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For a multi-hole test probe undergoing wind tunnel tests, the resulting data needs to be 

analyzed for any significant trends.  These trends include relating the pressure distributions, 

the geometric orientation, and the local velocity vector to one another.  However, 

experimental runs always involve some sort of error.  As a result, a calibration procedure is 

required to compensate for this error.  For this case, it is the misalignment bias angles 

resulting from the distortion associated with the angularity of the test probe or the local 

velocity vector.  Through a series of calibration steps presented here, the angular biases are 

determined and removed from the data sets.  By removing the misalignment, smoother 

pressure distributions contribute to more accurate experimental results, which in turn could 

be then compared to theoretical and actual in-flight results to derive any similarities.  Error 

analyses will also be performed to verify the accuracy of the calibration error reduction.  

The resulting calibrated data will be implemented into an in-flight RTF script that will 

output critical flight parameters during future CCIE experimental test runs.  All of these 

tasks are associated with and in contribution to NASA Dryden Flight Research Center’s     

F-15B Research Testbed’s Small Business Innovation Research of the Channeled 

Centerbody Inlet Experiment. 

Nomenclature 

CCIE   =    Channeled Centerbody Inlet Experiment 

CFD   =    Computational Fluid Dynamics 

Cs   =    Static Pressure Coefficient 

      =    Angle of Attack Static Pressure Coefficient 

   
   =    Sideslip Angle Static Pressure Coefficient 

Ct   =    Total Pressure Coefficient 

      =    Angle of Attack Total Pressure Coefficient 

   
   =    Sideslip Angle Total Pressure Coefficient 

Cα   =    Angle of Attack/Pitch Pressure Coefficient 

   
   =    α - Pitch Coefficient Offset 

Cβ   =    Sideslip Angle/Yaw Pressure Coefficient 

   
   =    β - Pitch Coefficient Offset 

DFRC   =    Dryden Flight Research Center 

M   =    Mach Number 

MSFC/ARF TWT =    George C. Marshall Space Flight Center Aerodynamic Research Facility 14 × 14-inch Trisonic 

 Wind Tunnel 

NASA   =    National Aeronautics and Space Administration 

Pa   =    Average of Probe Static Pressures 

Po   =    Wind Tunnel Total Pressure, psi 

Ps   =    Wind Tunnel Static Pressure, psi 

P1   =    Probe Total Pressure Measured behind Normal Shock at Cone Apex, psi 

P2   =    Probe Static Pressure to the right of P1, psi 

P3   =    Probe Static Pressure below P1, psi 

P4   =    Probe Static Pressure to the left of P1, psi 

P5   =    Probe Static Pressure above P1, psi 

                                                           
*
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Qbar   =    Pseudo/Probe Dynamic Pressure, psi 

Qbar - true   =    True Dynamic Pressure, psi 

RTF   =    Real-Time Fortran 

SBIR   =    Small Business Innovation Research 

      =    Local Velocity Vector 

Xp   =    X-axis of Probe Coordinate System 

Yp   =    Y-axis of Probe Coordinate System 

Zp   =    Z-axis of Probe Coordinate System 

α   =    Angle of Attack/Pitch Angle, deg 

αo   =    Vertical Misalignment Angle with Probe Rotated 0° and 180°, deg 

β   =    Sideslip Angle/Yaw Angle, deg 

βo   =    Vertical Misalignment Angle with Probe Rotated ± 90°, deg 

γ   =    Ratio of Specific Heats 

δ   =    Uncertainty 

θ   =    Pitch Angle, deg 

φ   =    Roll Angle, deg 

I. Introduction 

UPERSONIC and hypersonic vehicles require inlets with an efficient geometric design that would provide 

suitable air mass flow into its engines for better low Mach number flight operations.  At low supersonic 

conditions, inlets must be able to provide a substantial amount of transonic airflow in order to meet the engines’ 

demand.  As a result, a large inlet throat area is required to fulfill this requirement.  This could potentially allow for 

higher efficiency engine combined cycle propulsion systems, such as the Rocket-Based Combined Cycle (RBCC) 

and the Turbine-Based Combined Cycle for supersonic cruise or hypersonic acceleration.  Research into this area is 

currently underway with the Channeled Centerbody Inlet Experiment (CCIE), as seen in Fig. 1, at the NASA 

Dryden Flight Research Center in conjunction with the TechLand Research Incorporation through NASA’s Small 

Business Innovation Research (SBIR) contract.
 1
 

 The overall objective of the CCIE research is to investigate the off-design performance of a supersonic inlet with 

a variable geometry at varying Mach test points.  The two primary factors that researchers hope to derive from this 

study is the inlet flow of both the channeled centerbody and the equivalent area smooth centerbody and how well the 

flight results compare to the CFD calculations.  The channeled centerbody, shown in Fig. 2a, has grooved channels 

along the centerbody to enhance flight at off-design 

conditions.  These grooves or channels in the centerbody 

allow for additional throat area to increase the amount of 

mass flow coming into the inlet during off-design flight.  

The benefit of having these grooves results in lower 

internal compression, which allows an aircraft designer 

to select a mixed-compression inlet configuration often 

used for high supersonic and hypersonic applications 

due to its high total pressure recovery and desired high-

speed cruise performance.  The equivalent smooth 

centerbody, shown in Fig. 2b, however, has no grooves.  

The absence of these grooves means that the throat area 

is smaller and aircraft designers must choose an inlet 

with high internal compression in order to provide the 

amount of mass flow the engine needs at off-design 

conditions.  This option means the designer has to risk 

the high probability of inlet unstart and low operability 

since this type of inlet with a fixed-geometry requires 

overspeeding.
1-2  

With flight testing, researchers hope to 

find out the overall performance of the channeled 

centerbody and how it compares to the equivalent 

smooth centerbody.  It should be noted that TechLand’s 

concept is a translating channeled centerbody capable of 

changing the cross-sectional area geometry, while the 

S 

 
Figure 1.  The Channeled Centerbody Inlet 

Experiment (CCIE) is shown here as the gold 

structure mounted underneath the black 

Propulsion Flight Test Fixture (PFTF), which in 

turn is attached to the F-15D centerline pylon 

through two suspension lugs so that all the loads 

are transferred to the aircraft.  
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one being tested at NASA DFRC is a fixed geometry design.  If the flight results provide results as expected, the 

channeled centerbody inlet concept could potentially be implemented for both commercial and space applications in 

the near future, ranging from supersonic transports to space-access vehicles. 

Prior to any flight testing, one of the tests that prepared the CCIE was a wind tunnel test that obtained data for 

the 5-hole pressure probes, 4 static and 1 total, located near the nose cone apex, shown in Fig. 3 mounted in the test 

section.  In addition, the conical probe has a 16° cone semivertex or half-angle.  The wind tunnel test was conducted 

in June 2010 at the George C. Marshall Space Flight Center Aerodynamic Research Facility 14 × 14-inch Trisonic 

Wind Tunnel (MSFC/ARF TWT), which recently upgraded its facility with a new data acquisition and tunnel 

control system.  The MSFC/ARF TWT is an intermittent blow-down tunnel where high-pressure air from outside 

storage tanks flows through a diffuser, a heat exchanger, and into one of two test sections, the transonic or the 

supersonic test sections.  The transonic test section is capable of producing Mach numbers ranging from 0.2 to 2.5, 

whereas the supersonic test section produces Mach numbers from about 2.7 to 5.0.
4
  For this particular test, the 

transonic test section was utilized as the CCIE’s intent is to investigate off-design low supersonic conditions.  The 

test points included testing at Mach numbers 1.2, 1.3, 1.46, and 1.69, and for each test point, the probe was set at roll 

angles, φ of 0°, 90°, 180°, and -90° with positive angle 

representing counterclockwise rotation and negative 

angles representing clockwise rotation.  In addition, 

pitch sweeps were conducted at each Mach condition to 

gather measurements for angle of attack, α and angle of 

sideslip, β.  The test section is only capable of 

traversing in the vertical direction and as a result, 

sideslip had to be measured as pitch maneuver, not a 

yaw horizontal maneuver. The wind tunnel test resulted 

in data that was used later for calibration of flow 

angularity in the pitch and yaw planes as well as the 

Mach number values that the pressure probes were 

reading.
 5
 

During the wind tunnel test of the CCIE’s 5-hole 

pressure probe, it was not expected that the test article 

would remain stationary at one set location and neither 

the local velocity vector will be aligned, causing 

variations in the positioning of the two.  Small 

angularities contributed to the misalignment of either 

the probe or the local velocity vector and therefore, 

      
 

(a)                                                                                           (b) 

 

Figure 2.  The channeled centerbody (a) and the equivalent smooth centerbody (b) are two of the 

centerbodies that will be tested for the Channeled Centerbody Inlet Experiment (CCIE)
 
.
3
  Notice that the 

channeled centerbody has grooves providing more inlet area as opposed to the equivalent smooth 

centerbody.  The channeled centerbody was designed ideally for Mach 1.5 conditions. 

 
Figure 3.  The nose apex of the CCIE is where the 5-

hole pressure probe is located and is mounted here 

in the MSFC/ARF TWT transonic test section. 
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creates an angular bias that needs to be addressed in the calibration.
6
  As a result, calibration correction of the wind 

tunnel data for all the Mach number test points needs to be performed in order to determine the relationships 

between the measured pressures, the probe’s geometric orientation, and the local velocity vector.  The conical 

calibration and error reduction process of the CCIE wind tunnel data will produce calibration graphs from which 

they could be compared to one another to derive any significant trends amongst pressure and angular parameters in 

the low supersonic regime. 

II. Conical Probe Calibration Wind Tunnel Data Analysis & Procedures 

The conical probe calibration of the CCIE will consist of several major steps, each of which is critical to the 

accuracy of the outcome of the calibration.  These steps include identifying the key probe parameters and a 

coordinate system for reference purposes, calculating pressure coefficients of interest to the calibration, the conical 

calibration process itself detailing how misalignments are calculated 

and how they are dealt with, and the error and uncertainty analysis 

post-calibration process.  Eventually, the calibrated data and its maps 

will be used to construct an in-flight RTF code to output desired data in 

real-time during the CCIE’s experimental flight on the F-15B research 

aircraft. 

A. Establish the Probe Parameters and the Coordinate System 

Prior to performing the calibration and error reduction, multiple 

parameters need to be defined in order to have a clear understanding of 

how to perform the calculations.  First, the CCIE multi-hole pressure 

probes have to be labeled for reference purposes.  This particular multi-

hole probe has 5 ports, one measuring the total pressure and the other 

four measuring the static pressure.  In Fig. 4, the total pressure port is 

located in the center amongst the other ports and is designated as P1.  

