
A new method of calculating the root-
mean-square (rms) pointing jitter of a
scientific instrument (e.g., a camera,
radar antenna, or telescope) is intro-
duced based on a state-space concept.
In comparison with the prior method of
calculating the rms pointing jitter, the
present method involves significantly
less computation.

The rms pointing jitter of an instru-
ment (the square root of the jitter vari-
ance shown in the figure) is an important
physical quantity which impacts the
design of the instrument, its actuators,
controls, sensory components, and sen-
sor-output-sampling circuitry. Using the
Sirlin, San Martin, and Lucke definition
of pointing jitter, the prior method of
computing the rms pointing jitter
involves a frequency-domain integral of
a rational polynomial multiplied by a
transcendental weighting function,
necessitating the use of numerical-inte-
gration techniques. In practice, numeri-
cal integration complicates the problem
of calculating the rms pointing error. In
contrast, the state-space method pro-
vides exact analytic expressions that
can be evaluated without numerical inte-
gration.

The theoretical foundation of the
state-space method includes a repre-
sentation of the pointing process as a
stationary process generated by a state-
space model driven by white noise. The

state-space formulation results in the
replacement of the aforementioned
weighted frequency integral with the cal-

culation of a matrix exponential.
Additional simplifications may be possi-
ble in certain applications by taking
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A proposed quantum-computing algo-
rithm would perform a search for an item
of information in a database stored in a
Hilbert-space memory structure. The algo-
rithm is intended to make it possible to
search relatively quickly through a large
database under conditions in which avail-
able computing resources would other-
wise be considered inadequate to perform
such a task.

The algorithm would apply, more specifi-
cally, to a relational database in which infor-
mation would be stored in a set of N com-
plex orthonormal vectors, each of N dimen-
sions (where N can be exponentially large).
Each vector would constitute one row of a

unitary matrix, from which one would derive
the Hamiltonian operator (and hence the
evolutionary operator) of a quantum sys-
tem. In other words, all the stored informa-
tion would be mapped onto a unitary oper-
ator acting on a quantum state that would
represent the item of information to be
retrieved. Then one could exploit quantum
parallelism: one could pose all search
queries simultaneously by performing a
quantum measurement on the system. In
so doing, one would effectively solve the
search problem in one computational step.

One could exploit the direct- and inner-
product decomposability of the unitary
matrix to make the dimensionality of the

memory space exponentially large by use of
only linear resources. However, inasmuch as
the necessary preprocessing (the mapping
of the stored information into a Hilbert space)
could be exponentially expensive, the pro-
posed algorithm would likely be most bene-
ficial in applications in which the resources
available for preprocessing were much
greater than those available for searching.

This work was done by Michail Zak of
Caltech for NASA’s Jet Propulsion
Laboratory. For further information, access
the Technical Support Package (TSP) free
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Quantum Search in Hilbert Space

A large database would be searched in one quan-
tum computing operation.
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Instantaneous and Statistical Quantities are used to characterize the pointing of an instrument
(that is, rotation of the instrument about an axis). The quantities shown here pertain to a pointing
process y (t ) at instant of time t during an observation interval (window) of duration T that starts
at time τ, E [] is an expectation operator denoting the ensemble average of the bracketed term, n(t )
is a zero-mean white-noise process, and Cov [] is an ensemble-average covariance operator.
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