Challenges at Petascale for Pseudo-spectral Methods on Spheres (A Last Hurrah?)

Tom Clune
Software Integration and Visualization Office
NASA GSFC

Gone The Way of the Dinosaur? Peruloger Hell CURY

Nice Mathematical Properties

- "Exponential" accuracy
 - Double the effective resolution compared to FD
 - Commonly used as baseline for comparison
- Fast inversion of elliptic operators
 - Diagonal or nearly diagonal matrices
 - Enables efficient implicit time stepping
- Natural boundary conditions

9/26/11

senduspectral - 13802

PS Weaknesses

- Poor quality near discontinuities e.g. terrain
- Numerically expensive at high resolution O(n4)
- Heavy data movement limited by bandwidth of the interconnect
- Must respect symmetry. E.g. implicit coriolis

Not immediately obvious where the tradeoffs fall.

9/26/11

renduspectral - 1 UNV

2

10/4/11

DYNAMO Goals

- Existing runs are for n ~ 500-1000
 - Run on variety of clusters
 - Performance constrained by 1D decomposition
 - O(500 nodes)
 - Wasting lots of cores to get necessary memory
 - Limited to \sim 1 TF
- Would like to achieve ~10x resolution
 - Needs at least petascale platform
 - Need consistent 2D (or even 3D) domain decomp
- Stretch implicit treatment of coriolis

Spatial and spectral domains are connected via *transforms*:

Simple and efficient transforms are only possible in relatively small number of simple geometries.

- Periodic box: FFT O(n³ log n)
- Separable coordinates: O(n4)
- Spherical shells are intermediate
- General case is O(n6) uncompetitive

Interesting Software Aspects

- · Elegant program structure
 - Sequence of transforms coupled by memory transposes
 - Software infrastructure plays major role
 - Non-rectangular domains
 - · Non-trivial domain decomposition
 - · Non-obvious data layout
- · Unique performance aspects
 - Different scaling properties: transpose vs. halo fill
 - Nothing to optimize!
 - FP workload largely in optimized libraries (FFT, DGEMM, ...)
 - · All-to-all is part of HPC benchmarks

PS Methods on Spherical Shells

- Spectral expansion based upon spherical harmonics
- $-Y_{lm}(\theta,\phi)$ (m = 0, ..., m_{max} , l = 0,..., $I_{max}(m)$)
- Radial expansion based upon Chebyshev polynomials
 T_n(r) (n = 0, ..., n_{max})
- · Poisson operators block diagonal (nontrivial coupling in radial)

Constraints on Decomposition

- General anatomy of a transform
 - Acts on 1 axis of domain Q(i,j,k) -> Q'(m,j,k)
 - Independent of at least one axis
 - Possibly parameterized by another axis
- Example: Legendre Transform
 - Acts on meridional coordinate/degree
 - Independent of radial coordinate
 - Parameterized by wavenumber coordinate

977678

Pseudoscertial - CUNY

Domain Decomposition Strategy For a Given Transform

- Co-locate transform axis
 - Perform operation "in processor"
 - Leverage serial implementation
 - Often available in optimized library (FFT, DGEMM)
- Distribute remaining coordinates
 - No computational dependencies
 - Effective 2D decomposition
- Balance/Optimize
 - Memory/performance optimization by grouping along "independent" axis.

9/26/11

Pwrocoupectral - 1 URVI

Unfortunately ...

- No decomposition scheme works for all cases
 - Usually need separate layout for each transform!
 - Sometimes can do 2 transforms on one layout if using a 1D decomposition
- Load balance is nontrivial for non-rectangular domains.

9/26/11

southispecture (DNY)

Example: Legendre Transform

- Transforms degree ℓ to/from θ (DGEMV)
 - Independent of radial coordinate r
 - Parameterized by azimuthal wavenumber m
- Decomposition constraints:
 - Keep ℓ and θ in processor
 - Distribute wavenumbers across processors.
 - Group r on processor to improve cache reuse (DGEMV -> DGEMM)
 - Split blocks of r across processors to balance scalability against serial performance.

97.86/11

Pre-adosper trat - CUIV

Implicit Update • Couples radial coordinate (DGETRS) - Mostly independent of azimuthal wavenumber - Dependent on degree λ • Strategy - Group wavenumber for BLAS2 -> BLAS3

Abstractions

Axis: Label(s) and coordinate indices

R
0
1
2

LM	L	М	
0	0	0	-
1	0	1	
2	1	1	

Triangular domain treated as 1D

Domain: Product of axes

- Note, collection of fields can be an "axis"

- DistributedDomain: subclass with "map"

Field: Domain reference with array of values

0.0071

Pseudosperma CURS

Abstractions (cont'd)

Transformer:

- Produces: Decomposition constraints, Cost function
- Field_{in} → Field_{out}

Balancer:

- Ingest: Transformer, Auxiliary Coords, Communicator
- Produces: In/Out Domains, Instantiated Transformer

Transposer:

- Initialization: {Domain_A, Domain_B}
- Field_{in} → Field_{out}

97,70/11

Pseudosper (16F - CURN

11

Specific Challenges

- Accuracy
- Transposes
- Initialization

Anna a company

12

Back of the Envelope

· Compute time dominated by Legendre DGEMM:

$$T_{comp} \approx \frac{N_L N_t n^4}{R^{eff} n}$$

- $T_{comp} \approx \frac{N_L N_i n^4}{R^{eff} p}$ Communication dominated by global transposes
 - Each transpose moves ¼ of data to other half of machine

- Each process sends packet to $p^{1/D}$ other processes (D=1,2,3)

$$T_{comm} \approx N_l N_t \left(\alpha^{eff} p^{1/D} + \frac{4n^3}{B^{eff}} \right)$$

- Domination by computations: $n > \frac{4Rp}{B}$ - 8 - 4000
- Bandwidth dominates latency: $n < \left(\frac{\alpha B p^{1/D}}{4}\right)^{1/3}$ 250 125000
- Complete in T_{sim} seconds
 4000 for 1 week turnaround
- Efficient level 3 BLAS

- ~10000

PGAS (CAF)

- Efficient implementations of realistic global transposes are intricate and tedious in MPI.
- PS at petascale requires exploration of a variety of strategies for spreading local and remote communications.
- PGAS allows far simpler implementation and thus rapid exploration of variants.

9126713

Averagona trail 1984V

Conclusions

- Proper software abstractions should enable rapidexploration of platform-specific optimizations/ tradeoffs.
- Pseudo-spectral methods are marginally viable for at least some classes of petascale problems.
 - A GPU based machine with good bisection would be best.
- Scalability at exascale is possible, but the necessary resolution will make algorithm prohibitively expensive.

9776/3

Pseudospernal - GUNs