The other ports surrounding P1 are the static pressure ports.  Starting at 

the right of P1 and going clockwise, the ports are labeled as P2, P3, P4, 

and P5.  The pressure measurements from these ports will allow non-

dimensional pressure coefficients to be calculated later on.  Utilizing a multi-hole pressure probe, also called an 

impact probe, allows more data collection capability than a standard pitot probe as it now could measure the 

direction of the flow velocity in three dimensions. 

In order to establish any angular parameters, 

such as angle of attack and roll angle, the probe’s 

position needs to be identified with a coordinate 

system.  During the wind tunnel test and data 

collection, the probe’s position is assumed to be 

fixed in space.  The velocity vector’s orientation 

will be measured with respect to the probe’s fixed 

coordinate system.  In Fig. 5, the probe coordinate 

system is shown with axes Xp, Yp, and Zp with the 

probe aligned along the Xp-axis.  The probe tip 

meets with the incoming local velocity vector,     at 

the origin.  Several angles that indicate the position 

of the probe in relation to the local velocity vector 

include angle of attack, α, sideslip angle, β, pitch 

angle, θ, and roll angle, φ.  The angle of attack or 

the pitch angle is the angle that the probe makes 

with respect to the oncoming flow about the Yp-axis.  

The sideslip angle or the yaw angle is the angle that 

the probe makes with the local velocity vector about 

the Zp-axis.
7
  Finally, the roll angle is the angle that 

the probe twists about its centerline on the Xp-axis. 

 
 

Figure 4. Looking head on, the 

CCIE multi-hole pressure probe is 

arranged in this manner for roll 

angle φ = 0°.  The probe, P1 

measures the total pressure, while 

the remaining probes P2, P3, P4, and 

P5 measure the static pressure. 

 
 

Figure 5. The probe coordinate system is illustrated 

above with the probe aligning along the Xp –axis.  The 

four angles of interest, angle of attack, α, sideslip 

angle, β, pitch angle, θ, and roll angle, φ are shown 

here and help in determining the orientation of both 

the probe and the local velocity vector. 
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B. Calculate the Pressure Coefficients 

With the pressure ports identified, an established coordinate system, and angular parameters defined, the data 

obtained from these independent variables can be used to determine the unknown dependent variables.
8
  These 

dependent variables consist of mostly pressure coefficients, which are later plotted against angles of interests and 

other pressure coefficients to determine behavioral trends in pressure due to different pitch and roll angles at a 

particular Mach number.  Pressure coefficients are significant as they describe the relative pressures about a point, in 

this case, the probe in a fluid flow field.  To determine these pressure coefficients, one variable needs to be 

calculated that will assist in non-dimensionalizing all of the pressure coefficient variables.  This variable is the 

average probe static pressure, Pa
 
and is equal to the arithmetic mean of the four measured static pressures on the 

multi-hole probe.  It can be calculated as  

 

   
 

 
             .            (1) 

 

The first pressure coefficient to be calculated is Cα, the angle of attack or the pitch pressure coefficient.  During 

wind tunnel measurements of the multi-hole pressure probe, Cα is associated with roll angles of φ = 0° and φ = 180°.  

By looking at the probe’s orientation in Fig. 4, these two roll angles align with pressure probes P1, P3, and P5.  

Therefore, Cα was calculated as the difference between the two static pressures non-dimensionalized by the 

difference between the total and average static pressures or simply as 

 

   
     

     
.                (2) 

 

The non-dimensionalization by the denominator, P1 - Pa in Eq. 2 is actually the pseudo or the probe dynamic 

pressure based on initial measured pressures and can be represented as Qbar.  Replacing the denominator in Eq. 2 

with the freestream dynamic pressure gives the revised Cα formula in Eq. 3 as  

 

   
     

    
.                (3) 

 

The MSFC/ARF TWT’s probe holder cannot traverse in the horizontal direction and as a result, data collection for 

sideslip maneuvers involves the probe being rotated at roll angles of φ = 90° and φ = -90°.  Subsequently, the 

sideslip angle or the yaw pressure coefficient, Cβ was calculated in the same manner, this time along the horizontal 

axis probes, P1, P2, and P4 as shown here in Eq. 4 as 

 

                   
     

    
              (4) 

 

The total pressure coefficient, Ct is the ratio between the difference in total pressures of the probe, P1 and the wind 

tunnel freestream condition, Po and the freestream dynamic pressure, Qbar.  This relation is represented in Eq. 5 as  

 

   
     

    
               (5) 

 

Similarly, the static pressure coefficient, Cs was calculated as the difference between the difference in the total 

pressure of the probe, P1 and the wind tunnel static pressure, Ps non-dimensionalized by the freestream dynamic 

pressure, Qbar.  Subtracting out Ps eliminates the static pressure component of the probe total pressure.  Thus, Cs was 

written in Eq. 6 as 

   
     

    
               (6) 

 

With all of the necessary pressure coefficients calculated, relationships were established between other parameters 

of interest, such as angle of attack and sideslip angle throughout the calibration process. 
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C. Determine the Vertical Misalignments 

Data collection for angle of attack and sideslip angle were both gathered from the MSFC/ARF TWT test as a 

vertical pitch maneuver since the probe holder in the wind tunnel was not able to traverse in the horizontal direction.  

Therefore, the discussion here will focus only on the vertical misalignment case as opposed to the horizontal 

misalignment case.  To assume that the probe is perfectly aligned with the flow field is an assumption that should 

never be made. In order to visualize the misalignment, plots were created for both the angle of attack and sideslip 

angle cases by plotting them with their respective dependent variable angle of attack and sideslip pressure 

coefficients, Cα and Cβ.  This was done for each of 

the Mach test points of 1.2, 1.3, 1.46, and 1.69.  For 

simplicity purposes, graphs at Mach 1.2 will be 

displayed here, while the remaining test points’ 

graphs could be viewed in the Appendix since their 

trends are similar.   

In Fig. 6a, Cα is plotted against angle of attack, α 

at roll angles, φ = 0° and φ = 180°, while in Fig. 6b, 

Cβ is plotted against the sideslip angle, β at roll 

angles of φ = 90° and φ = -90°.  For both cases, Cα 

and Cβ vary linearly with their respective angles 

with each data point having an associated error 

bound to it.  Due to the error associated with each 

data point during the wind tunnel test, the data 

points are of course not in a perfect straight linear 

line.  As a result, the data points for each roll angle 

need an associated line of best fit, since in theory the 

pressure coefficients, Cα and Cβ are linearly related 

to their corresponding angles, α and β.  For φ = 0°, 

the line of best fit for the pressure coefficient, Cα can 

be calculated as 

 

      
                  

           (7) 

 

where m1 is the slope of the best fit line of Cα at φ = 

0°, α is the angle of attack, and  αφ  °  α  ° 
 is the y-

intercept of the pressure coefficient when α = 0°.  

Likewise, at φ = 180°, Cα is calculated in Eq. 8 as  

 

          
                      

       (8) 

 

with m2 being the slope of the best fit line.  

Similarly, the sideslip case in Fig. 6b at φ = 90° and 

φ = -90° can have their lines of best fit for the 

pressure coefficient, Cβ written in Eq. 9 and 10 as 

 

         
                     

       (9) 

 

          
                      

     (10) 

 

where n1 and n2 are the slopes of the best fit lines for 

 βφ     °
 and           

, respectively.  Notice that the 

best fit lines for Cα at φ = 0° and φ = 180° and the 

best fit lines for Cβ at φ = 90° and φ = -90° cross one 

another in Fig. 6a and 6b since the slopes are almost 

equal in magnitude.   

 
 

             (a) 

 

 
            (b) 

 

Figure 6. For the Mach 1.2 test point, pressure 

coefficients, Cα and Cβ are plotted with their 

corresponding vertical pitch angles, α and β, 

respectively.  Cα values at φ = 0° and φ =180° as well as 

Cβ values at φ = 90° and φ =-90° intersect one another, 

varying linearly and are about equal in magnitude.  α 

and β values range from ±6°, while Cα and Cβ values 

ranged from about -0.08 to 0.08.  The small pressure 

coefficient value suggests high dynamic pressure at this 

particular test point. 
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The intersection of the two lines indicates the point where Cα and Cβ remains constant regardless of roll angle, as 

well as dictates the orientation the probe is aligned with the local velocity vector.  Also, this point is important as it 

determines the vertical misalignment angle, αo and βo, and the α and β-pitch coefficient offsets,    
 and    

.  

Remember that the probe in the wind tunnel cannot traverse in the horizontal direction and as a result, βo and     
 

will be treated as a vertical pitch maneuver.  Theoretically, the intersection of the two lines should rest at the origin 

with αo and βo equaling zero and Cα(0) and Cβ(0) should equal zero as well.  This assumes the probe in the wind 

tunnel is fixed in space and exactly aligned with the local velocity vector, requiring an accurate knowledge of the 

incoming flow angularity.  In addition, the theoretical condition assumes that the probe is symmetrically machined 

with precision, in which the static pressure ports, P2, P3, P4, and P5 are drilled equidistance from the probe tip, 

resulting in equal static pressure values when exactly aligned with the flow field.
9
  However, in reality, these 

assumptions often do not hold true.  As a result, vertical misalignment angles and pitch coefficient offsets are 

present and need to be calculated.  Eventually, the vertical misalignment will be removed from the wind tunnel data 

to enhance the calibration results.  To calculate the vertical misalignment angle, αo
 
from Fig. 6a, Eq. 7 and Eq. 8 are 

set equal to each other as this is the intersection point as shown in Eq. 11, 

 

                 
                      

.                     (11) 

 

Solving for α in Eq. 11 results in the vertical misalignment angle, αo in Eq. 12 

 

   
               

                  

     
,              (12) 

 

which is then substituted into Eq. 13 to solve for the α – pitch coefficient offset,  α 
 as shown here 

 

   
             

.                     (13) 

 

The same procedures could be then applied to calculate the vertical misalignment angle, βo and its corresponding β –

pitch coefficient,  β 
 as shown in Fig. 6b.  By setting Eq. 9 and Eq. 10 equal to one another as shown in Eq. 14,  

 

                    
                      

                     (14) 

 

and solving for β, the vertical misalignment for the sideslip case could be calculated through Eq. 15, 

 

   
                

                  

     
.              (15) 

 

Substituting βo into Eq. 16,  

 

   
              

                    (16) 

 

results in the β – pitch coefficient,  β 
.  Both the α and β – pitch coefficient offsets take into account of the aligning 

errors of the probe in the wind tunnel setup, as well as the asymmetric probe geometry when the probe was  

machined.   

