
An Overview of the  

Space Shuttle  

Aerothermodynamic Design 

 

Abstract 

 

The Space Shuttle Thermal Protection System was one of the three areas that 
required the development of new technology.  The talk discusses the pre-flight 
development of the aerothermodynamic environment which was based on Mach 
8 wind tunnel data.  A high level overview of the pre-flight heating rate 
predictions and comparison to the Orbiter Flight Test (OFT) data is presented, 
along with a discussion of the dramatic improvement in the state-of-the-art in 
aerothermodynamic capability that has been used to support the Shuttle 
Program.  A high level review of the Orbiter aerothermodynamic design is 
discussed, along with improvements in Computational Fluid Dynamics and wind 
tunnel testing that was required for flight support during the last 30 years. 

The units have been removed from the plots, and the discussion is kept at a high 
level. 
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Apollo 13 

April 11th, 1970 

 
The  

Space Shuttle Legacy 

began with  

Mercury,  

Gemini,  

& 

Apollo 

 

41 years later... 
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 Maximum Heat Rate 

  Maximum Surface Temperature & Material 
Selection 

 Maximum Heat Load  

 Integral of the Heat Rate with Time 

 Insulation Requirement 

 Structural Temperature 

 Boundary Layer  

 Laminar – Minimizes Heating to the Surface 

 Turbulent – Increased Heating to the Surface 
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 Radiation Equilibrium Surface Temperature 

 Surface Temperature Reaches an Equilibrium: Heat 
Rate to the Surface = Heat Radiated from the Surface 
+ Heat Conducted to the Orbiter Structure 

 Tile Material with RCG Coating, Emissivity is 0.8 to 
0.85,  Conduction is About 1 Percent 

 Catalytic Efficiency of the Surface 

 Metal Surfaces act as a Catalyst, Increasing Heat 
Transfer to the Surface. 

 Tile RCG Coating Has a Low Catalytic Efficiency  
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 Function of: Vehicle Geometry, Reynolds 
Number, Mach Number, Surface Roughness, 
Pressure Gradient, Free Stream Noise, etc. 

 Test or Flight Data is Required For 
Determining the BLT Location 

 Apollo Experience 

 Flight Data Agreed with AEDC Tunnel B at Mach 8 

 Operational Flights Were Laminar 

 Maximum Heat Rate Trajectory Showed Transition 
to Turbulent Heating 
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•Heat Shield Had to be Designed Before the Lunar Trajectories Were 
Known 

•Heat Rate: 20g Emergency Lunar Return 
•Heat Load: Spacecraft Barely Captured by the Atmosphere 

•Compounding of Conservatism from Each Group! 
 

 
•Ablator used on Lee Side 
Due to Large Uncertainties 
 

•Factor of 2 Over Design for     
Operational Missions Except 
Windward Torus – Structure 
Reached Design Temperature 
of 589K (600F) 



 Efficient, Reusable, Minimum Weight TPS  

 Laminar Boundary-Layer During Peak Heating 

 Windward Surface Shape Optimized to 
Maintain Laminar Flow 

 Trajectory Designed to Maintain Laminar 
Conditions 

 All Parties Agreed to Minimize Conservatism 

 Design Based on Nominal Trajectory, Nominal 
Heating Rates, Nominal Material Properties,  & 
Aerodynamic Smooth Surface  
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 Critical Design Review, 1978 

 Polar Orbit – Western Test Range 
 Mission 3b, 25k lbs Payload Retrieval 

 104 Degree Inclination, 100 NM Altitude 
 Trajectory 14414.14C 

 Design for the Polar Orbit Mission 

 Fly STS-1 as Conservatively as Possible 

 Gradually Increase Entry Conditions During the 
Orbiter Flight Test (OFT) Program 

 Use the OFT Flight Data to Assess the Vehicle 
Capability  
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 Trajectory, Aerothermodynamic Predictions, TPS 
Materials 

