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Abstract

Model simulated soil moisture fields are often biased due to errors in input parameters
and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved
appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to
reduce model bias (at locations near the surface) through data assimilation techniques. While
assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced
by the model governing equation because water is removed from or added to the soil by the
assimilation algorithm. In addition, studies have shown that assimilation of surface observations
can adversely impact soil moisture estimates in the lower soil layers due to imperfect model
physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman
filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual
value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to
improve the mean of simulated soil moisture fields by the Noah land surface model.
Assimilation results using the conventional and the mass conservation updating scheme in the
Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the
bias in the shallow root zone, the mass conservation scheme provided better estimates in the
deeper profile. The mass conservation scheme also yielded physically consistent estimates of
fluxes and maintained the water budget. Impacts of model physics on the assimilation results are

discussed.



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

1. Introduction

Soil moisture plays an important role in the energy and water exchange between the
atmosphere and the land surface, as well as in agricultural applications and water resource
management. Model simulated soil moisture fields are often biased due to uncertainties in model
input parameters and model physics. The existence of model bias can be seen in several model
inter-comparison studies which showed that model estimated soil moisture is significantly
different from each other, even when identical forcing data are used (Wood et al., 1998; Mitchell
et al., 2004). Recognizing the significant disparity between the models, Mitchell et al. (2004)
concluded that there was a ‘stringent need for good absolute states of soil moisture.” Reducing
the bias in model estimated soil moisture fields has been shown to have a positive impact on
other physical processes. Dirmeyer (2000) demonstrated that the rainfall patterns and the near
surface air temperature can be improved by using a mean soil moisture data set derived from a

global soil moisture data bank.

Satellite derived soil moisture retrievals represent the spatially averaged soil moisture in a
footprint area (Njoku et al., 2003). If retrieved appropriately, they can be used to improve the
spatial mean of the modeled soil moisture field as well as the temporal mean through continuous
assimilations in time. While interests in assimilating satellite retrieved soil moisture estimates
began more than a decade ago (Houser et al, 1998; Walker et al., 2001; Margulis et al., 2002),
recent studies have focused on using the anomaly information extracted from the sensor data by

removing the mean of the observations priori to assimilation to improve model’s anomaly
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detection (Reichle et al., 2007; Crow and Zhan, 2007; Bolten et al., 2008; Draper et al., 2009).
While assimilation of anomalies does not directly address if models are unbiased which is

required for optimal estimators (Kalnay, 2003), it preserves the water budget of forecasts.

An alternative to the offline bias-removal technique, as those used in the above studies, is
to estimate the forecast bias online by adding a bias state in the filtering process (Keppenne et al.
2005; De Lannoy et al. 2007a and 2007b). De Lannoy et al. (2007a and 2007b) compared the
performance of several online bias correction techniques with the standard EnKF using the CLM
land model and profile soil moisture observations. Their results showed that the online bias
correction techniques, on average, yielded slightly more reductions in root mean square error.
One major obstacle for applying this approach in assimilating satellite retrieved soil moisture is
that observations are only available at the surface which makes it very challenge to estimate the
bias state in the deeper profile. When bias is not correctly estimated, assimilation may lead to
unbalanced water budget as the assimilation may change the mean of simulated soil moisture
fields. Lack of water budget closure is a weak point for many data assimilation systems as
pointed out by Pan and Wood (2006), perhaps more so for land surface models whose major goal
is to partition the total water budget, precipitation, into different physical processes such as

evapo-transpiration (ET) and runoff.

When sensor data are less biased (relative to the truth) than model estimates, they can be
used to reduce uncertainty in model estimates. Recognizing this potential , studies have been
conducted to assimilate actual values of satellite data without using any bias correction

techniques (Houser et al., 1998; Walker et al., 2001; Margulis et al., 2002; Ni-Meister et al.,
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2006). While the bias reduction at the surface was achieved in these studies, improvements in
the deeper soil layers did not always occur. Houser et al. (1998) and Walker et al. (2001)
showed that assimilation of surface observations actually adversely impacted the soil moisture
state in the lower soil layers. The representation of the hydrological condition in the lower soil
zone is often a weak point in land surface models due to lack of knowledge and observations. If
model physics is flawed, it may adversely impact the outcome of data assimilation, especially for
an EnKF which relies on model physics to calculate the Kalman gain matrix dynamically

(Keppenne et al., 2000).

The objective of this study is to assimilate the actual value of AMSR-E soil moisture
retrievals into the Noah land surface model to improve the mean of simulated soil moisture fields
using an EnKF. To overcome the potential bias issue associated with both the model and the
AMSR-E retrieval, a mass conservation updating scheme was developed to allow the upper soil
layers updated using the conventional EnKF while the lower layers are updated with an equation
that conserves mass of the forecast. This study differs from those recent studies on AMSR-E
data assimilation (Reichle et al., 2007; Crow and Zhan, 2007; Bolten et al., 2008; Draper et al.,
2009) in that AMSR-E retrievals were not pre-processed priori to assimilation while, in the other
studies, the mean of retrievals were removed through matching the cumulative distribution
functions (Reichle and Koster, 2004; Drusch et al., 2005). By assimilating the actual value of
AMSR-E soil moisture, the objective of this study is to reduce forecast bias and estimation
errors, rather than to improve anomaly detections (e.g., Reichle et al., 2007). In section 2, the
experiment site, data, and the Noah model are briefly described. Details of the mass

conservation assimilation method along with the conventional EnKF are described in section 3.
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Assimilation results including all land surface fluxes and water budgets are presented in section
4. Impacts of model physics on model simulation and assimilation results and the limitations of

the mass conservation scheme are discussed in section 5.