These misalignment calculations were done for each of the four Mach conditions of interest to understand how 

both the angle of attack and sideslip angle behaved in the wind tunnel compared to the theoretical case.  Remember 

that the theoretical condition assumes perfection in alignment and probe geometry, resulting in absolutely no 

misalignment and in turn the pitch coefficient offsets would be zero.  In Table 1, the vertical misalignment angles 

and the pitch coefficient offsets for both the angle of attack and the sideslip angle are listed with their corresponding 

Mach test points.  The value for vertical misalignment angles, αo and βo vary with Mach number.  Mach 1.3’s 

vertical misalignment values of -1.0° ± 0.2° and -1.2° ± 0.2° were off the most in magnitude compared to Mach 

1.46’s case of 0.3° ± 0.2° and 0.4° ± 0.2°.  The further away the misalignment angle’s magnitude is from zero, the 

more bias there will be from the experimental run.  Since it is known that the same probe was used throughout, 

geometry therefore is consistent with each test, implying that flow conditions and alignment of the probe 

significantly affected the vertical misalignment values.  It should be noted that these wind tunnel tests were 
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conducted over several days and aligning the probe could introduce small bias to the resultant data.  For the pitch 

coefficient offsets,    
 and    

, a descending trend is noted with increasing Mach number.  From Eq. 3 and Eq. 4, at 

high supersonic speeds, the dynamic pressure, Qbar increases due to an increase in both the static and total pressures.  

The pressure coefficient is related to the inverse of dynamic pressure and as a result, high Mach situations build up 

dynamic pressure, resulting in low pressure coefficient values.    

D. Remove Vertical Misalignment from Data 

In order to create calibration maps of the pressure coefficient relation to its angular counterpart, the vertical 

misalignment angle or angular bias has to be eliminated.  Typically, this is done through a series of angular rotations 

and transformations of the probe about its axes to derive the incoming velocity components prior to rotation.
10

  

However, this particular calibration won’t be looking into detail at the incoming flow, but rather preparing corrected 

data to be used for in-flight real-time data collection.  Removal of the angular bias is quite simple by taking the 

angle of attack and the sideslip angle and subtracting out its vertical misalignment angle, αo and βo, respectively.  

This results in a corrected value of angle of attack, αcorrected, and sideslip angle, βcorrected as shown here in Eq. 17 and 

Eq. 18: 

                                    (17) 

 

                 .                    (18) 

 

The Cα and Cβ plots with their respective angles are shown below in Fig. 7a and 7b with the misalignment angle 

removed for Mach 1.2 conditions.  This means the intersection of the two roll angle data lines now sits on the α and 

β-axes at 0°.  Essentially, this allows the pressure coefficient values to behave more like the theoretical conditions in 

the calibrated data. 

Table 1.  The values of vertical misalignment angles, αo and βo and their respective pitch coefficient offsets, 

   
and    

 are shown here at different Mach test point conditions. 

MACH αo (deg)    
 βo (deg)    

 

1.20 0.6 ± 0.2 -0.008 ± 0.002 0.7 ± 0.2 -0.003 ± 0.001 

1.30 -1.0 ± 0.2 -0.005 ± 0.003 -1.2 ± 0.2 -0.0023 ± 0.0003 

1.46 0.3 ± 0.2 -0.004 ± 0.001 0.4 ± 0.2 -0.001 ± 0.001
 

1.69 0.7 ± 0.2 -0.001 ± 0.002 0.8 ± 0.2 -0.001 ± 0.001
 

 

 
 

(a)                                                                                    (b) 

Figure 7. The pressure coefficients, Cα and Cβ are plotted with their corresponding vertical pitch angles, α 

and β, respectively for Mach 1.2 conditions with the vertical misalignment angle removed for each case.  

Notice the shift at the intersection point as it aligns at αcorrected = 0° and βcorrected = 0°. 
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E. Determine Pitch and Yaw Angle Polynomials 

Two important in-flight parameters that need to be monitored during experimental test flights are angle of attack, 

α, and sideslip angle, β, which are essentially the pitch and yaw motions on an aircraft, respectively.  The in-flight 

real-time Fortran (RTF) script must include equations on how to calculate these two angles, but from Fig. 7, it looks 

as if there are a set of two equations for both angle of attack at φ = 0° and 180° and sideslip angle at φ = 90° and        

-90°.   This is because at roll angles, φ = 180° and φ = -90°, the probe is oriented to measure in the negative 

orientation 180° apart from its positive orientation of φ = 0° and φ = 90°, respectively.  Looking at the multi-hole 

pressure probe arrangement in Fig. 4, to measure the angle of attack, the pressure probe is positioned at φ = 0°, with 

pressure ports P5 located at the top and P3 located at the bottom.  Likewise, measuring sideslip involves positioning 

the probe at φ = 90°, with pressure ports P2 located at the top and P4 located at the bottom, since the wind tunnel has 

no horizontal movement capability.  At φ = 180°, angle of attack is measured with pressure ports P5 and P3 being 

switched with one another and this is the same with sideslip measurements at φ = -90° with P2 now measuring at the 

bottom and P4 at the top.  Since α and β are measured in the negative orientation at φ = 180° and φ = -90°, their data 

values must be multiplied by negative one.  Usually, angular transformations are done to correct the orientation, but 

since these roll angles are orthogonal, the correction process was simplified.  In summary, the pitch angle, θ at φ = 

0° and φ = 90° are equal to α and β, respectively, whereas at φ = 180° and φ = -90°, θ is equal to –α and –β. 

With the negative orientation at roll angles φ = 180° and φ = -90° accounted for, Cα and Cβ are both plotted again 

for all Mach test points with their respective angles of α and β, this time with both the original and the corrected data 

with the vertical bias removed.  Below in Fig. 8a and 8b, the pressure coefficients are plotted against their 

corresponding angles for the Mach 1.2 test condition.   Notice that for both plots that the corrected data are 

independent of roll angle.  For both the angle of attack and sideslip angle scenarios, their corrected angles with the 

vertical misalignment eliminated, αcorrected and βcorrected, are more closely packed together, forming a nice linear trend.  

From Table 1, it can be inferred that the Mach test points with lower vertical misalignment values of αo and βo will 

have both their original and corrected α and β values closer in proximity to each other, such as Mach 1.46 as 

opposed to Mach 1.3 with the highest values of αo and βo.  The plots for the Mach 1.3, 1.46, and 1.69 case could be 

viewed in the Appendix for reference. 

The linear trend produced by the graphs in Fig. 8 between the pressure coefficients and the corrected α and β data 

is much better than that of the original data, but the corrected data is still slightly off as some data points don’t 

necessarily follow in a straight line.  Knowing that both the pressure coefficients, Cα and Cβ and their respective 

angles, α and β are linearly related, a line of best fit could therefore be used to represent the theoretical angle of 

attack and sideslip angle based on the wind tunnel data.  By making αcorrected and βcorrected the dependent variable in 

 
 

(a)                                                                                    (b) 

Figure 8. For the Mach 1.2 test point, the pressure coefficients, Cα and Cβ are plotted against their 

respective angles, α and β, with their original data with the misalignment and the corrected data with the 

misalignment removed.  With both the corrected data taking into account of the negative orientation at roll 

angles φ = 180° and φ = -90°, the pressure coefficient relationship with their pitch and yaw angles are now 

essentially independent of roll angle and vary linearly.
11
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the graphs in Fig. 8, solving for these dependent variables is simple by using MATLAB’s data fitting tool.  Figure 9 

displays the line of best fit between the corrected angle of attack and sideslip angle with their corresponding 

pressure coefficients at Mach 1.2 conditions. 

With the aid of MATLAB, the remainder test points had their pitch and yaw angle polynomials calculated at 

Mach 1.3, 1.46, and 1.69.  Table 2 shows the list of angle of attack and sideslip angle equations for each of the 

associated Mach test points.  These equations will be used in conjunction with other equations developed along the 

way to create the in-flight RTF script for the CCIE.  The CCIE’s focus is in the supersonic regime primarily between 

Mach 1.2 and Mach 1.69.  The RTF code will eventually have to interpolate the solutions between each equation in 

order to get the angle of attack and the sideslip angle values that are not exactly right at the calibration Mach test 

point.  This will be furthered discussed in detail later on in this report. 

F. Determine Total and Static Pressure

 Coefficient Polynomials 

The total pressure coefficient, Ct and 

static pressure coefficient, Cs were 

previously calculated in Eq. 5 and 6.  The 

task now is to find a relationship that 

relates these two pressure coefficients as a 

function of the pitch pressure coefficient, 

Cα and the yaw pressure coefficient, Cβ.  

The procedure for this is similar to the 

previous section on determining the pitch 

and yaw coefficient polynomials.  The 

trends in both the total pressure 

coefficient as well as the static pressure 

coefficient for all the Mach test conditions 

will be compared to the theoretical case to 

see how well the wind tunnel test results 

did.  The resulting wind tunnel results will 

be then fitted to formulate equations for Ct 

and Cs that will then be incorporated into 

the in-flight RTF code. 

 
 

(a)                                                                                     (b) 

Figure 9.  The lines of best fit are shown here between the αcorrected and Cα plot (a) and the βcorrected and Cβ 

plot (b).  This linear fit curve represents the theoretical angle of attack and sideslip angle equations as a 

function of pressure coefficients based on the wind tunnel data obtained.  These equations will eventually be 

implemented with the in-flight RTF script as α = α (Cα) and β = β (Cβ). 

Table 2.  The pitch and yaw angle polynomials are shown in this 

table for each of the Mach number test points.  All of these 

equations were derived based on the linear line of best fit 

between αcorrected and Cα as well as between βcorrected and Cβ.  

These equations are to be utilized in the in-flight RTF code to 

calculate both the angle of attack and sideslip angle. 

