
A Software Safety Risk Taxonomy for Use in Retrospective Safety Cases 

Janice Hill

NASA, Kennedy Space Center, Florida


University of Florida, Gainesville, Florida 

Janice.L.HiIKdjnasa.gov 

Abstract 

Safety standards contain technical and process-
oriented safely requirements. The best time to include 
these requirements is early in the development 
lfecycle of the system. When software safety 
requirements are levied on a legacy system after the 
fact, a retrospective safety case will need to be 
constructedfor the software in the system. This can be 
a dfjIculi task because there may be few to no 
art facts available to show compliance to the software 
safely requirements. The risks associated with not 
meeting safely requirements in a legacy safely-critical 
computer system must be addressed to give confidence 
for reuse. This paper introduces a proposal for a 
software safely risk taxonomy for legacy safely-critical 
computer systems, by specializing the Software 
Engineering Institute's 'Software Development Risk 
Taxonomy' with safely elements and attributes. 

1. Introduction 

Calculating software safety risk is an essential part 
of determining the specific activities and depth of 
analyses needed to meet software safety requirements. 
Therefore, the implementation and approach to 
meeting software safety requirements will vary to 
reflect the system to which they are applied. [1] 

Government agencies and industry often choose to 
impose the use of safety standards, which include 
software safety requirements, in projects to ensure that 
the systems produced are done so in a structured 
manner. The combination of analysis, inspection, 
design and test activities, when consistently performed 
throughout the system development lifecycle, has 
shown to be extremely successful, as in the Space 
Shuttle on-board flight control computer system. 

There are many safety standards to choose from, 
some directed at the system level and others intended 
only for use in the creation of software. In general, 
safety standards are meant to be employed in the

beginning of a project as opposed to later. 
Implementation of safety standards is part of what is 
called making a 'safety case'. A safety case is the 
documented demonstration that the system complies 
with the specified safety requirements. [2] 

To provide safety assurance, evidence needs to be 
gathered on the integrity of the system and put forward 
as an argued case, e.g., the safety case, that the system 
is adequately safe. [2] 

A problem arises when attempting to fulfill the 
requirements of a software safety standard in a legacy 
real-time safety-critical computer system. In the 
Bylands research project [3], Bull, et al. poses the 
question, "how do we retrospectively make a safety 
case for the software, perhaps to meet new safety 
standards in the industry?" This project focused on an 
analysis of the software code for its safety properties 
rather than on the safety process followed to develop 
the software. 

The software safety risk taxonomy proposed here 
is based on the Software Development Risk 
Taxonomy developed by the Software Engineering 
Institute (SE!) [4, 5, 6] with an additional Legacy 
element added to the Product Engineering class, as in 
the Risk Taxonomy authored by Batista Webster et al. 
[7] The SEI taxonomy was chosen as a basis for the 
software safety risk taxonomy because it maps very 
well to the structure of the NASA Software Safety 
Standard, which is being used in the author's research 
project. The NASA-STD-8719. l3B contains software 
safety requirements for both new and legacy systems. 

A Software Risk Evaluation (SRE) is an important 
component of the decision process inherent in making 
a safety case. The SRE practice that was developed by 
the SE! is a formal method for identifying, analyzing, 
communicating and mitigating software technical risk. 
[5] For the purposes of this paper, the portions of the 
SEI's SRE methodology of interest are: 1) a proposed 
software safety taxonomy, similar in content to the



SET's taxonomy, enabling the definition of risk factors 
specific to legacy safety-critical software, and 2) the 
resulting set of questions focused on eliciting software 
safety risks. 

Several legacy systems located at the NASA 
Kennedy Space Center will be selected for 
investigating the feasibility of the new taxonomy. The 
software safety Taxonomy Based Questionnaire 
(TBQ) will be used to interview participants on the 
activities and tasks involved with the maintenance and 
reuse of legacy real-time safety-critical computer 
systems. Results of the software safety TBQ will be 
used in the rest of the SRE practice. 

2. Safety Case Development 

The primary purpose of the safety case is to 
demonstrate adequate safety in design and operation of 
systems. Planning and preparing a comprehensive 
safety case is especially important when developing 
new real-time safety-critical computer systems and 
equally important when legacy systems are candidates 
for reuse in new applications. 