2. Experiment site, data and model

2.1 Study area and ground validation data

The Little Washita watershed, located in southwestern Oklahoma, was chosen as the
study site primarily for its abundance of in situ soil moisture measurements. With an area of 611
square kilometers, the watershed is one of the two Micronet sites maintained by the U.S.D.A.
Agriculture Research Service (ARS) for hydrological and meteorological observations

(http://ars.mesonet.org). Figure 1 shows the watershed boundary and the locations of the ARS

stations. At each station, hourly soil moisture and temperature measurements are taken at 5, 25
and 45 cm depths below the surface, in addition to surface measurements such as precipitation.
Figure 1 also shows the only Soil Climate Analysis Network (SCAN) station located within the

watershed (Schaefer et al., 2007; http://www.wcc.nrcs.usda.gov/scan/). The SCAN site

complements the ARS stations in that it provides soil moisture measurements at the 100 cm
depth which were used to verify simulated soil moisture in the deeper soil profile. Daily stream
flow data recorded at the watershed by USGS (see Figure 1 for the location of stream site
07327550) were used for validating model predicted runoff. Latent heat measurements from the

Southern Great Plain (SGP) main station (http://public.ornl.gov/ameriflux) were used for

validating the simulated latent heat. Although SGP, which is approximately 200 km north of
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Little Washita, is not located near the watershed, it is the nearest site where flux data are

publically available.

2.2 AMSR-E retrievals

The AMSR-E soil moisture product produced by the NOAA'’s National Environmental
Satellite, Data and Information Service (NESDIS) was used in this study. The soil moisture
retrievals, based on the X-band brightness temperature measurements, were obtained through the
inversion of the Single Channel Retrieval algorithm with the MODIS vegetation water content as
an auxiliary variable (Zhan et al., 2008; Jackson, 1993). Zhan et al. (2008) showed that this
version of AMSR-E generally has larger dynamic ranges than the official AMSR-E product
(Njoku et al., 2003) even though both products show strong temporal correlations (Crow and
Zhan, 2007). The spatial resolution of AMSR-E retrievals is about 25 by 25 km after re-
sampling from its original sensor data (Njoku et al., 2003). The experiment site contains about 5
to 6 AMSR-E pixels at any observation time. On average, there are 1~2 retrievals per day at any
given location and both ascending and descending data were assimilated at the retrieval time,

except in areas of dense vegetation or frozen grounds.

The sensing depth of the AMSR instrument is believed to be about 1-2 cm from the
surface for the frequency range of AMSR-E (Njoku et al., 2003). This depth is shallower than
the ARS surface measurement (5 cm) and the center of Noah’s surface layer. However, without
reliable methods to extrapolate the AMSR-E estimates, it was assumed that the AMSR-E soil

moisture retrieval is representative of soil moisture in the top 5 cm soil and therefore was
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assimilated into Noah’s top layer directly. This approximation could bring some bias into the

retrievals used for data assimilation.
2.3 The Noah land surface model, forcing and input parameters

The Noah land surface model (version 2.7.1) is used operationally at the NOAA'’s
National Centers for Environmental Prediction for coupled weather and climate modeling. The
soil moisture simulation in Noah is based on the one-dimensional Richards equation (Chen et al.,

1996; Ek et al., 2003):

ﬁeé?t) :g(D(Q)aH(z,t)
Z 0z

+K(@)+P-R-E (1)

where 0 is the soil moisture content; K is the hydraulic conductivity; D is the water diffusivity,
which is defined as Koy/06, where v is the matric potential; P is the precipitation; R is the
surface runoff; E is the ET; z is the vertical dimension with upward as the positive direction; t is

the time.

Following the operational version of Noah (Ek et al., 2003), four soil layers with
thicknesses of 10, 30, 60 and 100 cm were used in this experiment. The top two layers, a thin
surface layer and the shallow root zone, generally show stronger and faster interactions with the
atmospheric forcing. The third and the fourth layers represent the deeper root zone and water

storage, respectively.
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Equation (1) cannot be solved without a boundary condition at the 200 cm lower

boundary:

q |z:2000m: -K (2)

where q is the subsurface runoff or base flow. Equation (2) is also referred to as the free
drainage condition, meaning gravity is the only force pushing water downward (so the negative
sign) and no upward diffusive movement is allowed across the lower boundary (Jury et al.,
1991). The use of free drainage is very common in land surface models because it does not
require any knowledge about the soil moisture state or flux in the subsurface which is impossible

to obtain for large-scale modeling.
Noah uses the Campbell (1974) model to describe the nonlinear relationship between the
conductivity and soil moisture:

K = Ks(§)2b+3 (3)

where K is the saturated conductivity; s is the saturated water content; b is a fitting parameter.
The U.S. general soil texture classes (STATSGO) and a look-up table, based on a unified soil
hydraulic parameter set (Mitchell et al., 2004), were used to provide soil hydraulic parameters
needed for solving equation (1). Hydraulic conductivity usually exhibits the property of a log-
normal distribution and is positive skewed (Cosby et al., 1984). As a result, the subsurface
runoff calculated using equation (2) is non-Gaussian which can lead to unrealistic ensemble
mean values in an EnKF when larger ensemble spreads occurred in the lowest soil layer (Ryu et

al., 2009; De Lannoy et al., 2007a).
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Model simulations were carried out in the NASA’s Land Information System (LIS,
version 5.0) which is a software interface between various land surface models and forcing/static
parameter fields (Kumar et al., 2006). LIS is also equipped with a one-dimensional EnKF
(Kumar et al., 2008) which will be described in the next section. The Noah model was
integrated on a 0.01 degree grid so that spatial variability was well represented in model
estimated soil moisture and flux at the watershed. To avoid the model spin up issue (Rodell et
al., 2005; Cosgrove et al., 2003a), the initial soil moisture conditions used were extracted from
the output of Global Land Data Assimilation (GLDAS)/Noah model which have been

continuously integrated since 1979 (Rodell et al., 2004).

