weddell seals 530 

(Testa et al. 1991, Proffitt et al. 2007a, Rotella et al. 2009), the lack of support for Southern 531 

Oscillation Index in our analyses suggest that the more regionally-specific Antarctic Dipole may 532 

better capture environmental variation in the region of interest in this study (Yuan and Li 2008).  533 

Thus, we encourage other ecologists to incorporate the Antarctic Dipole in analyses to further 534 

assess its utility as an index of environmental variation in the high southern latitudes.  535 

 Although our results clearly indicate that sea-ice extent and the Antarctic Dipole index 536 

reflect aspects of environmental variation that are important to Weddell seals, such indices are 537 

likely to be imperfect measures of the multitude of conditions experienced by organisms that 538 

either directly or indirectly influence the seals’ complex life cycle and the adequacy of available 539 

resources to meet physiological and life-history demands.  We evaluated cohort size as a 540 

potential covariate in exploratory analyses because we hypothesized that the number of seals that 541 

produce pups in a given year may be a more integrative index of annual variation in 542 

environmental conditions. The strong support in the data for this covariate affirms this 543 

hypothesis.  There is considerable evidence from studies of a variety of taxa that annual breeding 544 

probability and fecundity are state-dependent, i.e., are influenced by an individual’s condition 545 

(McNamara and Houston 1996).  We interpret the existence of skip-breeders in the Erebus Bay 546 

Weddell seal population as evidence of this phenotypic plasticity in breeding probability (Testa 547 

and Siniff 1987).  We hypothesize that the mechanism for this plasticity may involve the 548 

approximately 6-8-week period from conception to implantation.  If most of the accumulation of 549 

body reserves necessary to support pregnancy and the subsequent lactation period are accrued 550 
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during the austral summer then the rate of mass gain, as dictated by prey availability, may 551 

provide a signal that dictates whether the blastocyst implants or not.  In years of lower prey 552 

availability a larger proportion of the breeding females may fail to implant, hence prey 553 

availability during the previous summer may dictate the size of the pup cohort born the following 554 

spring.  This interpretation is reinforced by an integrated mark-recapture analysis using 30 years 555 

of data that found a positive correlation among survival and breeding probabilities across years, 556 

and also provides further support for the influence of annual variation in environmental 557 

conditions on numerous aspects of Weddell seal demographic performance (Rotella et al. In 558 

review). 559 

Cohort effects and individual phenotypic variation 560 

In conclusion, we have demonstrated a cohort effect in our Weddell seal study population that 561 

contributes to the growing body of studies in a variety of taxa, occupying diverse ecological 562 

settings, and that have quantified the existence and magnitude of cohort effects in populations 563 

(Lindström 1999).  Similar to many other studies involving long-lived organisms, we argue that 564 

the mechanism responsible for the measured cohort effect in this Weddell seal population is a 565 

result of environmental variation influencing maternal investment in progeny, which in turn 566 

contributes to an individual’s phenotype and ultimate fitness.  Thus, cohort effects introduce 567 

individual phenotypic variation into this, as well as other populations.   568 

The consequences of cohort effects on the dynamics of a population, however, are not 569 

easily understood, because there are a number of other processes that also contribute to 570 

individual phenotypic variation.  Clearly in all sexually reproducing organisms both maternal 571 

and paternal genetic effects contribute to individual variation.  In organisms with extended 572 

parental care, there is also the potential for maternal (and in some species paternal) behavioral 573 
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effects (Maestripieri and Mateo 2009).  In this respect, the Weddell seal is relatively unique 574 

among phocids, because of its long period of maternal care, which can last 30-45 days (Wheatley 575 

et al. 2006), with extensive mother-pup interactions both on the ice surface and in the water 576 

(Testa et al. 1989, Sato et al. 2003).  All three types of maternal effects (genetic, environmental, 577 

and behavioral) represent latent or static traits that influence an individual’s phenotype and 578 

contribute to heterogeneity among individuals within a population.  However, additional 579 

variability in an individual’s phenotype is introduced by dynamic traits that change over an 580 

individual’s life, such as age, reproductive experience, social status, and body mass (Bergeron et 581 

al. 2010).  Some of these processes that contribute to individual phenotypic variation are 582 

aggregated across groups of individuals, such as the cohort effect demonstrated in this study, and 583 

others, such as genetic effects, introduce random phenotypic variation among individuals 584 