Documenting a safety case includes fully 
describing the safety aspects of the system. Software 
safety integrity must be considered from the system 
perspective, and performance standards need to be set 
with reference to risk ieduction to be performed. [4] 
Gardner [4] presents the some of the evidence needed 
to justify safety claims that includes: 

1. credible arguments about the adequacy of the 
requirements specifications, in terms of 
hazards to be addressed 

2. credible arguments about the ability of the 
design and implementation to satisfy the 
safety requirements 

3. credible arguments about the adequacy of the 
development process in terms of its ability to 
avoid introduction of faults and to detect and 
remove faults 

4. empirical evidence of the systems ability to 
satisfy the safety requirements. 

2.1. Problems with Developing Retrospective 
Safety Cases 

Safety standards, when levied on a project, are 
often the basis for making the safety case. Meeting the 
requirements of safety standards is best accomplished 
when they are specified in the beginning of the system 
development, in some instances however, the 
requirements in a safety standard are levied upon 
legacy safety-critical computer systems. The NASA 
Software Safety Standard is one such standard that 
includes requirements for legacy systems. [1]

When a legacy safety-critical computer system is 
planned to be reused to monitor and control new 
hardware, a 'retrospective' safety case must be made. 
Changes are made to legacy systems to accommodate 
the differences in the new application, such as 
advanced technology, new interfaces, and processes. 
If a safety case is available for the legacy system, it 
must also be changed. 

Not all safety requirements in a safety standard can 
be met for a legacy system and a software safety risk 
assessment must be performed. The assumption that 
an existing system is safe may not hold when the 
legacy system is used in a new application. 

Shears and Cockram [9] note three problems with 
developing retrospective safety cases. The first is with 
attempting to show that the design of the legacy 
system is acceptable in the present, even though it was 
developed to standards current at the time. 
Additionally, the legacy system may not have been 
designed to any standard at all, and this will also be a 
consideration when creating a safety case. The second 
is that of missing information. Information is lost over 
time; vendors go out of business or are no longer 
under contract with the maintainer of the system. The 
third is reliance on the safe use of the system over the 
years, and the objective evidence of the safety issues. 
Safety issues include reporting and analysis of 
accidents, incidents and resultant problem reports. 

3. Risk Definitions 

Higuera and Haimes [6] write that risk is 
commonly defined as "a measure of the probability 
and severity of adverse effects". Software technical 
risk is "a measure of the probability and severity of 
adverse effects inherent in the development of 
software that does not meet its intended functions and 
performance requirements". [6] Sherer defines 
software risk as "the expected loss that can occur as 
software is developed, used or maintained". [8] Each 
of these definitions contains a common theme that risk 
is something that is measured. The SET has found that 
software risk is among the least measured or managed 
in a system. [6] 

3.1. Software Safety Risk Factors 

'Software Safety Risk' is defined in this paper as a 
measure of the probability and severity of adverse 
effects inherent in the development of software that 
does not meet some set of software safety 
requirements. This new definition will be used first in 
support of the software safety taxonomy when 
identifying risk factors specific to legacy safety-
critical software.



The risk posed by safety-critical software will be 
calculated based on the software safety risk factors 
elicited by using the software safety taxonomy. 
Software safety risk will vary with the system safety 
criticality, which consists of the type of hazards and 
the level of control or influence the software has on 
system safety factors. [1] 

In some cases with legacy systems, it can be a 
difficult task to construct a safety case, because there 
may be few to no artifacts available to show 
compliance with the software safety requirements. The 
risks associated with not meeting safety requirements 
in a legacy safety-critical system must be addressed to 
give confidence for reusing an existing system. Risk 
factors in general will be different for legacy safety-
critical computer systems, and the software within 
them. Thus the need for a taxonomy specifically 
focused on identifying software safety risk factors. 

4. The Software Safety Risk Taxonomy 

Carr et al. at the SEI developed a taxonomy of 
risks which focuses on the software development 
process. [4] Batista Webster et al. [7] proposed a 
taxonomy of risks for software maintenance projects 
using the SEI taxonomy. The software safety risk 
taxonomy defined in this paper will be used to produce 
an in depth set of safety related questions for building 
a Taxonomy Based Questionnaire (TBQ). 

The software safety risk taxonomy, like the SEI 
taxonomy, maps the characteristics of safety-critical 
software development, and therefore of safety-critical 
software development risks. [4] The TBQ will consist 
of non-judgmental questions used to bring out issues, 
concerns and risks in each of the taxonomic classes. 
[4] Using a structured TBQ will ensure that all risk 
areas related to the development of safety-critical 
software are methodically addressed. The overview of 
the changes and additions to the aforementioned 
taxonomies are shown in italics in Figure 1, 2 and 3. 
Definitions for all of the taxonomic groups in the 
element and attribute categories for the software safety 
risk taxonomy will be provided in a follow-on paper. 
The definitions for each of the classes are provided in 
sections 4.1 through 4.3. 

