Fast Approximate Broadband Phase Retrieval for Segmented Systems

Alden S. Jurling and James R. Fienup

University of Rochester
Institute of Optics

Research funded by NASA Goddard Space Flight Center

Paper FThD1
Frontiers in Optics 2011, San Jose, CA
Outline

• Application: Wavefront sensing for large telescopes
 – Space telescopes (James Webb Space Telescope)
 – Adaptive Optics for ground based telescopes
• Wavefront sensing method: Focus diverse phase retrieval
• Case of interest: Extremely broadband sources
• Problem
 – Monochromatic phase retrieval algorithms fail above ~10% fractional bandwidth
 – Broadband (polychromatic) algorithms are computationally expensive
• Solution
 – Employ monochromatic algorithm with approximation method
• Result
 – 270x speed up in computational performance for 133% fractional bandwidth
 – Acceptable accuracy
 – Accuracy better for monolithic systems, worse for segmented
• Investigate difference in accuracy between segmented and monolithic systems
Focus Diverse Phase Retrieval

True Phase

Detector

PSF Data

Compute

Retrieved Phase
Phase Retrieval Overview

• Given
 – System parameters (F/#, detector pixel pitch, etc.)
 – Measured point spread function images (e.g. images of stars) through focus
 – Clear aperture of pupil
• Determine
 – Wavefront error in the exit pupil of the system (phase)
• Issues
 – Optical fields are complex-valued quantities
 – Measured data (intensity) has only magnitude, no phase
 – Measured data corrupted with noise
• Solution strategies
 – Gerchberg-Saxton / iterative transform type algorithms
 – Non-linear optimization type algorithms
Nonlinear Optimization Phase Retrieval

- Parameterize problem in terms of a set of variables (e.g. Zernike coefficients)
- Generate wavefront (W) and/or field from parameters
- Propagate field to PSF plane
- Use an error metric to evaluate agreement between model and data\(^1\)
- Use standard non-linear optimization algorithm to reduce error metric value
- Analytic expressions for error metric gradients allow use of gradient search algorithms

\[E(W) = \frac{1}{K} \sum_{k} \left[\alpha_k I_k(u) + \beta_k - D_k(u) \right]^2 \]

\[I_k(u) = \left| F \left[A(x) \exp \left(\frac{2\pi}{\lambda} W(x) \right) \right] \right|^2 \]

(simplified)

Broadband Phase Retrieval

• Use cases for broadband phase retrieval
 – Narrow spectral filters unavailable
 – Dim sources
 – Low throughput due to misalignment
 – Short exposures times
 • Pointing instability (space)
 • Atmospheric instability (ground based AO)
 – Segment piston determination

• Traditional approach1,2
 – Simulate multiple individual wavelengths
 – Rule of thumb: 1 wavelength per 5\% fractional bandwidth
 – Add incoherently to simulate polychromatic PSF
 – Do normal nonlinear optimization phase retrieval

Array Sizes

- Fine for modest bandwidth
- Very computationally intensive for large bandwidths
 - More wavelengths \rightarrow more computation
 - Linear in number of wavelengths
 - Shorter wavelengths \rightarrow larger arrays \rightarrow more computation
 - Pupil sampling requirement
 - Avoid π phase jumps
 - Phase for given OPD increases with shorter wavelength
 - Array size inversely proportional to wavelength
 - Cost approximately quadratic in array size

Monochromatic Pupil
3 μm, 128x128

Broadband Pupil
1-5 μm, 384x384
Array Sizes

- Shorter / longer wavelengths \rightarrow under / over sampling \rightarrow more computation
 - PSF initially computed on large array
 - Requires padding in pupil domain

Monochromatic Pupil
342x342

Broadband Pupil (largest) 1518x1518
Solution Motivation

- Achromatic system
 - Reflecting telescopes
 - Color corrected instruments
- OPD / rays the same at all wavelengths
- Geometrical optics spot diagram the same at all wavelengths
- For poorly corrected systems geometrical optics should predict PSF shape
- PSF shape should be roughly the same at all wavelengths
- Only high frequency diffraction effects depend strongly on wavelength
Approximation Procedure