Model simulations were driven by forcing data (including precipitation, radiation, wind,
and temperature fields) from the NOAA/NCEP Global Data Assimilation System (GDAS,
Derber et al., 1991; Rodell et al., 2004). Basin-averaged monthly GDAS and ARS precipitation
for the simulation period (2006-2007) are compared in Figure 2 and their annual precipitation
amounts are listed in Table 1. Despite some underestimated and overestimated events in the

GDAS forcing data, both data sets showed that 2006 is a drier year than 2007.

3. Data assimilation methods

In this section, the conventional EnKF and the mass conservation EnKF scheme are
described. EnKF is a widely used technique for assimilating observations into numerical models
to improve model estimates (e.g. Evensen and van Leeuwen, 1996; Crow and Wood, 2003;
Keppenne et al., 2000; Pan and Wood, 2006; Reichle et al. 2007). EnKF is especially suited for

a non-linear system since the error covariance, used for passing observation information from

10
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data-rich zones to data-poor zones, is calculated through an ensemble of model states (Evensen
and van Leeuwen, 1996). An EnKF usually consists of two steps: the forecast step where an
ensemble of model forecasts are obtained and propagated forward in time with perturbations
added for forcing and state variables, and the update step where an analysis is obtained using an

update equation when observations become available. The model forecast can be expressed as:

X! =M(X{,,F,U) (4)
where X is the vector containing the four state variables of soil moisture of Noah; M represents
the Noah model; F represents all the forcing fields such as precipitation and radiation; U
represents static input parameters such as soil hydraulic parameters; and t indicates the time step.
The superscript () indicates results for the forecast and (%) for the analysis. Although not
explicitly noted, equation (4) and the following update equations are valid for each ensemble

member. The conventional EnKF updating scheme for obtaining the analysis can be written as:
Xi = th +K(v, - Hth) (5)

Where K is the Kalman gain matrix computed from the ensemble statistics of the model
simulated soil moisture fields (Keppenne, 2000); v is the observation (AMSR-E retrievals in this
study); H is the observation operator that relates the observation to the model state and is [1, 0, 0,
0] in this study because the observation is the same type as the model state and is only available
at the surface layer. The AMSR-E retrievals were used without downscaling, i.e., all model grid
points within the footprint of the satellite were given the same retrieved soil moisture value,

which is equivalent to a priori partition of the large scale retrieval to the finer scale with the same

11
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value assigned to each grid cell. This approach allows for direct and efficient assimilation of
satellite retrievals using the current infrastructure of LIS. Itis justified for the purpose of this
study which is to improve the spatial mean of simulated soil moisture fields and will not be an
issue for larger scale simulations where model resolutions can be made to match that of AMSR-
E. Since observations are only available at the surface, the innovation, (v-HX"), is a scalar. The
K matrix propagates the innovation downwards to obtain the increment, K(v-HX"), for all lower

layers.

When both the model and the observation are unbiased, the mean of the innovation (and
increments) is zero. When either or both of them are biased, the analysis (X?) obtained through
equation (5) may not possess the same mean as the forecast (X") which is enforced by the mass
balance Richards equation. The CDF matching technique used by previous studies (e.g., Reichle
et al. 2007) renders the mean of the retrievals equal to that of the model and therefore preserves
the mean of the forecast. The tradeoff of this scaling approach is that it discards the mean value

of retrievals which may be useful in improving the mean of model estimates.

In order to assimilate the actual value of retrievals which may not have the same mean as
model estimates, the loss of water mass (relative to the forecast) needs to be handled in the
updating scheme. Pan and Wood (2006) used a two-step constrained Kalman filter to
redistribute the mass imbalance caused by assimilating multiple types of observations (ET,
stream flow and soil moisture). When only the surface soil moisture observation is available for

assimilation, the redistribution of mass imbalance can be carried out within the four soil layers.

12
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Specifically, while the top two layers are updated using equation (5), a different updating scheme

can be used for the lower two layers:

Yo=Y~ (ACd,)/(d; +d,) ©)

k=1
where Y contains the soil moisture state of the lower two layers; d represents the thickness of
each soil layer; subscripts (k), (3), and (5) indicate the soil layer; AC represents the increment,
i.e., water (in soil moisture content) lost or gained, for the top two layers when they are updated
using equation (5). Equation (6) redistributes the mass imbalance (amount of water) incurred in
updating the top two layers to the lower layers and therefore, guarantees that the total water
storage remains the same for each ensemble member after the ensemble update. The division of
layer thicknesses in equation (6) is to convert the amount of water to volumetric soil moisture
content to match the unit of the state variable. Equation (6) is performed each time when the
upper two layers are updated so that the column water of the analysis remains the same as the
forecast (but with a different soil moisture profile). By maintaining the water storage within a
soil column, the mass conservation scheme also preserves the long-term water budget of the
control run (without any data assimilation) since ET and runoff are calculated based on the
column water storage and perturbations added to the forcing and state variables are unbiased.
Because of the enforcement of mass conservation of the control run, this scheme (equation (5)
for top two layers and (6) for the two lower layers) is referred to as the mass conservation
updating scheme. Note that no assumption was made about the observation and the model, both

of which can be biased, in deriving equation (6).
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In addition to preserving mass, equation (6) avoids updating the lower layers with the
conventional EnKF which has been shown to yield undesired increments due to inappropriate
model physics (Houser et al., 1998; Walker et al., 2001). Preserving water mass does not
necessarily lead to improved soil moisture estimates in the lower layers, but equation (6) keeps
the increments small due to the larger thickness of lower two layers relative to the upper two

layers, and thus minimizes any potential adverse impacts.