MACH α β 

1.20 89.1385Cα + 0.7089 90.4277Cβ + 0.2841 

1.30 94.6015Cα + 0.5037 100.0237Cβ + 0.2179 

1.46 108.0175Cα + 0.4175 112.3877Cβ + 0.1192 

1.69 99.9231Cα + 0.1318 100.8961Cβ + 0.0871 
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Figures shown previously at Mach 1.2 had the same behavior at Mach numbers 1.3, 1.46, and 1.69, but plots 

involving the total and the static pressure coefficient are an exception as they behave a bit differently.  The angle of 

attack total pressure coefficient,   α
, and the sideslip angle total pressure coefficient,    

, are both plotted in Fig. 10 

and Fig. 11 as a function of Cα and Cβ, respectively for test points at Mach 1.2, 1.3, 1.46, and 1.69.  These side by 

side comparisons between the test points reveal that the angle of attack total pressure coefficient trend behavior does 

not stay consistent.  Mach 1.2 and Mach 1.46 had a linear fit as opposed to Mach 1.3 and Mach 1.69 with a 

quadratic fit.  For the Mach 1.2 instance in Fig. 10a, the linear fit fell near all the data points and within their error 

bounds.  Mach 1.46 in Fig. 10c deviated from the other Mach numbers as its line of best fit, despite higher order 

 
 

(a)                                                                                    (b) 

 

 
 

(c)                                                                                     (d) 

Figure 10.  The angle of attack total pressure coefficient,     is plotted as a function of the angle of attack 

pressure coefficient, Cα for test points at Mach 1.2 (a), Mach 1.3 (b), Mach 1.46 (c), and Mach 1.69 (d).  Cα 

values remained consistent for all Mach numbers, ranging from -0.08 to 0.08, while     values increase in 

magnitude with higher Mach numbers, but overall remain close to zero since the total pressure coefficient 

subtracts out the wind tunnel total pressure, Po as seen in Eq. 5.  Lines of best fits were obtained for each test 

point, with Mach 1.46 being the worst of the fits.  Higher order fits did not even perform well at this 

particular test point, but since the range of    
 was small as seen in the y-axis scaling, a first-order fit was 

acceptable.  With the other Mach numbers performing well fitting wise, the Mach 1.46 test point may have 

encountered either a pressure reading issue with the wind tunnel pressure transducers or a non-uniform 

flow field.  
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attempts, had trouble acquiring a noticeable trend.  Since   α
 data values at Mach 1.46 only differ from one another 

by a few thousandths, it was decided a first-order linear fit should work fine.  The purpose of the line fitting is not to 

connect all the wind tunnel data points, but rather obtain a trend that best describes the behavior at that test 

condition. 

The similar behavior observed as seen in Fig. 10 could be seen in Fig. 11 with the sideslip angle total pressure 

coefficient,    
 plotted as a function of the yaw pressure coefficient, Cβ for all the Mach number test points.  Again, 

Mach 1.2 and 1.46 were fitted linearly, while Mach 1.3 and 1.69 had a quadratic fit.  In addition,    
 values were 

comparable to that of    .  This will help in the approximation of a single total pressure coefficient, Ct value later on 

when computing the desired flow properties.  At Mach 1.2, both lines of best fit for   α
 and    

 shown in Fig. 10a 

and Fig. 11a suggest a mean value between -0.015 and -0.016.  Mach 1.3 and Mach 1.69 conditions for both the 

angle of attack and sideslip angle total pressure coefficients showed a decrease in magnitude at the end limits of 

their pitch and yaw pressure coefficients.  Mach 1.46, however, demonstrated a similar behavior as seen in Fig. 10c 

may have been caused by either a pressure reading issue, a flow disturbance due to a non-uniform flow field, or 

 
 

(a)                                                                                     (b) 

 

 
 

(c)                                                                                     (d) 

Figure 11.  The sideslip angle total pressure coefficient,    
 is plotted as a function of the angle of attack 

pressure coefficient, Cα for test points at Mach 1.2 (a), Mach 1.3 (b), Mach 1.46 (c), and Mach 1.69 (d).  

Notice the similarity in the trends and values between the sideslip angle and angle of attack total pressure 

coefficient figures.   



13 

NASA Dryden Flight Research Center 

experiencing a resonating frequency.  This will be further looked into later on by the CCIE aerodynamicists. 

Static pressure coefficient trends for all the test points resulted in a similar concave down behavior for both the 

angle of attack and the sideslip angle cases.  Below in Fig. 12, the angle of attack static pressure coefficient,    
 is 

plotted in variation with the pitch pressure coefficient, Cα for all the four Mach test conditions.  With increasing 

Mach number, the freestream wind tunnel static pressure, Ps decreased, while the dynamic pressure increased.  From 

Eq. 6, this resulted in lower values of the static pressure coefficient as the Mach number goes higher.  The wind 

tunnel results have      values around a value of one, which is expected based on Eq. 6.  Based on Fig. 12 for all test 

points, slightly lower values of    occurred at the low and high ends of Cα.  When these graphs were fitted, a 

quadratic fit was used for Mach 1.2, 1.3, and 1.69, while Mach 1.46 with its steeper concave down trend required a 

cubic fit for higher accuracy.  Much of the data points along with their error bars fell within reach of the lines of best 

fit.  Since these low order fits were capable of matching the angle of attack static pressure coefficient’s trends, other 

higher order fit polynomials were not needed. 

 
 

(a)                                                                                     (b) 

 

 

 
 

(c)                                                                                     (d) 

Figure 12. The angle of attack static pressure coefficient,     is plotted as a function of the pitch pressure 

coefficient, Cα for Mach 1.2 (a), Mach 1.3 (b), Mach 1.46 (c), and Mach 1.69 (d).  The plots here involving  

the static pressure coefficient observed a more comparable behavior amongst all the test points with its 

concave down trend fit.  Values of     increased with ascending Mach number varying anywhere between 

1.03 and 1.095. 
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Like    
, the sideslip angle static pressure coefficient,    

 behaved similarly as plotted in Fig. 13 for all the four 

Mach conditions as a function of the yaw pressure coefficient, Cβ.  Trends in the best fit lines and the ranges of 

values for    
are analogous to that of the angle of attack case.  Comparing the angle of attack and the sideslip angle 

case for the total pressure coefficient plots in Fig. 10 and 11 and the static pressure coefficient plots in Fig. 12 and 

13 evidently reveal that regardless of the probe orientation, the values of total pressure coefficient and static pressure 

coefficient hardly changed between the angle of attack and the sideslip angle scenario.  So far, these graphs have 

been analyzed separately as the total pressure coefficient and the static pressure coefficient cases with respect to 

their corresponding angular pressure coefficients.  Since their data points vary by mere tenths or thousandths of a 

decimal place, the resulting lines of best fit trends could only be viewed up close.  If the these coefficients, total and 

static, were plotted simultaneously on the same graph with their respective pitch and yaw pressure coefficients, Cα 

and Cβ, resultant horizontal linear lines of no slope would represent the values of the total and static pressure 

coefficients as near 0 and 1, respectively.  This distinctive trend could be viewed in Fig. 14.  With the same exact 

behavior seen at every Mach test situation, only Mach 1.2’s and Mach 1.46’s trends will be shown due to their  

 
 

(a)                                                                                     (b) 

 

 
 

(c)                                                                                     (d) 

Figure 13. The sideslip angle static pressure coefficient     is plotted as a function of the yaw pressure 

coefficient, Cβ for Mach 1.2 (a), Mach 1.3 (b), Mach 1.46 (c), and Mach 1.69 (d).  For each Mach test point, 

their figures are close in likeness to that of their counterparts in the angle of attack case in Fig. 12.  Mach 

test points 1.2, 1.3, and 1.69 were fitted with a 2
nd

 order best fit, whereas Mach 1.46 was fitted with a 3
rd

 

order trend line. 
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differing behavior in the total and static pressure coefficient graphs for both the angle of attack and sideslip angle 

cases.  The graphs for Mach 1.3 and Mach 1.69 can be seen in the Appendix for reference.  The static and total 

pressure coefficients, Cs and Ct are plotted together as a function of the pitch and yaw pressure coefficients, Cα and 

Cβ for Mach 1.2 in Fig. 14a and Fig 14b and for Mach 1.46 in Fig. 14c and Fig 14d, respectively.  From the figures, 

there are two distinct horizontal lines, with the static pressure coefficients,     and    
, aligning a little bit above a 

value of one due to dominance of the higher total pressure values and the total pressure coefficients,    
 and    

, 

aligning slightly below zero, since P1 ≠ Po in supersonic conditions due to likely pressure differentials across 

shockwaves.  Even with the multi-hole probe being rotated in the wind tunnel, the independence of roll angle is 

shown here with all the data point values having nearly identical values. 

With this verification that the static and total pressure coefficient are behaving as they are supposed to be from 

this perspective, the total and static pressure coefficient polynomials for both the angle of attack and sideslip angle 

instances need to be compiled.  These equations will later be used to calculate initial flow properties of interest to 

verify the calibration procedure thus far and will of course be integrated with the in-flight RTF script. 

 
 

(a)                                                                                     (b) 

 

 
 

(c)                                                                                     (d) 

Figure 14.  For Mach 1.2 (a & b) and Mach 1.46 (c & d), both their angle of attack and sideslip angle static 

and total pressure coefficients,    
,    

,    
, and    

, are plotted with their respective angular pressure 

coefficients, Cα and Cβ.  From this different vantage point, one can note the independence of roll orientation 

in terms of the total and static pressure coefficients for both the angle of attack and sideslip angle situations.  

Despite Mach 1.2 and 1.46 having differing trends between total and static on a close-up scale, the trends are 

virtually identical when the two different pressure coefficients are plotted concurrently. 
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Table 3 displays all the resulting derived polynomial equations for the angle of attack and sideslip angle total and 

static pressure coefficients for each of the test conditions at Mach 1.2, 1.3, 1.46, and 1.69. 

G. Compute Flow Properties 

With the measured pressures from the CCIE probe wind tunnel data, initial pressure coefficients were calculated, 

vertical biases were computed and eliminated from the data, and pitch and yaw angles, as well as total and static 

pressure coefficient polynomials were derived.  The new calibration equations for these various parameters will 

further contribute in creating calibrated flight properties to be used for uncertainty analysis and comparison with 

actual  future flight data.  These properties that need to be analyzed based on their wind tunnel results and calibrated 

include, total pressure, Pt, static pressure, Ps, Mach number, and the true dynamic pressure, Qbar – true.  These four 

parameters will be calculated with respect to angle of attack and sideslip angle, thus there will be two equations and 

two separate sets of calibrated data for each of these flow properties. 

The total pressure could be calculated by simply solving for Po in the total pressure coefficient in Eq. 5  Since Po 

will be solved for both the angle of attack and the sideslip angle instances, the only variable of significant difference 

Table 3.  For each of the following supersonic test points, the equations for the angle of attack and sideslip 

angle total and static pressure coefficients,    ,    
,    , and    

 were derived based on their lines of best fits 

for all their trend plots seen in Fig. 10 and 11 for the total pressure coefficient case and Fig. 12 and 13 for 

the static pressure coefficient case. 

MACH 

Total & Static 

Pressure 

Coefficients 

Polynomials 

1.20 

                              

   
                            

             
                       

   
          

                       

1.30 

             
                              

   
          

                              

             
                       

   
          

                       

1.46 

                              

   
                      

            
            

                      

   
         

            
                      

1.69 
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will be the total pressure coefficients,    
 and    

.  For the angle of attack case, rearranging Eq. 5 results in Eq. 19 

as 

   
        

                        (19) 

 

where    
 is the flow field angle of attack total pressure, P1 is the CCIE probe total pressure measured,    

 is the 

angle of attack total pressure coefficient calculated from the equations derived in Table 3, and Qbar is the measured 

pseudo or probe dynamic pressure in the wind tunnel.  Similarly, the sideslip angle total pressure,    
 could be 

calculated in Eq. 20 as 

   
        

                        (20) 

 

with    
 being the sideslip angle total pressure coefficient.  Likewise, calculating the static pressure is the same, 

only this time by solving for Ps in Eq. 6.  This results in Eq. 21 and 22 for the angle of attack and sideslip angle 

static pressure,     and    , respectively as shown here 

 

           
                        (21) 

 

           
                        (22) 

 

where    
 is the angle of attack static pressure coefficient and    

 is the sideslip angle static pressure coefficient.  