4.1. Safety Elements and Attributes in the 
Product Engineering Class 

In the SEL Software Development Risk Taxonomy, 
the Product Engineering class contains the system 
engineering and software engineering activities 
involved in creating a system that satisfies specified 
requirements and customer expectations. [5] When a 
system is identified as safety-critical as a result of a

hazard analysis, the software's contribution to the 
safety of the system is included in the analysis. This 
contribution necessitates the unique identification of 
safety requirements that must be traced throughout the 
software development lifecycle. 

For legacy safety-critical computer systems, there 
will be some investigative work required to discover if 
and where safety requirements were originally 
specified for the software. In the Product Engineering 
class the software safety risks that will most likely be 
generated will relate to inadequate analysis of the 
system for the technical software safety requirements. 
Other software safety risks could be linked to 
insufficient safety design features. In Figure 1, the 
additional safety elements and attributes are shown. 

A. Product Engineering 

Safety Requirements 
Identifiable 
Stability 
Completeness 
Clarity 
Valid ity 
Feasibility 
Safety requirements traceability 
Safety requirements analysis 

2. Safety Design 
SafetyFunctionality 
Difficulty 
Safety Interfaces 
Safety Performance 
Safetylestability 
Hardware Constraints 
Non-Developmental Software 
Safety design traceability 
Safety design analysis 

3. Safety Code and Unit Test 
Feasibility 
Safety Testing 
Coding/Implementation 
Safety code traceability 
Safety code analysis 

4. Safety Integration and Test 
Safety Environment 
Product 
Safety test traceability 
Safety test analysis 

5. Engineering Specialties 
SafetyMaintainability 
Reliability 
Security 
Human Factors 
Spedfications 

6. Legacy 
Reverse engineenng 
Replacement 

Figure 1. Product engineering class



and management activities existed during the original 
system and software development process. 

The questions for the Product Engineering class 
will focus on ascertaining what safety and software 
engineering artifacts and 'tribal knowledge' [10] exists 
from the original system and software development 
process.

4.3. Safety Elements and Attributes in the 
Program Constraints Class 

4.2. Safety Elements and Attributes in the 
Development Environment Class 

The SEI's Development Environment class 
addresses the project environment and the process 
used to engineer a software product. [5] The 
processes, methods and environment for managing a 
project that produces a safety-critical system will be 
different. Planning and management for safety-critical 
systems require documented processes for the 
development of the safety products such as hazard 
analyses and software safety analyses. Safety-critical 
systems development and management not only 
require the traditional software engineering and 
support group skills, but also trained system and 
software safety engineering personnel. Legacy safety-
critical computer systems have been found to be 
lacking in the areas of safety planning and 
management. 

In the Development Environment class the 
software safety risks that could be elicited are those 
associated with inadequate planning and management 
for safety activities in the budget and schedule. 
Additional risks found could be lack of cooperation or 
communication between the development and safety 
organizations. Figure 2 shows how the Development 
Environment class is modified to include safety 
process factors. 

B. Development Environment 

7. SafetyManagement Process 
SafetyPlanning 
SafetyOrganization 
SafetyManagement Expenence 
SafetyProgram Interfaces 

8. Safety Management Methods 
SafetyMonitoring 
Safety Personnel 
Safety Assurance 
SafetyConfiguration Management 

9. Work Environment 
SafetyAttitude 
Cooperation 
Communication 
Morale 

Figure 2. Development environment class 

The questions for the Development Environment 
class will center on discovering if any safety planning

The Program Constraints class refers to the factors 
that may be outside of the control of the project 
responsible for the system development. These factors 
can still have major effects on the projects success or 
constitute sources of substantial risk. [5] The 
development of a safety-critical system necessitates 
the specific resources and scheduling for the 
performance of safety tasks and production of the 
safety products. In the case of a legacy safety-critical 
computer system, it has been shown that most often 
there is insufficient or lack of allocation of safety 
resources to the project. 

In the Program Constraints class some software 
safety risks that may be generated are related to 
inadequate allocation of budget to obtain skilled safety 
staff. Some other risks in this class could be 
concerned with the lack of scheduling the safety 
resources early enough in the development of the 
system. Figure 3 identifies the safety elements in the 
Program Constraints class. 