The ensemble of model states was generated by adding zero-mean perturbations (errors)
to the forcing fields and state variables to represent random errors in them. Following Reichle et
al. (2007), precipitation, long and short wave radiation fields which have the largest impact on
soil moisture were perturbed using the same parameters given by Reichle et al. (2007) as the
same forcing data were used in both studies. Perturbations for precipitation and shortwave
radiation were assumed to be multiplicative and additive for longwave radiation. The

perturbation frequency for these forcing fields was 5.5 hours.

Perturbations were also added to soil moisture variables to account for errors in the input
parameters such as soil hydraulic conductivity and model physics using parameters listed in
Table 2. Smaller perturbations (in volumetric soil moisture content) were given to the lower two
layers because of their larger thickness and the fact that perturbations added in the top two layers
can travel downward through the dynamics of the Richards equation. In addition, the issue with
the calculation of ensemble mean base flow due to the skewness of the hydraulic conductivity
function (De Lannoy et al., 2007a; Ryu et al., 2009) also requires smaller perturbations in the

lower layers to ensure physically consistent ensemble runoff. All soil moisture variables were
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assumed to have additive zero-mean Gaussian errors with vertical cross-correlations among four
layers given in Table 2. The perturbation frequency for soil moisture was 24 hours. Noah Soil
moisture moves very slowly in drier conditions, which is why the longer perturbation frequency
was used to avoid ensemble bias. Despite all zero-mean perturbations, ensemble bias could still
exist in the ensemble soil moisture field due to the nonlinear relationship among various
processes and the strong influence of model physics. Parameters in Table 2 were chosen because
they yielded unbiased ensemble (without data assimilation) soil moisture fields relative to a
single member control run. The 3% AMSR-E error (Njoku et al., 2003) was used in the filter to
account for errors in the observation. The same filter parameters were used for both updating

schemes.

4. Results

Three simulation runs were performed at the Little Washita watershed for the 2006 to
2007 period. The control run (Control), which represents the baseline performance of the Noah
model, was driven by the GDAS forcing and all the parameter fields in their unperturbed states.
The other two simulations featured assimilations of AMSR-E soil moisture retrievals using the

conventional (DA) and mass conservation (DA MassCon) updating schemes.

Given the objective of this study which is to improve the mean of model estimates, basin
averaged daily bias and root mean square errors (rmse) were used to evaluate the assimilation
results. All statistics were calculated with respect to the ground validation data described in

section 2.
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4.1 Soil moisture

Figure 3 shows the comparison of soil moisture in the four Noah soil layers from the
three simulations. The upper left panel also includes basin averaged AMSR-E soil moisture
retrievals and ARS measurements at the 5 cm depth. Overall, the AMSR-E soil moisture
compares well with ARS by capturing the seasonal change and the mean value of in situ
measurements. The daily variation of AMSR-E is small due to the twice per day (maximum)
retrieval interval. Control also captured the wetting and drying cycles of the surface soil
moisture, exhibiting strong correlation with the ARS measurements. However, it consistently
overestimated the surface soil moisture throughout the simulation period, even in the period from
December 2006 to June 2007 when GDAS underestimated the precipitation (see Figure 2). The
same overestimation was also observed (not shown) when the model was driven by the North
America Land Data Assimilation System (NLDAS, Cosgrove et al., 2003b) forcing data which
yielded nearly unbiased monthly precipitation estimates against ARS measurements (not shown).
These results indicate that the bias at the surface was not initiated by errors in the precipitation
forcing data. Figure 3 also shows that the overestimation by Noah was more severe in winter
periods when ET and precipitation were low, which limits the likelihood that incorrect runoff
and ET algorithms may have left excessive water at the surface. Flux results that will be
discussed in section 4.2 also do not show any negative bias. Li and Rodell (2011) compared
NLDAS/Noah with SCAN soil moisture for the continental US and found the similar
overestimation in the western US. The likely cause for this persistent overestimation in such a
large area may be the static parameters such as soil hydraulic conductivity. The vertical drainage

of soil moisture in Noah is controlled by the nonlinear function of soil hydraulic conductivity as
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shown in equations (1) and (3). The parameters in equation (3) were obtained through linear
regressions (Cosby et al., 1984) which may not capture all the nonlinear behaviors of hydraulic
conductivity. If the hydraulic conductivity value is lower than expected in the drier range of soil
moisture, it would explain why Noah failed to drain soil moisture quickly in Little Washita and

the western US (Li and Rodell, 2011).

DA and DA MassCon both greatly reduced the overestimation of Control in the surface
layer. The degree of correction is not even, especially in very wet conditions where the
assimilation failed to nudge the soil moisture towards the AMSR-E retrievals. This is because
the perturbation parameters for the filter had to be tuned to work with the driest condition in
order to avoid ensemble bias. If overly perturbed to fit the need of wetter conditions, ensemble
bias would appear in drier periods because some of the ensemble members would hit the lower

bound of soil moisture (Reichle and Koster, 2002).

