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new; however, the diagnostic methodol-
ogy itself, which utilizes a combination
of existing devices for a particular appli-
cation, is a novel concept. 

The present methodology employs
two key optical devices: a pulsed laser
(nanosecond pulses) and a frame-trans-
fer CCD sensor. Frame-transfer CCD
sensors have been historically used to
capture fast (microsecond timescale)
transient events, such as Bose-Einstein
condensate phenomena, over a short pe-
riod of time (milliseconds). By their op-
eration, the sensor area is exposed for a
certain time and the charge is then
transferred to the frame transfer area
(or masking area) row-by-row, and is
read out via a gain register or serial reg-
ister. This is called “frame-transfer” read-
out or “kinetics” readout. The use of
frame-transfer readout provides a very

effective way of isolating true Raman sig-
nals from laser-generated optical inter-
ferences in any combustion environ-
ment, in principle, without having to
employ multiple CCD detectors or po-
larizer on the detection side. 

Since laser-induced background emis-
sions are unpolarized, unlike Raman scat-
tering, which is polarized, they can be se-
lectively isolated (and subtracted). While
the theory of this polarization technique
has been proposed previously, the imple-
mentation of this technique for time-re-
solved Raman diagnostics has not been
matured. A principal reason is that an en-
abling technology that can increase the
SNR was needed. When a flame receives
two orthogonally polarized, but other-
wise identical, laser pulses, Raman scat-
tering can be observable only for the ver-
tically polarized excitation pulse. The

(unpolarized) laser-generated back-
ground emissions are observed regardless
of the polarization state of the excitation
pulses. If the two orthogonally-polarized
laser pulses are separated in time so that
they just fall onto a pair of consecutive
sub-frames on the CCD sensor, subtract-
ing the one (laser-generated background
emission only) from the other (Raman
signal plus background emission) results
in a true Raman spectrum. 

This work was done by Quang-Viet Nguyen,
David G. Fischer, and Jun Kojima of Glenn
Research Center. Further information is con-
tained in a TSP (see page 1).
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Thermal Properties of Microstrain Gauges Used for Protection
of Lithium-Ion Cells of Different Designs
Commercial uses include lithium-ion batteries used in a human-rated environment, such as in
automobile applications.
Lyndon B. Johnson Space Center, Houston, Texas

The purpose of this innovation is to
use microstrain gauges to monitor
minute changes in temperature along
with material properties of the metal cans
and pouches used in the construction of
lithium-ion cells. The sensitivity of the mi-
crostrain gauges to extremely small
changes in temperatures internal to the
cells makes them a valuable asset in con-
trolling the hazards in lithium-ion cells.
The test program on lithium-ion cells in-
cluded various cell configurations, in-
cluding the pouch type configurations.

The thermal properties of micros-
train gauges have been found to con-
tribute significantly as safety monitors in
lithium-ion cells that are designed even
with hard metal cases. Although the
metal cans do not undergo changes in
material property, even under worst-
case unsafe conditions, the small
changes in thermal properties observed
during charge and discharge of the cell
provide an observable change in resist-
ance of the strain gauge. Under abusive
or unsafe conditions, the change in the
resistance is large. This large change is
observed as a significant change in
slope, and this can be used to prevent
cells from going into a thermal runaway
condition. For flexible metal cans or

pouch-type lithium-ion cells, combina-
tions of changes in material properties
along with thermal changes can be used
as an indication for the initiation of an
unsafe condition.

Lithium-ion cells have a very high en-
ergy density, no memory effect, and al-
most 100-percent efficiency of charge
and discharge. However, due to the pres-
ence of a flammable electrolyte, along
with the very high energy density and
the capability of releasing oxygen from
the cathode, these cells can go into a
hazardous condition of venting, fire,
and thermal runaway. Commercial
lithium-ion cells have current and volt-
age monitoring devices that are used to
control the charge and discharge of the
batteries. Some lithium-ion cells have in-
ternal protective devices, but when used
in multi-cell configurations, these pro-
tective devices either do not protect or
are themselves a hazard to the cell due
to their limitations. These devices do not
help in cases where the cells develop
high impedance that suddenly causes
them to go into a thermal runaway con-
dition. Temperature monitoring typi-
cally helps with tracking the perform-
ance of a battery. But normal
thermistors or thermal sensors do not

provide the accuracy needed for this
and cannot track a change in internal
cell temperatures until it is too late to
stop a thermal runaway.