 Conservatism from Each Discipline was Combined 
(RSS) to Produce System Uncertainties 
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 Apollo Operational 
Trajectories Were 
Very Benign 
Compared to 
Design 
 

 Orbiter OFT Flights 
Were Much Closer 
to Design 
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 Three Levels of Sophistication 
 Simplified Heating Model 

Stagnation Heating to a 1 Ft. 
Sphere 
 BLT Based on Normal 

Shock Reynolds Number 
 Used for Trajectory Design 

 Design Methodology 
 Orbiter Wind Tunnel Data, at 

Mach 8, Scaled to Flight 
Conditions  Using 2-D Flow 
Models. 

 Benchmark 3-D Flow Field 
Calculations 
 4 Flight Conditions 
 Used to Check the Design 

Methodology  Before STS-1 
 

 



 “Design” BLT Approach Used Spherical 
Roughness Elements from RI Experience with 
Hemisphere/Cone Data 
 Assumed that Single Roughness Elements Would Trip the 

Boundary Layer. 

 Resulted in Very Smooth Surface Roughness 
Requirements – Tile to Tile Steps and Gaps 

 Contrasted With NASA/JSC Approach 
 Mach 8 Normal Shock Reynolds Number Data Matches 

Apollo Transition Data & Planned Shuttle Flight 
Reynolds Number 

 JSC Conducted a Unique Surface Roughness Test 
 Random Tile Roughness Plated on Model Surface 

 Resulted In Relaxed Roughness Requirement 
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 Included Uncertainty and Trajectory 
Dispersions,  

 +3 Sigma Boundary-Layer Transition Data 

 NASA “Lost Tile” Analysis 

 Ames Research Center Channel Nozzle Arc Jet Test 

 Johnson Space Center Thermal Analysis 

 Concluded There Was Enough Thermal Conduction 
to Prevent Local Structural Failure for a Single Lost 
Tile.   
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 96 
Locations 

 3 shown 

 Nominal 
BLT! 
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Note:  Heating Rate 
is Proportional to 

Temp. Raised to the 
4th Power 



 Gouge & Gap Filler in Nose Gear Door Area 
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Nose Gear Door Gouge 
 

12 in X 1 in X 1 in 
 

Displaced Gap Filler 
 

Protruding About 0.4 In 
 

From Ref. 17, by Dr. McGinley, et Al. 



 Return to Flight Damage Assessment Tool 
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 Design (RI) Used Equilibrium Air – Fully Catalytic 
Surface Chemistry 

 Wind Tunnel Derived Boundary-Layer Transition 
(BLT) 
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X/L = 0.4,    
Center Line 

 



 Convective Cooling Was Not Anticipated 

 Not All Locations Benefit 
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 Windward Surface Structural Temperatures Were 
Recorded for Each Flight at 20 Locations 

 STS-73, Early BLT Due to Protruding Gap Filler 
 About 105F of Margin 

 STS-99, 28, 32, 48, 94, 102,  
 About 125F of Margin 

 STS-27, Severe Damage During Ascent 
 707 Tile Damage Sites, 298 Greater Than 1 Sq. In. 
 About 130F Margin (at Measurement Locations) 
 One Missing Tile Over an Antenna Cover 

 Tin Coating Was Hot Enough to Flow 
 Aluminum Was Hot Enough to Change the Anneal State 

 OFT Flights 
 STS-1, Asymmetric BLT, About 135F of Margin 
 STS-4 & 5 Were Coolest, About 170F of Margin 
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 Considerable Margin Existed in the Acreage Tile 
System 
 Operational Trajectories Were Slightly More Benign than 

Design 
 Design Used Conservative Boundary-Layer Transition 

Models 
 Tile RCG Coating is Almost Non Catalytic 
 Design Assumed Fully Catalytic 

 Convective Cooling is a Significant Effect in Most 
Locations – Not Anticipated During Design 