Figure 3 also shows that both updating schemes decreased soil moisture in layer 2.
However, for layers 3 and 4, the two schemes acted differently. DA lowered the soil moisture in
layers 3 and 4 as it did with the top two layers. DA MassCon increased the soil moisture in the
lower layers because it captured the amount of water removed from the top two layers in the
lower layers. As shown in Figure 4 which compares the simulations with in-situ soil moisture
measurements at various measuring depths, DA and DA MassCon both improved over Control at
25 and 45 cm by lowering the soil moisture accordingly. But only DA MassCon improved over
Control at 100 cm while DA degraded the estimate by further lowering the soil moisture.

Statistics in Table 3 show that DA performed slightly better than DA MassCon in the upper three
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observation levels. But only DA MassCon achieved improvements in all four levels. Table 3
also lists the statistics for the AMSR-E retrievals which are nearly unbiased relative to in situ

measurements, although the mass conservation scheme does not require retrievals to be unbiased.

The improvement made by DA MassCon at 100 cm may be debatable due to the co-
existence of the overestimation in the upper layers and the underestimation of soil moisture in
the lower layers, which is found to be true for the Noah model in the western US (Li and Rodell,
2011). Houser et al. (1998) also showed the similar model behavior with a different model.
When the overestimation and underestimation do not occur concurrently, the mass conservation
algorithm may not lead to improved soil moisture estimates in the lower soil profile, but it does
not cause significant changes (relative to Control) to the lower soil moisture states, as seen in

Figures 3, because of the smaller increments given by equation (6).

The conventional updating scheme generated increments with the same sign for all
layers that significantly decreased soil moisture in the lower profile, a result not supported by in
situ measurements at 100 cm. Ni-Meister et al. (2006) and Houser et al. (1998) also showed that
the sign of increments for the lower layers was the same as the surface layer. At least for Noah,
the fact all increments have the same sign is due to the free drainage condition which has to
adjust the soil moisture in the lower layers according to changes in the upper layers in order to
maintain the downward flow direction (see equation (2)). Negatively cross-correlated soil
moisture perturbations between the upper layers and lower layers were also tested for the
conventional EnKF (not shown). They did not change the sign of the increments but slightly

lowered their magnitudes, with the soil moisture estimates in the lower two layers slightly wetter
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than those shown in Figures 3 and 4 but still much worse (drier) than Control when compared to
in situ measurements. Cross-correlations of perturbations only partially influence the outcome of
the increments which also strongly depend on model physics. As model physics largely
determines the mean behavior of soil moisture, it is difficult for the zero-mean perturbations
alone to overcome the large difference between DA and Control seen in Figure 4 (lower panel).
Significantly increasing perturbations for soil moisture is not permitted because it will lead to

ensemble bias in soil moisture and base flow.

Similar to surface overestimation, the underestimation by Control in the lower profile
cannot be explained by any precipitation forcing errors. In fact, the underestimation is caused by
the free drainage condition which drains excessive water away and prevents moisture moving up
from below the land surface. The incorrectness of the free drainage condition is why the surface
overestimation did not occur at 100 cm. The underestimation has also been observed with other
models which employ the same boundary condition (Zeng and Decker, 2009; Houser et al.,
1998). Li and Rodell (2011) further found the underestimation is true for NLDAS/Noah in the
entire continental US when Noah was compared with SCAN soil moisture. This deficiency in
model physics is why the conventional EnKF cannot obtain increments favorable for
improvements in the lower profile. Presumably, the underestimation of soil moisture in the
lower soil moisture profile could also be balanced out with base flow which would require either
deeper soil moisture measurements or observations of base flow to create the innovation. With
only the surface soil moisture observation available, the mass conservation scheme elects to

improve the soil moisture fields first and let the mass conservation to constrain flux estimates.
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Figure 5 features the contour plot of the annual mean surface soil moisture at the
watershed. Control revealed that 2006 is drier than 2007, confirming the earlier analysis
regarding GDAS precipitation (Figure 2 and Table 1). NOAA AMSR-E retrievals also captured
the difference in annual precipitation, as DA and DA MassCon all show the wetter soil moisture
condition in 2007. DA MassCon yielded slightly higher soil moisture estimates than DA
because the former has a wetter lower soil profile (see Figure 3) which pushed the surface soil
moisture slightly higher via the capillary force. This is why DA achieved slightly better statistics
than DA MassCon for the upper three observation levels shown in Table3. However, for the root
zone soil moisture (consisting of the upper three Noah soil layers), Figure 6 shows that while DA
MassCon and Control yielded the wetter soil moisture condition in 2007, DA struggled to show
this variation in annual precipitation, further confirming the failure of DA in updating the lower

layers.

Figures 5 and 6 also show that the spatial variability of Control was generally preserved
by the assimilation schemes even though the AMSR-E retrievals were assimilated directly
without any spatial downscaling. Note that spatial variability of soil moisture may be lost
slightly at the assimilation time, but it recovered quickly afterwards because of the high

resolution soil and vegetation parameters.

4.2 Flux

One of the important roles of any land surface model is to simulate water and energy
fluxes based on soil moisture fields. Improvements on soil moisture do not necessarily lead to

improvements in the calculation of flux because of imperfect model physics and complex
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relationship among various processes. Therefore, it is important to examine all components of

model estimates to prevent unexpected flux estimates.

