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The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State’s human
space flight program for over 50 years. It is the home to NASA’s Mission Control Center, the
astronaut corps, and many major programs and projects including the Space Shuttle Program,
International Space Station Program, and the Orion Project. As part of JSC’s Engineering
Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to
provide aerosciences support to all human spacecraft designs and missions for all phases of flight,
including ascent, exo-astmospheric, and entry.

The presentation will review past and current aeroscience applications and how NASA works to
apply a balanced philosophy that leverages ground testing, computational modeling and simulation,
and flight testing, to develop and validate related products. The speaker will address associated
aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems,
involving both spacecraft vehicle design and analysis, and operational mission support.

From these examples some of NASA leading aerosciences challenges will be identified. These
challenges will be used to provide foundational motivation for the development of specific advanced
modeling and simulation capabilities, and will also be used to highlight how development activities
are increasing becoming more aligned with flight projects. NASA’s efforts to apply principles of
innovation and inclusion towards improving its ability to support the myriad of vehicle design and
operational challenges will also be briefly reviewed.
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Overflow
Overset grid Navier-Stokes
NASA Langley Research Center

Cart3D
Cartesian inviscid compressible
NASA Ames Research Center

DPLR (Data Parallel Line Relaxation)

Multi-block hypersonic non-equilibrium
NASA Ames Research Center

DAC (DSMC Analysis Code)

Rarefied gas dynamics solver
NASA Johnson Space Center
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RétUr-h to Flight Geometric Enhancementg

605 Overlapping Grids
96.4M Volume Cells



Validation and Ground to Flight Traceabilif
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|JA700 Wind
Tunnel Test
Mach =1.55
Re = 2.5E6/ft

Pressure




" Flight Data Validation

STS-50 Orbiter Wing Running Loads
Mach 1.25, Alpha -3.3, Beta 0.0, 3., = 10.5/6.25, Qbar = 640.7 psf
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Post Flight Damage Assessment Liberation Source Identification
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New Configuration
Bipod Ramps Bare Spindle

Old Configuration
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e aleck Boundary Layer Interaction

Orbiter

Bipod Spindle

Lox Feedline External Tank



Ascent Aeroheating

Port Bipod Spindle - Mach 4
Contours of CFD heating
Dots indicate tunnel measurement values
Refined grid resolution
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Protuberance Location

Modified Tile CFD prediction
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RINSTA37-022-2031
VBBO=191011 -goa
7MC033 ?

Turbulent Wedge Turbulent flow from
: wing protuberance a: 4 ;

Turbulent flow from
unknown origin

STS-119
T:?adfomitncc;fly Calibrated " Mach ~ 8.5
emperaiure image
Frame averaging applied Mar 281 2009



Space Launch System
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-~ Orion Project Elements

Crew Module

Crew and Cargo Transport

Launch Abort System

Emergency Escape During Launch

Service Module

Propulsion, Electrical Power,
and Fluids Storage
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~ Orion Aerosciences Trajectory Space
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Launch Abort Vehicle
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" CGED vs. Pressure Sensitive Paint

Simulation — Computational Fluid Dynamics

Mach 1.3 Pressure Distribution

Experimental - Pressure Sensitive Paint
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~ " Crew Module Backshell

Docking Windows
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Continuum Flow Transitional Flow Free Molecular Flow
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Computed Using NASA’s Direct Simulation Monte Carlo
(DSMC) Analysis Code (DAC) Software

Near Continuum Transitional Free Molecular
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Detached Eddy Simulation
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NASAS Top Aerosciences Challenges

Aerodynamic Predictions

» Aero-plume interactions
Massively separated flow behind bluff bodies
Strong shockwave boundary layer interactions
Aeroacoustic and buffet environments
Fluid-structure interactions

Aerothermodynamic Predictions
* Boundary layer transition
* Protuberance and cavity heating
» Ablative thermal protection system performance
» Shock layer radiative heating

Uncertainty quantification and validation remain generic foundational challenges!




- Trends in Computational Aerosciences

Forcing Function
* Transition from steady to unsteady simulations
* Increased parametric analysis
 More complex geometries
* Increase computational capacity

Anticipated Response
* Time accurate, low dissipation, higher order methods
Higher order turbulence modeling
Automated surface and volume grid generation
Adjoint methods for parameter sensitivity and solution adaptation
Coupled multi-physics simulations




o Shift in Modeling Maturation

Develop — Validate = Apply

Pros: Cons:

 Logical » Developers can be separated

e Systematic from users

e Ensures end-users have a » Always a struggle to advocate for
product that is ready for release resources to proceed in this mode

Develop = Apply — Validate

* NASA has seen explosive growth in the application of CFD

« Extremely difficult to be fully validated for every application

* Insufficient validation leads to large data uncertainties and design margins

» Acquiring test data to validate analysis becomes a project priority

* Roadmaps for future modeling and simulation development become more clear




" Innovation and Inclusion
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Space Shuttle Challenger Crew Space Shuttle Columbia Crew
Lost January 28, 1986 Lost February 1, 2003




Thank youl.