The microstrain gauges under study
have shown remarkable changes in re-
sistance with changes in temperature
that show a very close tracking to the
current used to charge and discharge
the lithium-ion cells. As the cells are
charged, there is a very slight increase
in temperature at the end of charge,
and the same during the discharge
process. Although normal thermistors
do not show a big change in tempera-
ture, the strain gauges have been able to
track with great accuracy the thermal
changes in the cells during these
processes. Although strain gauges have
been used to track pressures internal to
cells in battery chemistries that use pres-
sure vessels such as the Ni-hydrogen
cells, they have not been used to track
resistance changes due to temperatures.
Existing thermal sensors do not have
the sensitivity to be able to track small
changes in internal temperatures of the
cells, so monitoring systems cannot de-
tect changes fast enough to be able to
provide any protection. With lithium-
ion cells, when the thermal sensors
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record an alarming temperature read-
ing, it indicates that the cell’s internal
temperatures have reached a point
where no external controls can stop the
thermal runaway. With the thermally
sensitive new strain gauges, the changes
in slope are so sensitive that this change
can be used to stop the charge or re-
move the load on the lithium-ion cells
before the event can spiral into an un-
controllable one.

Four different configurations of
lithium-ion cells of were tested. Two
cylindrical cells with metal containers
(two different diameters), a prismatic
metal container cell type, and a pouch
cell type (aluminized plastic pouch)
were used for the study. Several tests were
performed on all our designs. The tests
included normal charge and discharge
cycling at two different charge and dis-
charge rates at room temperature and at

low temperature. The tests also included
off-nominal conditions of overcharge,
overdischarge, external short, heat-to-
vent, and crush (simulated internal
short). Overcharge tests and external
short tests provide the most valuable data
as these conditions produce the worst-
case reactions in lithium-ion cells. 

This work was done by Judith Jeevarajan of
Johnson Space Center. Further information is
contained in a TSP (see page 1). MSC-24764-1

An effective, in-service health moni-
toring system is needed to track water
condensation in real time through the
walls of steam pipes. The system is re-
quired to measure the height of the con-
densed water from outside the pipe,
while operating at temperatures that are
as high as 250 °C. The system needs to
account for the effects of water flow and
cavitation. In addition, it is desired that
the system does not require perforating
the pipes and thereby reducing the
structural integrity. 

Generally, steam pipes are used as part
of the district heating system carrying
steam from central power stations under
the streets to heat, cool, or supply power
to high-rise buildings and businesses.
This system uses ultrasonic waves in
pulse-echo and acquires reflected signal
data. Via autocorrelation, it determines
the water height while eliminating the
effect of noise and multiple reflections
from the wall of the pipe. 

The system performs nondestructive
monitoring through the walls of steam
pipes, and automatically measures the
height of condensed water while operat-
ing at the high-temperature conditions of
250 °C. For this purpose, the ultrasonic
pulse-echo method is used where the
time-of-flight of the wave reflections in-
side the water are measured, and it is
multiplied by the wave velocity to deter-
mine the height. The pulse-echo test con-
sists of emitting ultrasonic wave pulses
from a piezoelectric transducer and re-
ceiving the reflections from the top and
bottom of the condensed water. A single
transducer is used as a transmitter as well
as the receiver of the ultrasonic waves. To

obtain high resolution, a broadband
transducer is used and the frequency can
be in the range of 2.25 to 10 MHz, provid-
ing sharp pulses in the time domain al-
lowing for higher resolution in identify-
ing the individual reflections. 

The pulse-echo transducer is con-
nected to both the transmitter (function
generator), which sends electric signals
to generate the elastic wave, and the re-
ceiver, which amplifies the attenuated re-
flected waves that are converted to elec-
tric signals. To avoid damage to the
receiver, the large signal from the gener-
ator is blocked by an electronic switching
mechanism from reaching the receiving
circuitry. To assure the operation of the
transducer at the required temperature
range, the piezoelectric transmitter/re-
ceiver is selected with a Curie tempera-
ture that is much higher. In addition, the
system can be improved by introducing a

heat sink between the transducer and
the steam pipe, reducing the tempera-
ture requirements on the transducer. 

This work was done by Yoseph Bar-Cohen,
Shyh-Shiuh Lih, Mircea Badescu, Xiaoqi Bao,
Stewart Sherrit, James S. Scott, Julian O. Blo-
siu, and Scott E. Widholm of Caltech for
NASA’s Jet Propulsion Laboratory. Further in-
formation is contained in a TSP (see page 1).

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-47518, volume and number

of this NASA Tech Briefs issue, and the
page number.

In-Service Monitoring of Steam Pipe Systems at 
High Temperatures 
This system can be used by utility companies for steam pipe systems incorporating 
multiple manholes. 
NASA’s Jet Propulsion Laboratory, Pasadena, California 
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The testbed simulating the Steam Pipe and the in situ ultrasonic test setup. 