Figure 7 shows the simulated latent heat fluxes in comparison with SGP observations.
The differences among the three simulations are relatively small, with total ET for the two-year
period estimated at 1362, 1013 and 1147 mm, for Control, DA and DA MassCon, respectively.
Part of the reason is that the ET algorithm in Noah is more sensitive to the vegetation greenness
fraction than soil moisture (Chen et al., 1996). In addition, the watershed is mostly covered by
vegetations with shallow root zone depths such as shrubs and grasses which do not strongly
depend on the soil moisture state in lower profile where DA differs from DA MassCon the most.
Nevertheless, Table 3 shows that Control yielded the largest bias (positive) in latent heat
estimation. DA reduced the bias but DA MassCon produced the smallest bias. Although the
improvement by DA MassCon and DA should not be overstated given that the SGP is not
located near the watershed, the impact of the different soil moisture fields on the latent heat

estimation is demonstrated.

Noah employs the Simple Water Balance (SWB) model by Schaake et al. (1996) to
partition the precipitation into surface runoff and infiltration. Soil moisture deficits in the entire
profile and precipitation intensity are accounted for in the implementation of SWB in Noah (Ek
et al., 2003). Figure 8 (upper panel) shows that the three simulations yielded very similar
surface runoff. DA, which produced the driest soil moisture profile, as expected, yielded the

lowest surface runoff. The insensitivity of surface runoff to soil moisture is probably due to the
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fact that there were no prolonged precipitation periods and that the soil in the basin remained

relatively dry which left enough room for infiltration.

On the other hand, the assimilation of AMSR-E has a much larger impact on base flow as
shown in Figure 8 (lower panel). As mentioned early, Noah uses equation (2) to calculate base
flow which has a monotonic relationship with the soil moisture in layer 4. As a result, DA
yielded the lowest base flow while DA MassCon generated the largest base flow. Compared to
Control, DA MassCon significantly increased base flow in winter months when more corrections
were made to the soil moisture fields. Notice that DA generated significantly smaller amounts of
base flow in 2007 than in 2006 which is relatively drier. Frequent rainfalls in 2007, which
restored bias in the surface, means more water was removed and not captured by DA. Overall,
the assimilation results support the findings by Li et al. (2009) who concluded that the initial soil
moisture condition has a larger impact on base flow while precipitation uncertainty has a larger

impact on surface runoff.

Additional information beyond surface runoff and base flow is required to compute the
stream flow for the watershed. In the western US where significant groundwater recharges may
occur, simple summation of base flow with surface runoff will lead to overestimation of stream
flow. Figure 9 (upper panel) shows the comparison of simulated total runoff (surface runoff plus
base flow) with the USGS stream flow data. The predicted total runoffs are much higher than
gauged values, except the result by DA in 2007. Based on the study by Schaller and Fan (2009),
about 30% of total runoff in the Little Washita area contributes to the stream flow. Using this

information, the simulated stream flow, which was taken as 30% of the total runoff, was plotted
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in the lower panel of Figure 9. The stream flow estimation by Control and DA MassCon now
compare reasonably well with the gauge data. The significant overestimation of precipitation by
GDAS in August 2006 and the underestimations in June 2007 are noticeable in the predicted
stream flow. Bias in forcing data cannot be corrected through soil moisture data assimilation
since the forcing was assumed to be unbiased. While these comparisons do not constitute
accurate validations (which is why no statistics were calculated for stream flow), they illustrate
the potential impact of AMSR-E retrievals on runoff by different algorithms. Note that the
estimated monthly total runoff and stream flow in Figure 9 are simple aggregations of the
estimated surface and subsurface runoff at all the grid points within the basin. No routing
algorithm or time delay was used in producing them, which can be justified given the relatively

smaller basin size and the large time scale.

4.3 Water budget

As mentioned early, a unique challenge in assimilating remotely sensed data is that the
observation is only available for a thin surface layer. An assimilation method, which may look
successful based on the verification of soil moisture near the surface, may fail in the lower soil
zone. For instance, DA could have been declared a success based on the verification of soil
moisture in the shallow root zone and the latent heat. Yet, it degraded soil moisture estimates in
the deeper soil profile that led to the deterioration of base flow and failure to show annual

precipitation changes in the root zone. Lack of both complete observations and a full set of soil
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moisture constraints is the root cause for this inconsistent conclusion. To avoid this problem a

quality check, independent of any soil moisture measurement, is needed.

Water budget checks represent one way to ensure the assimilation results are physically
consistent across all the processes. The water budget here is defined as the sum of ET, surface
runoff, base flow and the net change in column water, which is essentially the precipitation
amount. Since the forcing perturbations were assumed unbiased, the assimilation runs should
produce the same water budget as Control in time scales much longer than the perturbation
frequency. To assess the overall performance of the two assimilation methods, monthly GDAS
precipitation and water budgets from the three simulations are displayed in Figure 10. While the
difference between GDAS precipitation and the water budget of Control is due to numerical
errors associated with the discretization of the Richards equation, the difference between Control
and the two data assimilation runs can only be attributed to the Kalman filters. The failure of
DA is clearly evident because it does not have water budget closure in every month. Failure to
capture mass loss from the top two layers and the inappropriate update in the lower layers
contribute to the loss water budget. On the other hand, DA MassCon, in general, achieved
monthly water balance throughout the two-year period. Some ensemble bias still existed in DA
MassCon in January and February of 2006 when the soil was so dry that the perturbations used

in the filter were probably slightly larger than needed.

5. Discussion

This study demonstrates that modeled soil moisture fields are significantly biased due to

errors in static parameters such as soil hydraulic conductivity and inappropriate model physics
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such as the free drainage condition. Satellite derived soil moisture data, if retrieved
appropriately, i.e., less biased, can be used to reduce the bias. However, the difference between
the mean of model estimates and that of sensor data can also lead to mass imbalance when the
bias is corrected near the surface. In addition, since satellite retrievals only represent information
in the top few centimeters of the soil, effectively passing the surface information to the deeper

soil layers without causing adverse impacts poses additional challenges.