With both the total and static pressures known, the calibrated Mach number can be obtained by using the isentropic 

normal shock relations with the Mach number depending on the total-to-static pressure ratio.
12

  The calibrated angle 

of attack Mach number can be calculated in Eq. 23 as  

 

     
 

   
   

   

   

 
 
   

 
 

     

   

                             (23) 

 
using the solutions to its respective total and static pressures in Eq. 19 and 21.  γ is the ideal ratio of specific heats 

for air, which is a value of 1.4.  Using the results of the sideslip angle total and static pressures from Eq. 20 and 22, 

the calibrated sideslip angle Mach number is derived using Eq. 24, 

 

      
 

   
   

   

   

 

 
   

 
 

     

   

                (24) 

 
Once the Mach numbers were calculated, the calibrated or true dynamic pressure can be calculated using its 

compressible flow relation, which is dependent on the static pressure and the Mach number.  The true dynamic 

pressure could be calculated for the angle of attack and the sideslip angle case in Eq. 25 and Eq. 26, respectively, 

 

              
 

 
      

                      (25) 

 

              
 

 
      

                                   (26) 

 
using the calibrated static pressure values calculated in Eq. 21 and 22 and the Mach numbers computed in Eq. 23 

and 24.  All of these calibrated flow properties will undergo error analysis and will eventually be implemented into 

the in-flight RTF script that will be discussed later on in this report.  With the majority of the calibrated calculations 

completed, there is still one more variable of importance that needs to be computed prior to performing the 

uncertainty analysis.  This variable is the static-pitot pressure ratio and it will be used to verify the accuracy of the 

wind tunnel data to its theoretical counterpart. 
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H. Static-Pitot Pressure Ratio Comparison 

The static-pitot pressure ratio, 
  

  
 is the ratio between the average of the measured static pressures to the total 

pressure, which is measured behind the normal shock at the apex of the conical probe.  This ratio is very important 

in conical flow theory as it will help in determining an initial theoretical estimate of Mach number for the in-flight 

script, which will in turn output the actual local Mach number based on the measured probe pressures.  In order to 

see how well the wind tunnel results fits with the conical flow theory, plots of the static-pitot ratio were plotted as a 

function of the pitch angle for each of the Mach test points as shown in Fig. 15.  Note angle of attack and sideslip 

angle were measured as pitch maneuver and both can be represented by the pitch angle, θ.  All of the plots exhibit a 

 

 
(a)                                                                                     (b) 

 

 
 

(c)                                                                                     (d) 

Figure 15.  The static-pitot pressure ratio, 
  

  
 is plotted as a function of the pitch angle, θ, which for this 

experimental setup included the angle of attack and the sideslip angle.  The concave down trend is exhibited 

for all of the Mach test points, with θ ranging consistently between -8° to 8°.  Also, the pressure ratio 

decreases with increasing Mach number.  Like the previous plots of Mach 1.46 in Fig. 10c and 11c, its plot 

here (c) shows a distinctive upward trend in 
  

  
 from about θ = -6.5° to -4°, which is likely due to the 

inconsistent flow in the wind tunnel and the probe not being fixed in space.  Further analysis will be 

conducted at this test point prior to flight testing of the CCIE. 
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concave down trend, with lower pressure ratio values at 

the extreme ends of the pitch angles.  In addition, as the 

Mach number value rises, the static-pitot pressure ratio 

values decrease due to an increase in the total pressure, 

P1 as well as a decrease in the average measured static 

pressures, Pa.  The point of most interest from these 

plots will be the value of the static-pitot pressure when 

the pitch angle is 0°, i.e.  
  

  
 
    

.
13

  It is the value at 

this point that is used to determine the estimated 

theoretical Mach number.  To determine  
  

  
 
    

, all 

static-pitot pressure ratio values between θ = -0.5° to θ 

= 0.5° were averaged at each Mach test point.  The four 

resulting pressure ratio averages were plotted with the 

conical flow theory line as square markers in Fig. 16 for 

a visual comparison.  Looking at the graph, the four 

wind tunnel test points at Mach 1.2, 1.3, 1.46, and 1.69 

did fairly well in matching up with the conical flow 

theory trend.  Table 4 displays a chart of both the 

theoretical and the wind tunnel static-pitot pressure 

ratio values at zero pitch angle at the four different 

Mach conditions.  All the wind tunnel results fell within 

±2% of the theoretical pressure ratio values.  Since the 

wind tunnel results were close to theoretical values, the 

conical flow theory curve will be used to estimate the 

initial local Mach number in the RTF code.  With the 

wind tunnel data analysis portion of the calibration 

completed, the next step is to perform uncertainty 

analysis on the calibrated results prior to implementing 

the calibration information into the in-flight RTF script. 

III. Uncertainty Analysis 

Most of the figures shown so far in this report have 

error bounds in place around their respective data 

points.  Since this is typical of post-experimental data 

analysis, sample calculations will be placed in the 

Appendix as not to overwhelm this portion of the report 

with broad unnecessary details of how to calculate the 

error.  Rather, the uncertainty analysis portion of the 

calibration involves finding the error associated with 

critical in-flight parameters, such as angle of attack, 

sideslip angle, Mach number, and dynamic pressure.  

Three different sources of error were obtained and they 

include uncertainty from the MSFC/ARF TWT’s test 

runs, from the calibration graphs, and from error 

propagation due to the wind tunnel pressure transducers 

on the probe. 

A. MSFC/ARF TWT Mach Number Uncertainty 

As mentioned in the Introduction section of the report, the NASA MSFC/ARF TWT was recently upgraded and 

certification of the facility and its data measurement capabilities were detailed in a report entitled, “Calibration of 

Mach Number Set Points for the MSFC 14 × 14-Inch Trisonic Wind Tunnel,” a joint paper between NASA and 

contractors,  Jacobs Engineering, and Ducommun Miltec.
15

  One of the objectives for this particular Mach number 

calibration was to define the Mach centerline profiles for Mach numbers ranging from 0.2 to 2.5.  A range of Mach 

Table 4. The static-pitot pressure ratios for each of 

the Mach test points during the wind tunnel runs 

are displayed below along with their corresponding 

theoretical values from conical flow theory for 

comparison. 

MACH 
Theoretical 

 
  

  
 
    

 

Wind Tunnel 

 
  

  
 
    

 

Percentage 

Difference 

from 

Theoretical 

1.20 0.4550 
0.4579 ± 

0.0008 
+ 0.6374% 

1.30 0.4067 
0.4147 ± 

0.0008 
+ 1.9671% 

1.46 0.3423 
0.3457 ± 

0.0008 
+ 0.9932% 

1.69 0.2739 
0.2715 ± 

0.0007 
- 0.8762% 

 

 
Figure 16. Theoretical and wind tunnel values of 

 
  

  
 
    

 are plotted as a function of Mach number 

between Mach 1 and 2.  The four test points at Mach 

1.2, 1.3, 1.46, and 1.69 were particularly close to 

their theoretical values and their static-pitot 

pressure values at zero pitch angle decreased with 

increasing Mach number like the conical flow 

theory. 
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reading uncertainty was produced for each Mach number 

to update the results of a previous calibration done in 

1964.  For the CCIE wind tunnel calibration, the Mach 

numbers of interest are 1.2, 1.3, 1.46, and 1.69.  Based 

on the results of the report, the standard deviation for 

test points 1.2, 1.3, 1.46, and 1.69 were 0.0084, 0.011, 

0.009, and 0.0095, respectively.  These standard 

deviation values will be incorporated with the other 

Mach uncertainty values derived later on.  Since only 

Mach number uncertainty was discussed in detail in the 

MSFC/ARF TWT paper, uncertainty for the other 

critical parameters had to be calculated through the 

calibration graphs and the hand calculations. 

B. Uncertainty from the Calibration Graphs 

Wind tunnel data, the resultant calibrated data, and 

for some variables, its theoretical lines of best fitted 

data, have quantitative differences with one another.  In 

order to calculate the uncertainty here, error bar graphs 

were plotted depicting the differences between the 

calibrated data from the wind tunnel data.  For angle of 

attack and sideslip angle, this difference was already 

addressed with the removal of the vertical misalignment 

angles.  Instead for these two angular parameters, the 

error bar plots will show the difference between the 

corrected data and the theoretical values calculated 

based on the lines of best fit as shown in Fig. 9 with the 

Mach 1.2 case.  These plots can be seen here in Fig. 17a 

and b for angle of attack and sideslip angle, respectively 

for Mach 1.2.  Much of the difference between the 

corrected α and β values from their theoretical 

counterparts fell within one standard deviation of 

approximately 0.16 for the angle of attack case and 0.23 

for the sideslip angle instance.  The wind tunnel 

measurements of Mach number did fairly well when 

compared to its calibrated values as seen in Fig. 17c.  

Error differences were on the order of 10
-3

 with a 

standard deviation of approximately 0.002.  These 

standard deviations were gathered for angle of attack, 

sideslip angle, and Mach number for the entire four 

Mach test runs of 1.2, 1.3, 1.46, and 1.69.  Their 

quantities are displayed in Table 5 along with the other 

uncertainties.  Similar figures for Mach 1.3, 1.46, and 

1.69 were constructed like that of Mach 1.2’s figures in 

Fig. 17 and can be referenced in the Appendix. 

C. Uncertainty due to Error Propagation 

This portion of the error analysis process was the 

most crucial during the calibration process and was 

performed along the way during the calibration process 

for each variable.  The CCIE’s pressure probes in the 

wind tunnel were rated with an uncertainty margin of ± 4 

psf or about ± 0.0278 psi.  Error from these probes of 

course would propagate throughout the calculation of 

 
 

(a) 

 

 
 

(b) 

 

 
 

(c) 

Figure 17. Mach 1.2’s corrected angle of attack and 

sideslip angle difference from their theoretical best 

fit values are shown in (a) and (b).  The Mach wind 

tunnel difference from the calibrated values is 

shown in (c).  Standard deviation limits are shown as 

dotted horizontal lines. 
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subsequent variables that are dependent upon them.  With hundreds of data points for all of the four Mach test runs 

and dozens of variables to calculate for each data points, using MATLAB is the logical way to perform all the 

uncertainty analysis.  To certify that the calculations are correct, hand calculations of error analysis were performed 

at a random data point for each variable.  All of the data points had an error associated with it, but the most 

important critical in-flight parameters, like angle of attack, sideslip angle, Mach number, and dynamic pressure had 

their uncertainties averaged resulting in a single value for each Mach test run.  Their respective uncertainty values 

are shown in Table 5.  Sample calculations of the error analysis performed for these variables and other parameters 

are available in the Appendix for reference. 