(Wilson and Nussey 2010).   585 

 The relative contribution of each of these sources of individual phenotypic variation, 586 

interacting with the life history characteristics of the organism, dictate the degree to which 587 

individual variation stabilizes or destabilizes the dynamics of a population (Lindström and 588 

Kokko 2002, Beckerman 2003).  Advances in our understanding of these complex interactions in 589 

long-lived organisms will require long-term longitudinal studies of tractable species where 590 

individuals can be studied from birth to death and aspects of population dynamics, as well as 591 

individual demographic performance and attributes, can be carefully quantified (Clutton-Brock 592 

and Sheldon 2010).  An ongoing challenge for these research programs will be quantifying 593 

individual phenotypic variation, identifying the relative contribution of the numerous underlying 594 

mechanisms leading to this variation, and evaluating the consequences of this variation on 595 

individual fitness and population dynamics.   596 

 597 
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Table 1.  The number of Weddell seal pups born and tagged at traditional colony sites within 

Erebus Bay, Antarctica, over 20 consecutive years, and the proportion of the female pups in each 

cohort that returned to the colonies and recruited (produced a pup) within 10 years of birth.  In 

all years except 1981, all pups in each cohort were tagged at birth. (Ignoring the anomalous year, 

1981, the mean values for the remaining years are: 419 animals, 209 females, and 0.20 

proportion of females recruited.) 

 
 

  
No. 

 
No. 

Propor. 
females 

Cohort animals females recruited 
1980 422 207 0.106 
1981   202*   108* 0.157 
1982 385 201 0.134 
1983 391 213 0.192 
1984 390 203 0.128 
1985 410 201 0.174 
1986 413 196 0.214 
1987 410 206 0.165 
1988 423 201 0.149 
1989 384 206 0.194 
1990 440 208 0.216 
1991 424 210 0.214 
1992 345 165 0.182 
1993 450 228 0.171 
1994 378 182 0.165 
1995 385 193 0.176 
1996 379 203 0.241 
1997 546 275 0.280 
1998 490 237 0.333 
1999 499 227 0.361 

 
*Only ~50% pups tagged due to early ice breakout 
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Table 2.  Model selection results comparing a priori models used to examine the effects of 

environmental covariates on variation in probability of recruitment within 10 years of birth for 

20 cohorts of female Weddell seal pups born from 1980 through 1999 in Erebus Bay, Antarctica.  

A priori models were partitioned into four suites, representing summer and winter conditions 

experienced by the pups’ mothers prior to parturition (Maternal) and summer and winter 

conditions experienced by pups during their first year of nutritional independence following 

weaning (Juvenile).  Environmental covariates are Southern Oscillation Index (SOI), Antarctic 

Dipole (ADP), Sea-Ice Extent (SIE), Open Water Index (OWI), and First-Year Ice Index (FYI), 

with subscripts deliniating summer (s) and winter seasons (s). 

 
  Within suite 
Model structure K ΔQAICc wic cum. wt 
Summer - Maternal     
ADPs+OWIs 4 0.00 0.44 0.44 
ADPs + OWIs +SIEs 5 1.88 0.17 0.61 
FYIs+ SIEs 4 2.89 0.10 0.71 
FYIs 3 4.31 0.05 0.76 
ADPs + FYIs + SIEs 5 4.59 0.04 0.81 
FYIs + SIEs +SOIs 5 4.64 0.04 0.85 
Intercept-only 2 17.01 0.00  
Summer - Juvenile     
ADPs + OWIs 4 0.00 0.26 0.26 
ADPs 3 0.18 0.24 0.51 
ADPs + SIEs 4 0.76 0.18 0.69 
ADPs + OWIs + SIEs 5 1.82 0.11 0.79 
ADPs + FYIs + SIEs 5 1.87 0.10 0.90 
ADPs + FYIs 4 1.91 0.10 1.00 
Intercept-only 2 14.77 0.00  
Winter – Maternal     
SIEw 3 0.00 0.27 0.27 
SIEw +ADPw 4 0.60 0.20 0.48 
SIEw +SOIw 4 0.90 0.17 0.65 
SIEw +OWIw 4 0.98 0.17 0.82 
SIEw + ADPw + OWIw 5 2.27 0.09 0.91 
SIEw + SOIw + OWIw 5 2.42 0.08 0.99 
Intercept-only 2 20.42 0.00  
Winter - Juvenile     
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SIEw + SOIw + OWIw 5 0.00 0.34 0.34 
SIEw + SOIw 4 0.52 0.26 0.61 
SIEw 3 1.38 0.17 0.78 
SIEw + OWIw 4 2.44 0.10 0.88 
SIEw + ADPw 4 2.91 0.08 0.96 
SIEw + OWIw + ADPw 5 4.36 0.04 1.00 
Intercept-only 2 16.57 0.00  
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Table 3.  Model selection results of among-suite comparisons that contrasted the most-supported 