The mass conservation updating scheme developed in this study preserves the water
budget of the forecast (as well as the control) by transferring the mass imbalance incurred in
updating the top two layers to the lower layers. The development of this scheme was largely
based on analyses of model simulation results and considerations of model physics. As reasoned
in the result section, the overestimation at the surface is likely caused by the lower than expected
hydraulic conductivity values, given the persistent occurrence of overestimation, especially in
winter periods when precipitation and ET were very low. For this reason, moving the surface
overestimation to the lower layers via mass conservation is to mitigate the inaccuracy of model
parameters. If the surface bias was indeed caused by inadequacy in ET and surface runoff
algorithms, redistributing mass imbalance back to these fluxes would require direct observations
of these variables and extensive knowledge about how each process contributes to the bias (Pan
and Wood, 2006). Precipitation errors could also cause bias in soil moisture. As shown in
Figure 10 and stated in section 3, the mass conservation scheme does not allow the water budget
to change with the assimilation of the retrievals. While it is tempting to adjust water budget
based on surface soil moisture observations, the retrievals alone simply do not provide sufficient

information for changing the water budget and may lead to erroneous results. Using Figure 3 as
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an example, given the consistent positive bias in Control at the surface, if the water budget were
allowed to change with soil moisture data assimilation, the assimilation would always lead to
reduced water budgets, which would contradict with the precipitation validation in Figure 2
where GDAS actually overestimated precipitation or was nearly unbiased in some months. This
is part of the reason why DA failed to achieve monthly water balance. With the limited
information provided by the surface soil moisture observation, the mass conservation scheme
focuses on improving the soil moisture fields first. Regardless of what initiated the bias at the
surface, the mass conservation scheme will improve soil moisture estimates in the upper layers if
the observations are less biased than the model, but the improvements in the lower layers may be
model dependent and region dependent. But with the mass conservation constraint, the
assimilated lower soil moisture states are much more reliable (closer to Control) than those given
by the conventional EnKF which may yield significantly degraded results due to inappropriate

model physics.

Although it was found that updating the top two layers is more appropriate at Little
Washita, studies in different climate conditions are needed to examine how far the surface
measurements can influence the deeper soil layers through the conventional EnKF without
causing adverse impacts. A general form of equation (6) for a model with N soil layers and the
upper L layers are to be assimilated using the conventional EnKF is:

L N
A\ :th _Z(Ackdk)/ Zdj (7)
k=1

j=L+1
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and Y now contains the soil moisture states for layers L+1 to N. In general, the fewer upper
layers that are assimilated using the conventional EnKF, the less impact the assimilation has on

the rest of soil layers and fluxes.

The difficulty of using the surface observation to improve root zone soil moisture has
also been reported by Walker et al. (2001) and Houser et al. (1998) who showed that soil
moisture estimates in the lower soil zone deteriorated with the assimilation of surface
observations. As pointed out by Walker et al. (2001) that data assimilation could only achieve
what model physics is capable of delivering, the failure of the conventional EnKF in updating the
lower layers, as shown in this study, is a result of inappropriate model physics. As shown in
Figures 3 and 4, Noah (the Control run) failed to capture the trend of increasing wetness with
depth as observed by in situ measurements. As a result, the conventional EnKF was not able to
yield increments favoring the improvements in the lower profile. Even for assimilation methods
that do not depend on model physics such as the least square and variational method (Kalnay,
2003), there is probably a limit to how far the surface information can be extrapolated to improve
the soil moisture state in deeper soil zones. Houser et al. (1998) showed that a nudging and a
statistical interpolation method also caused similar detrimental effects on the lower soil layer
when surface observations were assimilated. Lack of observations in the entire profile to
constrain the increments is the root cause for these difficulties. The mass conservation scheme
avoids the interference of imperfect model physics for the lower layers by using a model-

independent updating equation that also preserves the mass of the forecast.
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The reduction of bias in both upper and lower layers by DA MassCon changed the soil
moisture profile which is more aligned with in situ observations than with model physics
(Control). As mentioned in the introduction, simulated soil moisture fields from different
models exhibit significant disparities which have greatly affected their applications in some
areas. Mo (2008) showed that the correlations of model-based drought indices are so low in the
western US that they are not reliable for drought monitoring. Assimilating the actual value of
AMSR-E retrievals into these models can reduce the uncertainty associated with model physics
and should lead to more consistent soil moisture fields and thus, more reliable model-based

drought indices.

With the current framework of LIS, parameter uncertainties are implicitly represented in
errors added to soil moisture variables, which is a common practice in many studies (Reichle et
al., 2007; De Lannoy et al., 2007a). Alternatively, parameters uncertainty can be represented
through directly perturbing parameters (Margulis et al., 2002; Ng et al., 2009; Qin et al., 2009).
The assimilation results should remain similar as they are determined by the relative error of the
observation versus that of the model and constrained by the observation and the control run.
Perturbing parameters can also be used to simultaneously retrieve model parameters as shown by
Qin et al. (2009) who retrieved surface soil moisture and soil texture parameters using a particle
filtering technique. Their study showed that changes in initial conditions can lead to completely
different retrieved parameter values. Lack of constraints in parameters, particularly the
knowledge about their mean value, may be responsible for this behavior. For the case studied

here, the hydraulic conductivity is likely biased relative to the truth and its uncertainty can hardly
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be represented by a zero-mean Gaussian process. Bias, in either parameters or state variables, is

an important issue that needs to be considered when assimilating real observations.