 Note: Protruding Gap Fillers, Causing Early BLT 
Was Not Considered During Design 
 However, BLT Model Used For Design Had Similar 

Heating Effects, Without the Asymmetry 
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 Motivated by the Two Protruding Gap Fillers During STS-114 

 Designed to Obtain BLT Data With a Known Protuberance Height 

 Flown 5 Times With 3 Different Protuberance Heights; 6.35 mm 
(0.25 in), 8.9 mm (0.35 in), 12.7 mm (0.5 in) 

 Data Agreed Well With Predictions of Transition Onset Time 

 Data Showed the Temperature Predictions Were Very 
Conservative – And Still Under Investigation 
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8.9 mm (0.35 in) 
Protuberance  



22 

Hypersonic Thermodynamic 
Infrared Measurements 

   

Thomas Horvath/LaRC 
 

Jay Grinstead/ARC 
 

11/15/2011 NESC CCDEV Aerodynamic TIM 



STS114 
2005 

STS121 
2006 

STS115 
2006 

2007 

2007 

2007 2008 
2009 

2009 

2009 

2009 

Success Criteria:   
To obtain spatially 
resolved infrared 
imagery that will 
provide a 
quantified surface 
temperature map 
of the Shuttle 
during hypersonic 
re-entry 
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Operations, 
Data Collection 
& Calibration 

2-D processed 
data 

3-D mapping 
Comparison to 
Modeling Tools 

Ground to flight 
extrapolation 

An Emerging Thermal Assessment Capability 
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Spatial Resolution is a Necessity 

The Orbiter is a LARGE target! 

STS-134  June 1, 2011, Mach 6.2 
~ 4 in per pixel from 32 nm (NIR)  

*Mobile Aerospace Reconnaissance system (MARS) ground optical system operated by 
Celestial Computing 

X-37 

HTV-2 

Relative size 

HYTHIRM and 
MARS* collaboration  

Carbon-Carbon 
leading edge 
panels 

On-orbit photo of 
Shuttle 
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 STS-1 Hypersonic Pitching Moment 
 LAURA CFD Code by Dr. Peter Gnoffo 

 Orbiter On Orbit Plume Impingement 
 Direct Simulation Monte Carlo Methods for Rarefied 

Flows – DAC Code by Jay LeBeau 

 Launch Vehicle Transonic Aerodynamic Issues 
 Chimera Grid Scheme, F3D CFD Code by Dr. Joe Steger 

 OVERFLOW CFD code by Dr. Pieter Buning 

 TPS Damage Assessment Tools for Flight Support 
 Hypersonic Flow Field Codes: LAURA, DPLR  
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 Dr. Robert Ried/JSC - Retired 

 Ms. Dottie Lee/JSC - Retired 

 Mr. Brian Anderson/JSC 

 Dr. Chuck Campbell/JSC 

 Mr. Gerald LeBeau/JSC 

 Mr. Steve Derry/JSC 

 Mr. Reynaldo Gomez/JSC 

 Dr. Georgi Ushev/Boeing 

 Dr. Catherine McGinley/LaRC 

 Dr. Tom Horvath/LaRC 
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 Thirty Years of Experience with the First Reusable Thermal Protection System 

 Hypersonic Data - National Asset 
 Orbiter Flight Test (OFT) Data 

 Boundary Layer Transition DTO 

 HYTHIRM  

 Orbiter Vehicle Surface  Geometry Scans for Future CFD Analysis 

 Incredible Improvement in Analysis Capability 
 Motivated by Space Shuttle Issues  

 10 Orders of Magnitude improvement in Computing Capability  During the  30+ Years! 
 Transonic Ascent Issues, Entry Issues, Debris Damage Assessment, Internal Flows 

 Computational Fluid Dynamics 
 LAURA, OVERFLOW, DPLR, codes 

 Direct Simulation Monte Carlo methods 
 DAC Code for Rarefied Flows 

 Personnel with 30+ Years of Experience 
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