- Data D, blurring kernel B, forward model F, wavefront W, K image planes
- Blur measured PSF data with Gaussian kernel (suppress diffraction effects)
 \[D_{B,k} = B \otimes D_k \]
- Simulate monochromatic PSF at the center wavelength
 \[I_k = F_{\lambda,k}[W] \]
- Blur modeled PSF with same Gaussian kernel
 \[I_{B,k} = B \otimes I_k = B \otimes F_{\lambda,k}[W] \]
- Use non-linear optimization to fit blurred data against blurred model
 \[
 E(W) = \frac{1}{K} \sum_k \frac{\sum_u \left[\alpha_k I_{B,k}(u) + \beta_k - D_{B,k}(u) \right]^2}{\sum_u \left[D_{B,k}(u) \right]^2}
 \]
Broadband Test Case (FGS-like)

• Similar to JWST Fine Guidance Sensor (FGS)
• F/8 system
• 18 μm pixels
• 1-5 μm bandwidth (133% fractional bandwidth)
 — Flat spectrum
• Modeled detector area: 128x128 pixels (artificially small)
• Noise model: 50,000 photons in peak pixel, 25 photons of read noise, 100 photon noise-free bias
• Measured point spread functions at –2, 0, 2 waves center to edge defocus
• Modeled with monolithic aperture
• Monte Carlo simulation
 — 64 trials
 — Minimum wavefront error: 0.025 waves RMS
 — Maximum wavefront error: 0.500 waves RMS
Broadband Phase Retrieval Results

-2 waves defocus 0 waves defocus +2 waves defocus

Data

Broadband Model

Quarter power stretch
Broadband Phase Retrieval Results

True OPD (wv) Result OPD (wv) Error OPD (wv)

OPD in waves
Unblurred PSFs (Monolithic)

-2 waves defocus | 0 waves defocus | +2 waves defocus

Data

Unblurred Monochromatic

Quarter power stretch
Blurred PSFs (Monolithic)

-2 waves defocus | 0 waves defocus | +2 waves defocus

Data

Blurred Monochromatic

Quarter power stretch
Wavefront Retrieval Results With Blurring

True OPD (wv) Result OPD (wv) Error OPD (wv)

OPD in waves
Monte Carlo Results

Accuracy Comparison

- Trials
- Break-even line

Approximate Better
Approximate Worse
Segmented Systems

• Monolithic System Results
 – Good results for monolithic system
 – 270x speed improvement
 – Small loss in accuracy
 – How does approximation perform for a segment system?

• Segmented test case
 – Same 1-5 µm FGS-like system
 – Global aberration model: Third order aberrations
 – Segment aberration model: Piston, tip, tilt
 – Monte Carlo simulation
 • 16 trials
 • 0.1 waves RMS wavefront errors
Unblurred PSFs (Segmented)

-2 waves defocus 0 waves defocus +2 waves defocus

Data

Unblurred Monochromatic
Blurred PSFs (Segmented)

-2 waves defocus 0 waves defocus +2 waves defocus

Data

Blurred Monochromatic
Results, Segmented System
Accuracy Comparison: Segmented System

Accuracy Comparison for Segmented System

- Blurred Monochromatic
- Unblurred Monochromatic
Segmented System

- Reduced Accuracy with segmented system
- Possible causes
 - More diffraction
 - More variables (higher order phases)
 - Which is responsible?
- To investigate
 - Apply segmented system mask to low order phases
 - Same phase model as monolithic aperture
 - Same aperture mask as segmented system
 - Isolates diffraction effect from higher order phase effect
 - Limit study to 0.25 waves wavefront to avoid issues with large wavefronts
Results: Segmented Mask

- True OPD (waves)
- Result OPD (waves)
- Error OPD (waves)
<table>
<thead>
<tr>
<th>-2 waves defocus</th>
<th>0 waves defocus</th>
<th>+2 waves defocus</th>
</tr>
</thead>
</table>

Data

Unblurred Monochromatic
Blurred PSFs (Segmented Mask)

-2 waves defocus 0 waves defocus +2 waves defocus

Data

Blurred Monochromatic
Accuracy Comparison: Three Cases

Medians:
- Monolithic: 0.004 waves
- Mask: 0.009 waves
- Segments: 0.0308 waves

Both diffraction and higher order phase reduce accuracy!
Conclusion

- Broadband phase retrieval needed when:
 - Narrow spectral filters unavailable
 - Dim sources
 - Low throughput due to misalignment
 - Short exposures times
 - Pointing instability (space)
 - Atmospheric instability (ground based AO)
- Traditional approach is computationally burdensome for extreme bandwidths
- Approximate approach
 - Substitute monochromatic model
 - Blur model and data
- Test case performance
 - ~270x reduction in computational cost for FGS-like test case
 - Good accuracy for monolithic system
 - Acceptable accuracy for segmented systems
 - Reduced by diffraction
 - Reduced by higher order segment model
Questions?