With the biased model shown in this study, the estimates by DA and DA MassCon were
not optimized, i.e., the estimation error was not minimized (Kalnay, 2003). The same is true if
the retrievals are scaled, priori to assimilation, using model climatology (Reichle and Koster,
2004; Drusch et al., 2005) because the model estimates (Control) were still biased. For the
example presented here, more reductions in the estimation error for the surface layer can be
obtained by directly inserting the AMSR-E retrievals into the model, as Table 3 shows that
AMSR-E retrievals have the smallest bias against the ARS measurements. However, retrievals
may not always be better than modeled estimates, in which case data assimilation will yield
better estimates than direct insertion. In addition, direct insertion is not as effective as an EnKF
in reducing estimation errors in root zone soil moisture because data assimilation techniques can
force the surface observation to impact the adjacent soil layer while direction insertion, relying
on model physics, may not be effective in passing the information downward (Crow and Wood,

2003).
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Figures
Figure 1: The Little Washita watershed and locations of ARS, SCAN and USGS stations.

Figure 2: Basin averaged monthly ARS and GDAS precipitation.

Figure 3: Time series of basin averaged daily soil moisture from Control, DA, and DA MassCon
for Noah soil layers 1 to 4. Simulated soil moisture at layer 1 is compared to basin averaged
ARS measurements at the 5 cm depth and the AMSR-E retrievals.

Figure 4: Comparison of basin averaged daily soil moisture from Control, DA, and DA
MassCon, interpolated at 25, 45 and 100 cm depths, with measurements from ARS stations and
the SCAN site.

Figure 5: Mean annual surface soil moisture (soil layer 1) from Control, DA and DA MassCon in
2006 and 2007.

Figure 6: Mean root zone (upper 100 cm) soil moisture from Control, DA and DA MassCon in
2006 and 2007.

Figure 7: Comparison of daily latent heat from Control, DA, and DA MassCon versus the SGP
flux data. The daily latent heat estimates are averaged values from 6 am to 6 pm local time for

both the SGP measurements and Noah estimates.

Figure 8: Monthly surface and base flow (mm) from Control, DA and DA MassCon.
Figure 9: Comparison of monthly total runoff and stream flow from Control, DA and DA
MassCon versus USGS gauge data.

Figure 10: Monthly GDAS precipitation and water budget for Control, DA and DA MassCon.
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804  Figure 1: The Little Washita watershed and the locations of ARS, SCAN and USGS stations.
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Figure 2: Basin averaged monthly ARS and GDAS precipitation.
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Figure 3: Time series of basin averaged daily soil moisture from Control, DA, and DA MassCon
for Noah soil layers 1 to 4. Simulated soil moisture at layer 1 is compared to basin averaged
ARS measurements at the 5 cm depth and the AMSR-E retrievals.
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Figure 5: Mean annual surface soil moisture (soil layer 1) from Control, DA and DA MassCon in

2006 and 2007.
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Figure 6: Mean root zone (upper 100 cm) soil moisture from Control, DA and DA MassCon in
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Figure 7: Comparison of daily latent heat estimates from Control, DA, and DA MassCon versus
the SGP flux data. The daily latent heat values are averaged values from 6 am to 6 pm local time

for both the SGP measurements and Noah estimates.
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Figure 8: Monthly surface and base flow (mm) from Control, DA and DA MassCon.
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Figure 9: Comparison of monthly total runoff and stream flow from Control, DA and DA
MassCon versus USGS gauge data.
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Figure 10: Monthly GDAS precipitation and water budget for Control, DA and DA MassCon.
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Tables:

Table 1: Annual precipitation (mm) at Little Washita in 2006 and 2007 by ARS and GDAS.

Table 2: Perturbations given to the four soil moisture variables and their cross-correlations (the
last four columns).

Table 3: Basin averaged bias and root mean square error (rmse) of daily simulated soil moisture
at the 5, 25, 45 and 100 cm depths and latent heat for the two-year period. Statistics were

calculated with respect to daily values of ground measurements at ARS, SCAN and SGP.
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Table 1: Annual ARS and GDAS precipitation (mm) at Little Washita in 2006 and 2007.

2006 2007
ARS 690 1259
GDAS 959 1096
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880

881  Table 2. Perturbations given to the four soil moisture variables and their cross-correlations (the
882 last four columns).

883
variable star)da}rd co_rre!ation cross-correlation cross-correlation cross correlation  cross c_orrelation
deviation in time with 0 with 0, with 03 with 0,4
0, 0.002 12h 1.0 0.6 0.4 0.1
0, 5.0e-4 12h 0.6 1.0 0.5 0.2
03 6.0e-5 12h 0.4 0.5 1.0 0.4
04 6.0e-6 12 h 0.1 0.2 0.4 1.0
884
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Table 3: Basin averaged bias and root mean square error (rmse) of daily simulated soil moisture

at the 5, 25, 45 and 100 cm depths, latent heat (W/m?) and NOAA NESDIS AMSR-E soil
moisture retrievals for the two-year period. Statistics were calculated with respect to daily

values of ground measurements at ARS, SCAN and SGP.

Control DA DA MassCon AMSR-E

bias rmse bias  rmse bias  rmse bias rmse

soil moisture (5 cm) 011 0.11 0.05 0.07 0.06 0.08 -0.002 0.05
soil moisture 25cm)  0.10 0.10 0.03 0.06 0.04 0.07 - -
soil moisture (45 cm) 0.09 0.09 0.02 0.05 0.03 0.06 - -
soil moisture (100 cm) -0.10 0.11 -0.16 0.16 -0.09 0.09 - -
latent heat 8.27 28.87 -5.76 28.80 -0.33 28.38 - -
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