
NASA Tech Briefs, September 2011 37

The Planning Execution Monitoring Architecture
Lyndon B. Johnson Space Center, Houston, Texas

The Planning Execution Monitoring
(PEM) architecture is a design concept
for developing autonomous cockpit
command and control software. The
PEM architecture is designed to reduce
the operations costs in the space trans-
portation system through the use of au-
tomation while improving safety and op-
erability of the system. Specifically, the
PEM autonomous framework en ables
automatic performance of many vehicle
operations that would typically be per-
formed by a human. Also, this frame-
work supports varying levels of au-
tonomous control, ranging from fully
automatic to fully manual control.

The PEM autonomous framework in-
terfaces with the “core” flight software to
perform flight procedures. It can either

assist human operators in performing
procedures or auton omously execute
routine cockpit procedures based on the
operational context. Most importantly,
the PEM autonomous framework pro-
motes and simplifies the capture, verifi-
cation, and validation of the flight oper-
ations knowledge. Through a
hierarchical decomposition of the do-
main knowledge, the vehicle command
and control capabilities are divided into
manageable functional “chunks” that
can be captured and verified separately.
These functional units, each of which
has the responsibility to manage part of
the vehicle command and control, are
modular, re-usable, and extensible.
Also, the functional units are self-con-
tained and have the ability to plan and

execute the necessary steps for accom-
plishing a task based upon the current
mission state and available resources.

The PEM architecture has potential
for application outside the realm of
spaceflight, including management of
complex industrial processes, nuclear
control, and control of complex vehi-
cles such as submarines or unmanned
air vehicles.

This work was done by Lui Wang, Bebe Ly,
and Alan Crocker of Johnson Space Center;
Debra Schreckenghost of Metrica Inc; Stephen
Mueller and Bob Phillips of Titan-LinCom
Corp.; and David Wadsworth and Charles
Sorensen of Lockeed Martin Corp. For further
information, contact the Johnson Commercial
Technology Office at (281) 483-3809. MSC-
23628-1

plex flight profile to be simulated, as
well as ambient conditions and deterio-
ration level of the engine. C-MAPSS40k
has three actuators: fuel flow, variable
stator vanes, and variable bleed valve.
The three actuators enable off-nominal
operation, which is not possible with
simulations that have fuel flow as the
sole actuator, since in those simulations
the other actuators are implicit and as-
sumed to operate nominally. The simu-
lation is modular to allow users to re-
design or replace components such as
the engine controller or turbomachin-
ery components without having to mod-
ify the rest of the simulation. It also en-
ables the user to view and save any signal

in the engine or controller. The package
has the capability to create and validate
a linear model of the engine at any oper-
ating point. Linear models can be used
for control design, and C-MAPSS40k
lends itself well to implementation and
evaluation of advanced control designs
as well as to diagnostic and prognostic
system development. The simulation
can be run in real time and can there-
fore be integrated into a flight simulator
with a pilot in the loop for testing.

C-MAPSS40k fills the need for an easy-
to-use, realistic, transient simulation of a
medium-size commercial turbofan en-
gine with a representative controller. It
is a detailed component level model

(CLM) written in the industry-standard
graphical MATLAB/Simulink environ-
ment to allow for easy modification and
portability. At the time of this reporting,
no other such model exists in the public
domain.

This work was done by Ten-Huei Guo,
Thomas Lavelle, and Jonathan Litt of Glenn
Research Center and Jeffrey Csank of N&R En-
gineering and Ryan May of ASRC. Further in-
formation is contained in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steven Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleve-
land, Ohio 44135. Refer to LEW-18624-1.

Jitter Controller Software
Lyndon B. Johnson Space Center, Houston, Texas

Sinusoidal jitter is produced by simply
modulating a clock frequency sinu-
soidally with a given frequency and ampli-
tude. But this can be expressed as phase
jitter, frequency jitter, or cycle-to-cycle jit-
ter, rms or peak, absolute units, or nor-
malized to the base clock frequency. Jitter
using other waveforms requires calculat-
ing and downloading these waveforms to
an arbitrary waveform generator, and
helping the user manage relationships
among phase jitter crest factor, frequency
jitter crest factor, and cycle-to-cycle jitter
(CCJ) crest factor.

Software was developed for managing
these relationships, automatically con-
figuring the generator, and saving test
results documentation. Tighter man-
agement of clock jitter and jitter sensi-
tivity is required by new codes that fur-
ther extend the already high
performance of space communication
links, completely correcting symbol
error rates higher than 10 percent, and
therefore typically requiring demodula-
tion and symbol synchronization hard-
ware to operating at signal-to-noise ra-
tios of less than one. To accomplish this,

greater demands are also made on
transmitter performance, and measure-
ment techniques are needed to confirm
performance. It was discovered early
that sinusoidal jitter can be stepped on
a grid such that one can connect points
by constant phase jitter, constant fre-
quency jitter, or constant cycle-cycle jit-
ter. The tool automates adherence to a
grid while also allowing adjustments off-
grid. Also, the jitter can be set by the
user on any dimension and the others
are calculated. The calculations are all
recorded, allowing the data to be rap-

38 NASA Tech Briefs, September 2011

µShell Minimalist Shell for Xilinx Microprocessors
NASA’s Jet Propulsion Laboratory, Pasadena, California

idly plotted or re-plotted against differ-
ent interpretations just by changing
pointers to columns.