C. Program Constraints 

10. Safety Resources 
SafetySchedule 
Safety Staff 
Safety Budget 
Safety Facilities 

Figure 3. Program constraints class 

The questions for the Program Constraints class 
will look for the safety resources that were allocated 
(if any) during the original system and software 
development process. 

4.4. Using the Software Safety Risk Taxonomy 
in Retrospective Safety Cases 

In general, to make a safety case there must be 
some objective evidence to prove the safety 
requirements have been implemented. For legacy 
safety-critical computer systems, that evidence may or 
may not exist. To assist project and safety 
management to make the best judgment as to the 
integrity of a legacy system where artifacts may be 
lacking or incomplete, the software safety taxonomy is 
designed to, 1) provide a framework for organizing 
data and information, 2) map directly to a well known



software safety standard, and 3) provide a basis for 
generating questions for discovery of issues, concerns, 
and risks. The detection of risks is the first function in 
the Software Risk Evaluation practice. Management 
can decide based on the software safety risks whether 
to recreate artifacts, or accept the risks generated by 
the software safety taxonomy, to make the 
retrospective safety case. 

5. Summary 

This paper describes a proposal for a new software 
safety risk taxonomy that will enable a retrospective 
safety case to be made for legacy safety-critical 
computer systems which may be considered for reuse. 
The taxonomy is based on the SEI's taxonomy of risk 
factors which focuses on the software development 
process, and a taxonomy of risk factors for software 
maintenance projects proposed by Batista Webster et 
al. The software safety taxonomy will be used to 
generate software safety risk factors and an in depth 
set of safety related questions for a Taxonomy Based 
Questionnaire (TBQ). This research is part of a project 
funded to investigate 'Assurance and Recertification 
of Safety-Critical Software in Legacy Systems". 
Results from this initial research will be documented 
in a follow-on paper. 

6. Acknowledgement 

This research is supported by the NASA Office of 
Safety and Mission Assurance (OSMA) and the 
NASA Independent Verification &Validation (IV&V) 
Facility, Software Assurance Research Proposal 
Initiative. 

7. References 

[1]NASA Office of Safety and Mission Assurance, NASA-
STD -8719. 13B Software Safety Standard w/Change 1, 2004. 

[2]Stewart Gardiner (ed.) "Testing Safety-Related Software, 
A Practical Handbook ", Springer-Verlag, London, 1999. 

[3] T.M. Bull, E.J. Younger, K.H. Bennett, Z. Luo, 
"Bylands: Reverse Engineering Safety-Critical Systems", 
IEEE, 1995. 

[4]M. J.Carr, S. L. Konda, I. Monarch, F. C. Ulrich, C. F. 
Walker, "Taxonomy-Based Risk Identification", Software 
Engineering Institute Technical Report, CMUISEI-93-TR-6, 
Carnegie Mellon University, Pittsburgh, Pennsylvania, 
1993. 

[5] G.J. Pandelios, S.G. Behrens, R. L. Murphy, R.C. 
Williams, and W.R. Wilson, "Software Risk Evaluation

(SRE) Team Member's Notebook (Version 2.0), Software 
Engineering Institute Technical Report, CMU/SEI-99-TR-
029, Carnegie Mellon University, Pittsburgh, Pennsylvania, 
1999.

[6] R. P. Higuera, Y. Y. Haimes, "Software Risk 
Management" Software Engineering Institute Technical 
Report, CMU/SEI-96-TR-012, Carnegie Mellon University, 
Pittsburgh, Pennsylvania, 1996. 

[7] K. P. Batista Webster, K. M. de Oliveira, N. Anquetil 
"A Risk Taxonomy Proposal for Software Maintenance", 
Proceedings of the 21 IEEE International Conference on 
Software Maintenance, (ICSM '05), IEEE Computer 
Society, 2005. 

[8] S. Sherer "The Three Dimensions of Software Risk: 
Technical, Organizational and Environmental", Proceedings 
of the 28ih Annual Hawaii International Conference on 
System Sciences, IEEE, 1995, pp. 369-380. 

[9] A.J. Shears, and T. Cockram, "An e-Safety Case 
Approach to Assuring Safety in UK Legacy Air Launched 
Munitions", Retrieved December 29, 2006 from, 
http://www.raxis-
cs.com/eSafetsCase/downloadsl parari paperv2.pdf 

[1 0]http://en.wikipedia.org/wikifl'ribal_knowledge, 
Retrieved December 29, 2006 from, Wikipedia, The Free 
Encyclopedia, Wikimedia Foundation, Inc., 2006


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

