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Mechanics

A device that enables the auto-
mated cutting and transfer of plant
shoots is undergoing development
for use in the propagation of plants
in a nursery or laboratory. At present,
it is standard practice for a human
technician to use a knife and forceps
to cut, separate, and grasp a plant
shoot. The great advantage offered
by the present device is that its design
and operation are simpler than
would be those of a device based on
the manual cutting/separation/grasp-
ing procedure. [The present device
should not be confused with a prior
device developed for partly the same
purpose and described in “Compliant
Gripper for a Robotic Manipulator”
(NPO-21104), NASA Tech Briefs, Vol.
27, No. 3 (March 2003), page 59.]

The device (see figure) includes a
circular tube sharpened at its open
(lower) end and mounted on a ro-
botic manipulator at its closed (upper)
end. The robotic manipulator simply
pushes the sharpened open end of the
tube down onto a bed of plants and ro-
tates a few degrees clockwise then coun-
terclockwise about the vertical axis, caus-
ing the tube to cut a cylindrical plug of
plant material. Exploiting the natural
friction between the tube and plug, the
tube retains the plug, without need for a
gripping mechanism and control.

The robotic manipulator then re-
tracts the tube, translates it to a new lo-
cation over a plant-growth tray, and in-

serts the tube part way into the growth
medium at this location in the tray. A
short burst of compressed air is admit-
ted to the upper end of the tube to eject
the plug of plant material and drive it
into the growth medium.

A prototype has been tested and veri-
fied to function substantially as intended.
It is projected that in the fully developed
robotic plant-propagation system, the
robot control system would include a ma-
chine-vision subsystem that would auto-
matically guide the robotic manipulator

in choosing the positions from which to
cut plugs of plant material. Planned fur-
ther development efforts also include
more testing and refinement of the de-
sign and operation described above.

This work was done by Raymond Cipra,
NASA Summer Faculty Fellow from Purdue
University, Hari Das and Khaled Ali of
Caltech, and Dennis Hong of Purdue Uni-
versity for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).
NPO-21137

Device for Automated Cutting and Transfer of Plant Shoots
This device is simple yet effective.
NASA’s Jet Propulsion Laboratory, Pasadena, California

DEVICE ON ROBOTIC MANIPULATOR DEVICE PUSHED DOWN ONTO PLANTS BY
 ROBOTIC MANIPULATOR
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Pushed Down Onto a Bed of Plants, the tube cuts and retains a plug of plant material. There is no need
for separate cutting and grasping mechanisms and their controls.

Extension of Liouville Formalism to Postinstability Dynamics
A fictitious stabilizing force is introduced.
NASA’s Jet Propulsion Laboratory, Pasadena, California

A mathematical formalism has been
developed for predicting the postinsta-
bility motions of a dynamic system gov-
erned by a system of nonlinear equa-
tions and subject to initial conditions.
Previously, there was no general
method for prediction and mathemati-
cal modeling of postinstability behav-

iors (e.g., chaos and turbulence) in
such a system.

The formalism of nonlinear dynamics
does not afford means to discriminate be-
tween stable and unstable motions: an ad-
ditional stability analysis is necessary for
such discrimination. However, an addi-
tional stability analysis does not suggest

any modifications of a mathematical
model that would enable the model to de-
scribe postinstability motions efficiently.
The most important type of instability that
necessitates a postinstability description is
associated with positive Lyapunov expo-
nents. Such an instability leads to expo-
nential growth of small errors in initial
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conditions or, equivalently, exponential
divergence of neighboring trajectories.

The development of the present for-
malism was undertaken in an effort to
remove positive Lyapunov exponents.
The means chosen to accomplish this is
coupling of the governing dynamical
equations with the corresponding Liou-
ville equation that describes the evolu-
tion of the flow of error probability. The
underlying idea is to suppress the diver-
gences of different trajectories that cor-
respond to different initial conditions,
without affecting a target trajectory,
which is one that starts with prescribed
initial conditions.

This formalism applies to a system of n
first-order ordinary differential equa-
tions in n unknown dynamical variables:

where i is an integer between 1 and n, xi
is one of the unknown dynamical vari-
ables, the overdot signifies differentia-
tion with respect to time, x is the vector
of all the dynamical variables (x1, x2, . . .
xn), and t is time. The prescribed initial
conditions are given by

The corresponding Liouville equation
for the evolution of the probability distri-
bution of errors in the initial conditions is

where f is the vector of all the forcing
functions (f1, f1, . . . fn). It is assumed
that this probability distribution peaks
at zero error (representing the pre-
scribed initial conditions). A fictitious
stabilizing force proportional to the gra-
dient of the probability density in the
space of the dynamical variables is
added to the system of differential equa-
tions, yielding the following system of
modified dynamical equations:

where ρ(x(t)) is the probability distribu-
tion and h0 is an arbitrary factor of pro-
portionality. The corresponding modi-
fied Liouville equation is

The stabilizing potential h0ρ creates a
powerful attractor that corresponds to
the occurrence of the target trajectory
with probability one.

Because the modified Liouville equa-
tion does not depend on the modified

dynamical equations, the modified Liou-
ville equation can be solved in advance,
so that the stabilizing force becomes a
known function. The modified Liouville
equation is solved subject to a normal-
ization constrain and to an initial condi-
tion (an initial probability distribution)
that can be specified somewhat arbitrar-
ily. The initial condition can be, for ex-
ample, a product of analysis of errors in
previous dynamical computations.

An application of this formalism to
Hamiltonian dynamics leads to a
demonstration of a formal similarity be-
tween the stabilizing potential and a
quantum potential that appears in the
Madelung form of the Schroedinger
equation of a single particle. Although
physical meaning of the quantum po-
tential is not completely understood,
loosely speaking, it can be interpreted as
a mechanism for enforcement of the un-
certainty relationship that bounds the
precision with which positions and ve-
locities can be observed.

This work was done by Michail Zak of Cal-
tech for NASA’s Jet Propulsion Laboratory.
Further information is contained in a TSP (see
page 1).
NPO-30393
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