
NASA Tech Briefs, September 2003 27

Information Sciences

Modernizing Fortran 77 Legacy Codes
The investment in established codes is preserved as modern capabilities are added.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An incremental approach to modern-
ization of scientific software written in the
Fortran 77 computing language has been
developed. This approach makes it possi-
ble to preserve the investment in legacy
Fortran software while augmenting the
software with modern capabilities to satisfy
expanded requirements. This approach
could be advantageous (1) in situations in
which major rewriting of application pro-
grams is undesirable or impossible, or (2)
as a means of transition to major rewriting.

Programs written in Fortran 77 and
other early versions of Fortran retain
much intellectual and commercial
value. These codes have been carefully
validated and often perform excel-
lently, even on modern computers.
However, the early versions of Fortran
are often not adequate for the compu-
tations needed for the increasingly
complex systems typically encountered
in current practice. For example, early
Fortran programs may not utilize dy-
namic memory or their data structures
may not reflect problem domains well.
Often, user interfaces are poor or
nonexistent. On the other hand, mod-
ern programming languages (most no-
tably, object-oriented languages) offer
much better support for complex pro-
gramming projects.

The developers of the present incre-
mental approach have found that con-

trary to the conventional wisdom among
object-oriented programmers, it is not
necessary to redesign codes from the
bottom up to make them object-ori-
ented. Many object-oriented programs
make use of non-object-oriented li-
braries for basic functions — for exam-
ple, calling operating systems. The im-
portant question in modernization of a
legacy code is whether the subroutines
in the code have sufficient basic func-
tionality. For most legacy codes that have
been in use for a decade or more, this is
the case. The weaknesses of legacy codes
arise with respect to flexibility, extensi-
bility, and related issues.

The present incremental approach is
based partly on the assumption that such
weaknesses can be addressed at a higher
level, by building interface software li-
braries that mediate between main pro-
grams and underlying legacy codes.
Major goals in this approach are to in-
crease program safety, simplify interfaces
to subroutines, add dynamic memory
management, encapsulate different parts
of programs, add abstract data types that
reflect the problem domains, and add or
improve user interfaces.

The present incremental approach
can be characterized as one of building
modern superstructures around legacy
codes rather than completely rewriting
those codes. Building such a superstruc-

ture increases the opportunity to reuse
the intellectual capital already invested
in the legacy code and entails less risk
that the rewrite might not work prop-
erly. As much as possible, one avoids
modification of original subroutines; in-
stead, one strives to embed the modern
features in an interface library.

This approach admits of several
methodologies. One such methodology
is based on Fortran 90, because this lan-
guage has modern features yet main-
tains compatibility with older Fortran
software. Other methodologies could be
based on other modern computing lan-
guages (for example, C++) in which one
can write programs capable of calling
the original Fortran subroutines. Once
software constructed following this ap-
proach works correctly, there is always
the option of replacing individual pieces
of the legacy code, and eventually even
the entire code. One important advan-
tage of the use of a software superstruc-
ture is that the legacy code can still be
used during a modernization effort.

This work was done by Viktor Decyk and
Charles Norton of Caltech for NASA’s Jet
Propulsion Laboratory. Further informa-
tion is contained in a TSP (see page 1).

This software is available for commercial
licensing. Please contact Don Hart of the Cal-
ifornia Institute of Technology at (818) 393-
3425. Refer to NPO-21166.

Active State Model for Autonomous Systems
Autonomous systems would be able to diagnose themselves and respond accordingly.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The concept of the active state model
(ASM) is an architecture for the devel-
opment of advanced integrated fault-de-
tection-and-isolation (FDI) systems for
robotic land vehicles, pilotless aircraft,
exploratory spacecraft, or other com-
plex engineering systems that will be ca-
pable of autonomous operation. An FDI
system based on the ASM concept would
not only provide traditional diagnostic

capabilities, but also integrate the FDI
system under a unified framework and
provide mechanism for sharing of infor-
mation between FDI subsystems to fully
assess the overall “health” of the system.

The ASM concept begins with defini-
tions borrowed from psychology, wherein
a system is regarded as active when it pos-
sesses self-image, self-awareness, and an
ability to make decisions itself, such that

it is able to perform purposeful motions
and other transitions with some degree of
autonomy from the environment. For an
engineering system, self-image would
manifest itself as the ability to determine
nominal values of sensor data by use of a
mathematical model of itself, and self-
awareness would manifest itself as the
ability to relate sensor data to their nom-
inal values. The ASM for such a system


