An Overview of the
Space Shuttle

Aerothermodynamic Design

Abstract

The Space Shuttle Thermal Protection System was one of the three areas that
required the development of new technology. The talk discusses the pre-flight
development of the aerothermodynamic environment which was based on Mach
8 wind tunnel data. A high level overview of the pre-flight heating rate
predictions and comparison to the Orbiter Flight Test (OFT) data is presented,
along with a discussion of the dramatic improvement in the state-of-the-art in
aerothermodynamic capability that has been used to support the Shuttle
Program. A high level review of the Orbiter aerothermodynamic design is
discussed, along with improvements in Computational Fluid Dynamics and wind
tunnel testing that was required for flight support during the last 30 years.

The units have been removed from the plots, and the discussion is kept at a high
level.
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Apollo Heat Shield Design
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Design Philosophy
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SYstems Approach to Entry Design
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Heat Rate and Heat Load
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Wrbiter Heating Design Approach
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Surface Roughness
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DI5-3 Surface Temperature Data
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SiS=1 Boundary Layer Transition
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51 S-1 Compared to Design
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merging Thermal Assessment Capability
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)lution is a Necessity
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