D. Combine the Uncertainty Results 

Uncertainties from the wind tunnel, the calibration graphs, and due to error propagation for angle of attack, 

sideslip angle, Mach number, and dynamic pressure are all different.  Since they were calculated independent of one 

another, the uncertainties could be combined using Eq. 27,  

 

                                         
                            

                                  
 
   (27) 

 

which is based on the root-sum squared method.  The combined results are shown in Table 5 below along with the 

other calculated uncertainties for the other three sources for comparison.  Mach number and dynamic pressure both 

had the least error.  Angle of attack and sideslip angle had slightly larger error values, but were acceptable.  If the 

vertical misalignment angle had not been removed, the error results would definitely have been much greater.   

 

Table 5. The uncertainty values of angle of attack, α, sideslip angle, β, Mach number, and dynamic 

pressure, Qbar for the wind tunnel, the calibration graphs, and the error propagation are displayed here 

along with their combined results for Mach 1.2, 1.3, 1.46, and 1.69. 

 

  
Mach 1.2 Mach 1.3 Mach 1.46 Mach 1.69 

Wind Tunnel 

α - - - - 

β - - - - 

Mach 0.0084 0.0110 0.0090 0.0095 

Qbar - - - - 

Calibration Graphs 

α 0.15930 0.33860 0.23210 0.17710 

β 0.22770 0.28960 0.45720 0.27320 

Mach 0.00191 0.00388 0.00367 0.00340 

Qbar - - - - 

Error Propagation 

α 0.29667 0.29695 0.31282 0.24138 

β 0.30081 0.31404 0.32548 0.24402 

Mach 0.00255 0.00274 0.00319 0.00353 

Qbar 0.04778 0.05143 0.05851 0.07131 

Combined 

Uncertainty Results 

α 0.33673 0.45036 0.38952 0.29938 

β 0.37727 0.42719 0.56122 0.36631 

Mach 0.00898 0.01198 0.01023 0.01069 

Qbar 0.04778 0.05143 0.05851 0.07131 
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IV. Create the In-Flight RTF Script 

With the calibration completed and the uncertainty analysis taken care of, the results from the calibration could 

now be implemented into the in-flight RTF script to compute critical flight parameters during the experimental flight 

tests of the CCIE on the F-15B research aircraft.  The script was written using MATLAB at first, but will later be 

converted into RTF with the aid of the computer engineers of NASA DFRC’s Western Aeronautical Test Range 

(WATR), which provides useful resources for flight research operations and low earth-orbiting missions, such as 

mission control, communication, telemetry, and real-time data acquisition.  Any MATLAB shortcuts, commands, or 

built-in functions had to be avoided in order for the script to be compatible with RTF. 

The CCIE multi-hole pressure probe will measure pressures from five different ports, P1, P2, P3, P4, and P5 as 

shown in Fig. 4.  During an actual flight, the five measured pressured pressures will be inputted into a function that 

will make an initial estimate of the Mach number based on the given flow conditions.  The average probe static 

pressure, Pa will be calculated first in order to derive the static-pitot pressure ratio, 
  

  
, which the Mach number is 

dependent upon.  From Fig. 16, the conical flow theory trend line relates the static-pitot pressure ratio to Mach 

number in Eq. 28 as  

 

            
  

  
 
 

          
  

  
 
 

          
  

  
         .           (28) 

 

from which the estimated Mach number could be computed.  The estimated Mach number and the five measured 

pressures would then be inputted into a different function that will then calculate the in-flight parameters of interest.  

The conical flow relationship between Mach number and the static-pitot pressure ratio shown in Eq. 28 is only valid 

for Mach numbers above 1.05.  As a result, for estimated Mach numbers that are below 1.05, the function will tell 

 
 

Figure 18.  This flowchart shows a visual representation of how the in-flight RTF script would run on the 

mission control displays during a CCIE research experimental flight. 
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the code to stop running and not calculate anything.  If the estimated Mach number is above 1.05 and on target at the 

CCIE Mach test points of 1.2, 1.3, 1.46, and 1.69, calibrated equations will be used to calculate variables, such as α, 

β, Cs, and Ct, otherwise other estimated Mach numbers will prompt the in-flight function to perform an interpolation 

to derive solutions for these variables.  It should be noted that two values of Ct and Cs are calculated for the angle of 

attack and sideslip case, respectively.  However, from Fig. 10 and 11 for the total pressure coefficient and Fig. 12 

and 13 for the static pressure coefficient, the values of    
 and    

 as well as    
 and    

 are fairly close.  As a 

result, the resulting averages of the angle of attack and sideslip values of both the total and static pressure 

coefficients will be sufficient for the values of Ct and Cs, respectively.  Afterwards, the resultant variables α, β, Cs, 

and Ct would be used to calculate the static and total pressure, Ps and Po, as well as the local Mach number.  This 

Mach number should not be confused from the aircraft Mach number as it is based on the measured pressures of the 

CCIE, which is mounted underneath the aircraft.  Again, averages between the α and β values of these variables are 

used to derive the final value.  If the estimated Mach number and the newly derived in-flight Mach number have a 

difference of less than 1%, the function would output the critical in-flight parameters to the user in mission control 

and parameters include α, β, Cs, Ct, Ps, Po, M, Qbar, and the number of iterations it took to derive these solutions.  If 

the estimated Mach number and the in-flight Mach number calculated have a difference greater than 1%, the in-

flight Mach number becomes the new estimated Mach number and the in-flight function starts all over again until 

the convergence criteria is met. 

V. Current Status of the Channeled Centerbody Inlet Experiment 

The CCIE test fixture is currently undergoing preparation for research flights this upcoming summer of 2011.  

The aerodynamics group is performing the aerodynamic loads and CFD analysis with discussions underway to 

ensure the CCIE fixture’s structural load integrity.  The structures team will be involved in performing a ground 

vibrations test in order to guarantee that the CCIE test fixture has an adequate flutter clearance for flight safety.  

Instrumentation engineers are overseeing wiring and tubing connections and updating existing electrical design 

drawing to reflect the changes.  In addition, operations will be involved in outlining flight test maneuvers, 

coordinating test activities, and monitoring any configuration changes.  Also, WATR engineers will construct data 

displays in the mission control room for all organizations involved with the project and will include implementation 

the in-flight RTF script discussed earlier.  Prior to the first flight, a Combined Systems Test (CST) will be performed 

to confirm the F-15 aircraft functionality by verifying the control room displays, RTF code, instrumentation, 

telemetry, and communication.  The flights will gather information about the two CCIE configurations, one with the 

channeled centerbody and one with the smooth centerbody, and comparisons will be made between the two 

regarding mass flow, pressure recovery, and how well they perform with respect to the viscous CFD analysis.  Post-

flight data analysis will be conducted towards the end of the year. 

VI. Conclusion 

Enhanced supersonic and hypersonic cruise and acceleration will depend on an effective geometric inlet design 

capable of large air mass flow.  The Channeled Centerbody Inlet Experiment research project done here at NASA 

Dryden Flight Research Center will prove crucial in this investigation.  By testing out two different configurations 

with the channeled centerbody and the smooth centerbody, researchers hope to document the performance of each 

centerbody and compare the results of the flight test by validating the CFD findings.  If the CCIE performs well and 

concurs with CFD results, the channeled centerbody concept could become a breakthrough for supersonic and 

hypersonic flight. 

Wind tunnel testing of the CCIE multi-hole pressure probe yielded data results for four Mach conditions of 1.2, 

1.3, 1.46, and 1.69 that needed to be calibrated in order to derive in-flight parameters.  This conical probe calibration 

consisted of extensive steps in order to produce the desired calibrated results.  By defining the probe orientation and 

coordinate system, calculations were much easier to determine the pressure coefficients, like Cα, Cβ, Ct, and Cs.  

Next, the vertical misalignment angle, αo and βo were determined and removed from the data set so that the location 

where pressure coefficients, Cα and Cβ remain independent of roll angle at zero degrees angle of attack or sideslip in 

order to reflect more like the theoretical case.  Afterwards, angle of attack, sideslip angle, total and static pressure 

coefficients had their equations derived to reflect their best fit trends.  Flow properties were then computed to reflect 

the calibrated case and static-pitot pressure ratio trends were created to determine how well the wind tunnel results 

fit with the conical flow theory.  The uncertainty analysis was then performed and consisted of calculating error 

from three different sources, which include the wind tunnel, the calibration graphs, and error propagation with the 

aid of MATLAB and self-check.  The uncertainties were then combined and with the uncertainties within reasonable 
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limits, the calibrated results were then assimilated into the in-flight RTF script, which will calculate critical in-flight 

parameters, such as angle of attack, sideslip angle, dynamic pressure, and Mach number. 

With the CCIE in preparation for its research flights, there is much anticipation of what the flight results may 

turn out like.  Results from this research project could contribute to a tremendous amount of new information on 

how to enrich supersonic and hypersonic flight.  As the world heads deeper into the 21
st
 century, technology will 

only continue to advance and improve, including the world of aeronautics.  NASA Dryden Flight Research Center 

has been at the forefront of aeronautics research for over 50 years and it will continue to be a place of innovation for 

future enhanced aircraft performance. 
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Appendix 

A. Additional Calibration Figures 

1) Vertical Misalignment 

  
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 19.  Analogous to Fig. 4 with the Mach 1.2 case, the vertical misalignments are shown here for both 

angle of attack and sideslip for Mach 1.3 (a & b), Mach 1.46 (c & d), and Mach 1.69 (e & f).  Mach 1.69’s α 

and β-pitch coefficient offsets,    
 and    

 are very small and cannot be shown.  The sizes of the 

misalignments, αo and βo can be compared to that of Table 1. 
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2) Vertical Misalignment Removed 

  
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 20. Like the Mach 1.2 example shown in Fig. 5, the vertical misalignment angles are removed here 

for both the angle of attack and sideslip angle instances for Mach 1.3 (a & b), Mach 1.46 (c & d), and Mach 

1.60 (e & f). 
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3) Original α and β Comparision to Corrected α and β 

  
 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 21. αoriginal and βoriginal are plotted with their respective corrected values for Mach 1.3 (a & b), Mach 

1.46 (c &d ), and Mach 1.69 (e & f), similar to the plots of Mach 1.2 in Fig. 6.  The separation between the 

original and corrected data points represent the vertical misalignment, with Mach 1.46 having the least 

bias and Mach 1.3 having the most.  However, Mach 1.46’s trend is not as linear as the others.   
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4) αcorrected and βcorrected Best Fit Trends 