models from each of four a priori model suites used to examine the effects of environmental 

covariates on variation in probability of recruitment within 10 years of birth of 20 cohorts of 

female Weddell seal pups born from 1980 through 1999 in Erebus Bay, Antarctica (see Table 2).  

A priori models were partitioned into four suites representing summer and winter conditions 

experienced by the pups’ mothers prior to parturition (Matsand Matw) and summer and winter 

conditions experienced by pups during their first year of nutritional independence following 

weaning (Juvsand Juvw). Environmental covariates are Southern Oscillation Index (SOI), 

Antarctic Dipole (ADP), Sea-Ice Extent (SIE), Open Water Index (OWI), and First-Year Ice 

Index (FYI), with subscripts deliniating summer (s) and winter seasons (w). 

 
Model structure K QAICc ΔQAICc wic cum. wic 
Matw-SIEw 3 95.61 0.00 0.21 0.21 
Matw-SIEw + ADPw 4 96.21 0.60 0.16 0.37 
Matw-SIEw + SOIw 4 96.51 0.90 0.14 0.50 
Matw-SIEw + OWIw 4 96.59 0.98 0.13 0.64 
Matw-SIEw + ADPw +OWIw 5 97.88 2.27 0.07 0.70 
Matw-SIEw + SOIw + OWIw 5 98.03 2.42 0.06 0.77 
Mats-ADPs + OWIs 4 99.03 3.41 0.04 0.81 
Juvw-SIEw + SOIw + OWIw 5 99.47 3.85 0.03 0.84 
Juvw-SIEw _ SOIw 4 99.98 4.37 0.02 0.86 
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Figure 1.  The environmental covariate conditions in each year from 1979 through 1999 that 

were considered in a priori models of the probability of recruitment of female Weddell seals 

for 20 cohorts (1980-1999). Black lines depict winter conditions and gray lines depict 

summer conditions for each covariate.  All covariate values are expressed as standardized 

values (mean = 0, sd = 1) with standardization performed separately for each covariate and 

season. Environmental covariates are Southern Oscillation Index (SOI), Antarctic Dipole 

(ADP), Sea-Ice Extent (SIE), Open Water Index (OWI), and First-Year Ice Index (FYI). 
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Figure 2.  Correlations between the observed proportion of female Weddell seal pups (+ 1 

SE, with SE adjusted for overdispersion) from 20 cohorts (1980-1999) that recruited into the 

population within 10 years of birth versus the most important environmental covariate in 

each a priori model suite.  Environmental covariates during the period of maternal pregnancy 

(Maternal) and the initial year of juvenile independence (Juvenile) were evaluated. 

Covariates were standardized, with the Antarctic Dipole climate mode during the summer 

(ADPs) and winter sea-ice extent in the Ross Sea sector (SIEw) most strongly correlated with 

recruitment probability (see Table 2).   
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Figure 3.  Proportion of female pups recruiting within 10 years of being born presented as (a) 

model-averaged predictions across all a priori models as functions of cohort size and sea-ice 

extent during the winter (SIEw) before the pup was born (the upper solid line is for the largest 

cohort size observed [n = 546 pups], and the lower solid line is for the smallest cohort size 

observed [n = 345 pups]; dotted lines represent 95% confidence limits for predictions), and (b) 

annual proportions based on observed data (filled circles) and predictions from the best-

supported a priori model (stars), best-supported exploratory model (open circles), and the null 

model (open squares).  
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