A key advantage is taking data on a
carefully controlled grid, which allowed
a single data set to be post-analyzed
many different ways. Another innova-
tion was building a software tool to pro-
vide very tight coupling between the
generator and the recorded data prod-

uct, and the operator’s worksheet. To-
gether, these allowed the operator to
sweep the jitter stimulus quickly along
any of three dimensions and focus on
the response of the system under test
(response was jitter transfer ratio, or per-
formance degradation to the symbol or
codeword error rate). Ad d ition ally, man-
aging multi-tone and noise waveforms
automated a tedious manual process,

and provided almost instantaneous deci-
sion-making control over test flow. The
code was written in LabVlEW, and calls
Agilent instrument drivers to write to
the generator hardware.

This work was done by Chatwin Lans-
downe and Adam Schlesinger of Johnson
Space Center. Further information is con-
tained in a TSP (see page 1). MSC- 24814-1

Software Displays Data on Active Regions of the Sun
Lyndon B. Johnson Space Center, Houston, Texas

The Solar Active Region Display Sys-
tem is a computer program that gener-
ates, in near real time, a graphical dis-
play of parameters indicative of the
spatial and temporal variations of activ-
ity on the Sun. These parameters in-
clude histories and distributions of
solar flares, active region growth, coro-
nal mass ejections, size, and magnetic
configuration.

By presenting solar-activity data in
graphical form, this program acceler-
ates, facilitates, and partly automates
what had previously been a time-con-
suming mental process of interpretation
of solar-activity data presented in tabular
and textual formats. Intended for origi-

nal use in predicting space weather in
order to minimize the exposure of astro-
nauts to ionizing radiation, the program
might also be useful on Earth for pre-
dicting solar-wind-induced ionospheric
effects, electric currents, and potentials
that could affect radio-communication
systems, navigation systems, pipelines,
and long electric-power lines.

Raw data for the display are obtained
automatically from the Space Environ-
ment Center (SEC) of the National
Oceanic and Atmospheric Administra-
tion (NOAA). Other data must be ob-
tained from the NOAA SEC by verbal
communication and entered manually.
The Solar Active Region Display System

automatically accounts for the latitude
dependence of the rate of rotation of
the Sun, by use of a mathematical
model that is corrected with NOAA
SEC active-region position data once
every 24 hours. The display includes
the date, time, and an image of the Sun
in Hα light overlaid with latitude and
longitude coordinate lines, dots that
mark locations of active regions identi-
fied by NOAA, identifying numbers as-
signed by NOAA to such regions, and
solar-region visual summary (SRVS) in-
dicators associated with some of the ac-
tive regions.

Each SRVS indicator is a small pie
chart containing five equal sectors, each

µShell is a lightweight shell environ-
ment for engineers and software devel-
opers working with embedded micro-
processors in Xilinx FPGAs. (µShell has
also been successfully ported to run on
ARM Cortex-M1 microprocessors in
Actel ProASIC3 FPGAs, but without
project-integration support.) µShell de-
creases the time spent performing ini-
tial tests of field-programmable gate
array (FPGA) designs, simplifies run-
ning customizable one-time-only experi-
ments, and provides a familiar-feeling
command-line interface. The program
comes with a collection of useful func-
tions and enables the designer to add
an unlimited number of custom com-
mands, which are callable from the
command-line. The commands are pa-
rameterizable (using the C-based com-
mand-line parameter idiom), so the de-
signer can use one function to exercise
hardware with different values. Also,

since many hardware peripherals instan-
tiated in FPGAs have reasonably simple
register-mapped I/O interfaces, the en-
gineer can edit and view hardware pa-
rameter settings at any time without
stopping the processor.

µShell comes with a set of support
scripts that interface seamlessly with Xil-
inx’s EDK tool. Adding an instance of
µShell to a project is as simple as mark-
ing a check box in a library configura-
tion dialog box and specifying a software
project directory. The support scripts
then examine the hardware design,
build design-specific functions, condi-
tionally include processor-specific func-
tions, and complete the compilation
process. For code-size constrained de-
signs, most of the stock functionality can
be excluded from the compiled library.

When all of the configurable options
are removed from the binary, µShell has
an unoptimized memory footprint of

about 4.8 kB and a size-optimized foot-
print of about 2.3 kB. Since µShell allows
unfettered access to all processor-accessi-
ble memory locations, it is possible to
perform live patching on a running sys-
tem. This can be useful, for instance, if a
bug is discovered in a routine but the sys-
tem cannot be rebooted: µShell allows a
skilled operator to directly edit the bi-
nary executable in memory. With some
forethought, µShell code can be located
in a different memory location from cus-
tom code, permitting the custom func-
tionality to be overwritten at any time
without stopping the controlling shell.

This work was done by Thomas A. Werne
of Caltech for NASA’s Jet Propulsion Labo-
ratory. Further information is contained in
a TSP (see page 1).

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO- 47495.