  
 

(a) (b) 

 
 

(c) (d) 

 
 
 

(e) (f) 

Figure 22. The αcorrected and βcorrected best fit trends, which represents the theoretical linear relationship of 

angle of attack and sideslip angle with their respective pressure coefficients, are shown here for Mach 1.3 

(a & b), Mach 1.46 (c & d), and Mach 1.69 (e & f).  Comparing it to Mach 1.2’s plots in Fig. 7, Mach 1.2 

and 1.69 fit fairly well, while the sideslip case for Mach 1.46 seemed to exhibit a higher-order behavior. 
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5) Static and Total Pressure Coefficient Comparison 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a)                                                                                     (b) 

 

 
 

(c)                                                                                     (d) 

Figure 23.  Like the Mach 1.2 and 1.46 plots shown in Fig.12, the static and total pressure coefficient values 

for both the angle of attack and sideslip angle cases are plotted for the Mach 1.3 (a & b) and Mach 1.69 (c 

& d) simultaneously.  Notice how the total pressure coefficient values of    
 and    

 linger around zero 

and the static pressure coefficient values of    
 and    

 hover around one. 
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B. Additional Calibration Uncertainty Graphs 

1) Corrected Angle of Attack Difference From Theoretical 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

  (b)            (c) 

Figure 24.  Similar to Mach 1.2’s αcorrected difference from theoretical graph in Fig. 15a, the calibration 

error bar graphs for the angle of attack case are shown here for Mach 1.3 (a), Mach 1.46 (b), and Mach 

1.69 (c).  Each Mach test run has differing number of test points.  As seen from these figures, much of the 

data results fell within the standard deviation dashed lines.  The standard deviation corresponding to 

these error bar graphs could be viewed in Table 5 under the calibrations graphs section. 
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2) Corrected Sideslip Angle Difference From Theoretical 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

  (b)            (c) 

Figure 25.  Mach 1.2’s corrected sideslip error difference from its theoretical counterpart was shown in 

Fig. 15b and the case for Mach 1.3 (a), Mach 1.46 (b), and Mach 1.69 (c) are shown here.  Mach 1.46 had 

the largest difference of all the Mach test points and from Fig. 20d, its corrected data points were a bit off 

from the linear trend line, which explained why it had a wider standard deviation margin.   
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3) Wind Tunnel Mach Number Difference From Corrected 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

  (b)            (c) 

Figure 26.  Like the error bar difference for Mach 1.2 in Fig. 15c, the error between the wind tunnel 

Mach number and the corrected Mach number for Mach 1.3 (a), Mach 1.46 (b), and Mach 1.69 (c) have 

small standard deviation values with all of them having deviations of less than 0.5%. 
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C. Sample Error Calculations 

The method that was used to calculate the uncertainties for many of the variables during the calibration are 

shown here.  This process was both done in MATLAB for the many test points and by hand for a random test point 

to verify MATLAB’s accuracy.  Results for critical parameters like α, β, M, and Qbar were shown in Table 5. 

 

1) Error Process for Calculating Pa, Cα, Cβ, Ct, Cs, αo,    
, βo,    

 and 
  

  
 

The trisonic wind tunnel pressure transducers’ uncertainty on the CCIE pressure probes is rated at about      

dp =  ± 0.0278 psi.  Using Pa as an example from Eq. 1, the error for Pa should be calculated as follows: 
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The remaining variables could be calculated in a similar manner. 

 

 

2) Error Process for Calculating Mach Number 

 Based on Eq. 23 and 24, the error in the calibrated Mach number for the angle of attack and sideslip angle 

case could be calculated as, 
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3) Error Process for Calculating Qbar-true 

Based on Eq. 25 and 26, the error in the calibrated dynamic pressure can be calculated as, 
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D. MATLAB In-Flight RTF Script 

 

1) Function to Estimate Initial Mach Number (est_mach.m) 

 

function [est_mach] = est_mach(P1,P2,P3,P4,P5) 
% 
%EST_MACH - Calculate the initial estimate of the Mach number based on  
%           the conical static-pitot pressure ratio vs. Mach relation 
%           from the in-flight measured pressures obtained. 
% 
%      EST_MACH(P1,P2,P3,P4,P5) - Input in-flight measured pressures 
%      results to calculate the static-pitot pressure ratio, which in turn 
%      outputs an intial estimate of Mach number.  The initial guess will 
%      then be inputted into the INFLIGHT.m function to calculate the 
%      remainder parameters of interest and the corrected Mach number based 
%      on the calibration tables. 
%  

%      By: Samson S. Truong 

%      Edited by: Mike Frederick 
%========================================================================== 
%                             Nomenclature 
% 
% est_mach       - Initial Estimate of Mach Number 
% Pratio            - Static-Pitot Pressure Ratio (Pa/P1 or Pa/Pt2) 
% P1                 - Measured Total Pressure (psi) 
% P2,P3,P4,P5 - Measured Static Pressures (psi) 
% Pa                 - Average Measured Static Pressure (psi) 
  
%========================================================================== 
%-------------------------------------------------------------------------- 
%Calculate Average Static Pressure, Pa 
%-------------------------------------------------------------------------- 
Pa = 0.25*(P2+P3+P4+P5); 
  
%-------------------------------------------------------------------------- 
%Calculate Static-Pitot Pressure Ratio, Pa/P1 (or) Pa/Pt2 
%-------------------------------------------------------------------------- 
Pratio = Pa./P1; 
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%-------------------------------------------------------------------------- 
%Calculate Estimated Mach 
%-------------------------------------------------------------------------- 
est_mach = -13.7965.*Pratio.^3 + 21.1538.*Pratio.^2 - 12.5144.*Pratio + 3.8167; 
  
%-------------------------------------------------------------------------- 
%Call out In-Flight Function (inflight.m) 
%-------------------------------------------------------------------------- 
[iter,alpha,beta,Ca,Cb,Cs,Ct,Ps,Pt,MACH,dm,QBAR] = inflight(P1,P2,P3,P4,P5,est_mach) 
 

 

 

2) Function to Calculate Critical In-Flight Parameters (inflight.m) 

 

function [iter,alpha,beta,Ca,Cb,Cs,Ct,Ps,Pt,MACH,dm,QBAR] = inflight(P1,P2,P3,P4,P5,est_mach) 

% 

%INFLIGHT - Calculate flight parameters of interests using in-flight  

%           measured pressures and interpolating results in-between 

%           calibrated test points 

% 

%      INFLIGHT(P1,P2,P3,P4,P5,mach) - Input in-flight measured pressures & 

%      initial Mach number guess, to output angle of attack, sideslip 

%      angle, MACH, and other significant flight data parameters using 

%      interpolation of the test points of interests at Machs 1.2, 1.3, 

%      1.46, & 1.69. 

% 

%      By: Samson S. Truong 

%      Edited by: Mike Frederick 
%========================================================================== 

%                             Nomenclature 

% 

% alpha             - Angle of Attack (deg) 

% beta               - Sideslip Angle (deg) 

% Ca                 - Pressure Coefficient w/respect to Angle of Attack 

% Cb                - Pressure Coefficient w/respect to Sideslip Angle 

% Cs                 - Average Static Pressure Coefficient 

% Csa               - Static Pressure Coefficient w/respect to Angle of Attack 

% Csb               - Static Pressure Coefficient w/respect to Sideslip Angle 

% Ct                 - Average Total Pressure Coefficient 

% Cta               - Total Pressure Coefficient w/respect to Angle of Attack 

% Ctb               - Total Pressure Coefficient w/respect to Sideslip Angle 

% dm                - Change in Mach Number 

% est_mach      - Initial Estimate of Mach Number 

% gamma         - Ratio of Specific Heats 

% iter                - # of Iterations for Solution Convergence 

% MACH         - Average Mach Number 

% macha          - Mach Number w/respect to Angle of Attack 

% machb          - Mach Number w/respect to Sideslip Angle 

% P1                 - Measured Total Pressure (psi) 

% P2,P3,P4,P5 - Measured Static Pressures (psi) 

% Pa                 - Average Measured Static Pressure (psi) 

% Ps                 - Average In-Flight Static Pressure (psi) 

% Psa               - In-Flight Static Pressure w/respect to Angle of Attack (psi) 

% Psb               - In-Flight Static Pressure w/respect to Sideslip Angle (psi) 

% Pt                 - Average In-Flight Total Pressure (psi) 

% Pta               - In-Flight Total Pressure w/respect to Angle of Attack (psi) 



36 

NASA Dryden Flight Research Center 

% Ptb               - In-Flight Total Pressure w/respect to Sideslip Angle (psi) 

% pQBAR       - Pseudo-Dynamic Pressure (psi) 

% QBAR         - Average In-Flight Dynamic Pressure (psf) 

% QBARa       - In-Flight Dynamic Pressure w/respect to Angle of Attack (psf) 

% QBARb       - In-Flight Dynamic Pressure w/respect to Sideslip Angle (psf) 

%  

%========================================================================== 

  

%Ratio of Specific Heat Coefficient 

gamma = 1.4; 

  

%Calculate Average Static Pressure, Pa 

Pa = 0.25*(P2+P3+P4+P5); 

  

%Calculate Pseudo Dynamic Pressure, pQBAR 

pQBAR = P1 - Pa; 

  

%Pressure Coefficient w/respect to Angle of Attack, Ca: 

Ca = (P3-P5)./(P1-Pa); 

  

%Pressure Coefficient w/respect to Sideslip Angle, Cb: 

Cb = (P4-P2)./(P1-Pa); 

  

%% Begin While Loop 

  

i = 1; 

stop = 0; 

  

if est_mach < 1.05 

    disp('Estimated Mach Value is below 1.05.  Code Terminated.') 

end 

  

while stop == 0 

    if est_mach < 1.05 

        break 

    end 

%--------------------------------------------------------------------------  

%Calculate solutions from calibration tables. 

%--------------------------------------------------------------------------  

% l = low end & h = high end 

  

    if est_mach <= 1.20 

        alpha1_2(i) = 89.1385*Ca + 0.7089; 

        beta1_2(i) = 90.4277*Cb + 0.28410; 

        Csa1_2(i) = -2.6378*Ca^2 - 0.043026*Ca + 1.0786; 

        Csb1_2(i) = -2.3004*Cb^2 - 0.023978*Cb + 1.0776; 

        Cta1_2(i) = 7.9419e-04*Ca - 0.015497; 

        Ctb1_2(i) = -0.0010123*Cb - 0.015517; 

    elseif (est_mach > 1.20) && (est_mach < 1.30) 

        alphal(i) = 89.1385*Ca + 0.7089; 

        alphah(i) = 94.6015*Ca + 0.5037; 

        betal(i) = 90.4277*Cb + 0.28410; 

        betah(i) = 100.0237*Cb + 0.2179; 

        Csal(i) = -2.6378*Ca^2 - 0.043026*Ca + 1.0786; 

        Csah(i) = -2.7522*Ca^2 - 0.021851*Ca + 1.0765; 

        Csbl(i) = -2.3004*Cb^2 - 0.023978*Cb + 1.0776; 



37 

NASA Dryden Flight Research Center 

        Csbh(i) = -2.7696*Cb^2 + 0.023859*Cb + 1.0756; 

        Ctal(i) = 7.9419e-04*Ca - 0.015497; 

        Ctah(i) = 0.43365*Ca^2 - 1.2153e-04*Ca - 0.046727; 

        Ctbl(i) = -0.0010123*Cb - 0.015517; 

        Ctbh(i) = 0.38196*Cb^2 + 0.0045245*Cb - 0.047481; 

    elseif est_mach == 1.30 

        alpha1_3(i) = 94.6015*Ca + 0.5037; 

        beta1_3(i) = 100.0237*Cb + 0.2179; 

        Csa1_3(i) = -2.7522*Ca^2 - 0.021851*Ca + 1.0765; 

        Csb1_3(i) = -2.7696*Cb^2 + 0.023859*Cb + 1.0756; 

        Cta1_3(i) = 0.43365*Ca^2 - 1.2153e-04*Ca - 0.046727; 

        Ctb1_3(i) = 0.38196*Cb^2 + 0.0045245*Cb - 0.047481; 

    elseif (est_mach > 1.3) && (est_mach < 1.46) 

        alphal(i) = 94.6015*Ca + 0.5037; 

        alphah(i) = 108.0175*Ca + 0.4175; 

        betal(i) = 100.0237*Cb + 0.2179; 

        betah(i) = 112.3877*Cb + 0.1192; 

        Csal(i) = -2.7522*Ca^2 - 0.021851*Ca + 1.0765; 

        Csah(i) = 8.5362*Ca^3 - 3.3971*Ca^2 - 0.038168*Ca + 1.0618; 

        Csbl(i) = -2.7696*Cb^2 + 0.023859*Cb + 1.0756; 

        Csbh(i) = 17.772*Cb^3 - 3.2717*Cb^2 - 0.021265*Cb + 1.0618; 

        Ctal(i) = 0.43365*Ca^2 - 1.2153e-04*Ca - 0.046727; 

        Ctah(i) = 0.0086243*Ca - 0.090352; 

        Ctbl(i) = 0.38196*Cb^2 + 0.0045245*Cb - 0.047481; 

        Ctbh(i) = 0.024073*Cb - 0.090279; 

    elseif est_mach == 1.46; 

        alpha1_46(i) = 108.0175*Ca + 0.4175; 

        beta1_46(i) = 112.3877*Cb + 0.1192; 

        Csa1_46(i) = 8.5362*Ca^3 - 3.3971*Ca^2 - 0.038168*Ca + 1.0618; 

        Csb1_46(i) = 17.772*Cb^3 - 3.2717*Cb^2 - 0.021265*Cb + 1.0618; 

        Cta1_46(i) = 0.0086243*Ca - 0.090352; 

        Ctb1_46(i) = 0.024073*Cb - 0.090279; 

    elseif (est_mach > 1.46) && (est_mach < 1.69) 

        alphal(i) = 108.0175*Ca + 0.4175; 

        alphah(i) = 99.9231*Ca + 0.1318; 

        betal(i) = 112.3877*Cb + 0.1192; 

        betah(i) = 100.8961*Cb + 0.0871; 

        Csal(i) = 8.5362*Ca^3 - 3.3971*Ca^2 - 0.038168*Ca + 1.0618; 

        Csah(i) = -1.3094*Ca^2 - 0.024019*Ca + 1.045; 

        Csbl(i) = 17.772*Cb^3 - 3.2717*Cb^2 - 0.021265*Cb + 1.0618; 

        Csbh(i) = -0.78067*Cb^2 + 0.0078296*Cb + 1.0452; 

        Ctal(i) = 0.0086243*Ca - 0.090352; 

        Ctah(i) = 0.72013*Ca^2 - 0.010757*Ca - 0.22335; 

        Ctbl(i) = 0.024073*Cb - 0.090279; 

        Ctbh(i) = 0.96616*Cb^2 + 0.012028*Cb - 0.22493; 

    elseif est_mach >= 1.69 

        alpha1_69(i) = 99.9231*Ca + 0.1318; 

        beta1_69(i) = 100.8961*Cb + 0.0871; 

        Csa1_69(i) = -1.3094*Ca^2 - 0.024019*Ca + 1.045; 

        Csb1_69(i) = -0.78067*Cb^2 + 0.0078296*Cb + 1.0452; 

        Cta1_69(i) = 0.72013*Ca^2 - 0.010757*Ca - 0.22335; 

        Ctb1_69(i) = 0.96616*Cb^2 + 0.012028*Cb - 0.22493; 

    end 
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%-------------------------------------------------------------------------- 

%Interpolate solutions for alpha, beta, Csa, Csb, Cta, & Ctb  

%(if between calibrated test points) 

%--------------------------------------------------------------------------  

    if est_mach <= 1.20 

        alpha(i) = alpha1_2(i); 

        beta(i) = beta1_2(i); 

        Csa(i) = Csa1_2(i); 

        Csb(i) = Csb1_2(i); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Cta1_2(i); 

        Ctb(i) = Ctb1_2(i); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif (est_mach > 1.20) && (est_mach < 1.30) 

        Mh = 1.3; 

        Ml = 1.2; 

        alpha(i) = alphal(i) + ((est_mach - Ml)/(Mh - Ml))*(alphah(i) - alphal(i));  

        beta(i) = betal(i) + ((est_mach - Ml)/(Mh - Ml))*(betah(i) - betal(i)); 

        Csa(i) = Csal(i) + ((est_mach - Ml)/(Mh - Ml))*(Csah(i) - Csal(i)); 

        Csb(i) = Csbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Csbh(i) - Csbl(i)); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Ctal(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctah(i) - Ctal(i)); 

        Ctb(i) = Ctbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctbh(i) - Ctbl(i)); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif est_mach == 1.30 

        alpha(i) = alpha1_3(i); 

        beta(i) = beta1_3(i); 

        Csa(i) = Csa1_3(i); 

        Csb(i) = Csb1_3(i); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Cta1_3(i); 

        Ctb(i) = Ctb1_3(i); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif (est_mach > 1.3) && (est_mach < 1.46) 

        Mh = 1.46; 

        Ml = 1.3; 

        alpha(i) = alphal(i) + ((est_mach - Ml)/(Mh - Ml))*(alphah(i) - alphal(i));  

        beta(i) = betal(i) + ((est_mach - Ml)/(Mh - Ml))*(betah(i) - betal(i)); 

        Csa(i) = Csal(i) + ((est_mach - Ml)/(Mh - Ml))*(Csah(i) - Csal(i)); 

        Csb(i) = Csbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Csbh(i) - Csbl(i)); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Ctal(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctah(i) - Ctal(i)); 

        Ctb(i) = Ctbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctbh(i) - Ctbl(i)); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif est_mach == 1.46; 

        alpha(i) = alpha1_46(i); 

        beta(i) = beta1_46(i); 

        Csa(i) = Csa1_46(i); 

        Csb(i) = Csb1_46(i); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Cta1_46(i); 

        Ctb(i) = Ctb1_46(i); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif (est_mach > 1.46) && (est_mach < 1.69) 

        Mh = 1.69; 

        Ml = 1.46; 
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        alpha(i) = alphal(i) + ((est_mach - Ml)/(Mh - Ml))*(alphah(i) - alphal(i));  

        beta(i) = betal(i) + ((est_mach - Ml)/(Mh - Ml))*(betah(i) - betal(i)); 

        Csa(i) = Csal(i) + ((est_mach - Ml)/(Mh - Ml))*(Csah(i) - Csal(i)); 

        Csb(i) = Csbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Csbh(i) - Csbl(i)); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Ctal(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctah(i) - Ctal(i)); 

        Ctb(i) = Ctbl(i) + ((est_mach - Ml)/(Mh - Ml))*(Ctbh(i) - Ctbl(i)); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    elseif est_mach >= 1.69 

        alpha(i) = alpha1_69(i); 

        beta(i) = beta1_69(i); 

        Csa(i) = Csa1_69(i); 

        Csb(i) = Csb1_69(i); 

        Cs(i) = 0.5*(Csa(i) + Csb(i)); 

        Cta(i) = Cta1_69(i); 

        Ctb(i) = Ctb1_69(i); 

        Ct(i) = 0.5*(Cta(i) + Ctb(i)); 

    end 

     

%--------------------------------------------------------------------------  

%Calculate Static & Total Pressures 

%--------------------------------------------------------------------------  

    Psa(i) = P1 - Csa(i)*pQBAR; 

    Psb(i) = P1 - Csb(i)*pQBAR; 

    Ps(i) = 0.5*(Psa(i) + Psb(i)); 

  

    Pta(i) = P1 - Cta(i)*pQBAR; 

    Ptb(i) = P1 - Ctb(i)*pQBAR; 

    Pt(i) = 0.5*(Pta(i) + Ptb(i));  

  

%--------------------------------------------------------------------------  

%Calculate Mach Number & Check for Convergence 

%--------------------------------------------------------------------------  

    macha(i) = ((2/(gamma-1))*(((Pta(i)/Psa(i))^((gamma-1)/gamma)) - 1))^0.5; 

    machb(i) = ((2/(gamma-1))*(((Ptb(i)/Psb(i))^((gamma-1)/gamma)) - 1))^0.5; 

    mach(i) = 0.5*(macha(i) + machb(i)); 

    est_mach = mach(i); 

  

%--------------------------------------------------------------------------  

%Output Final Solutions 

%-------------------------------------------------------------------------- 

    if i > 1 

        dm(i,1) = ((mach(i) - mach(i-1))/mach(i))*100; 

        if abs(dm(i,1)) > 0.01  

            stop = 0; 

        else 

            stop = 1; 

            iter = length(mach); 

            alpha = alpha(end); 

            beta = beta(end); 

            Cs = Cs(end); 

            Ct = Ct(end); 

            Ps = Ps(end); 

            Pt = Pt(end); 

            MACH = mach(end); 

            QBARa = 0.5*gamma*Psa(end)*macha(end)^2; 
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            QBARb = 0.5*gamma*Psb(end)*machb(end)^2; 

            QBAR = (0.5*(QBARa(end) + QBARb(end)))*144; 

            stop = 1; 

        end 

    end 

    i = i + 1; 

end 
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