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ABSTRACT 
Robonaut, the humanoid robot developed at the Dexter­
ous Robotics Laboratory at NASA Johnson Space Center 
serves as a testbed for human-robot collaboration research 
and development efforts. One of the primary efforts inves­
tigates how adjustable autonomy can provide for a safe and 
more effective completion of manipulation-based tasks. A 
predictive algorithm developed in previous work [9] was de­
ployed as part of a software interface that can be used for 
long-distance tele-operation. In this paper we provide the 
details of this algorithm, how to improve upon the meth­
ods via optimization, and also present viable a lternatives to 
the original algorithmic approach. We show that a ll of the 
algorithms presented can be optimized to meet the specifi­
cations of the metrics shown as being useful for measuring 
the performa nce of t he predictive methods. Judicious fea­
ture selection also plays a significant role in the conclusions 
drawn. 

Categories and Subject Descriptors 
I. 2.6 [A r t ificial I ntelligence]: Learning- parameter learn-
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ing; I. 2.9 [Artific ia l Intellige nce] : Robotics-operator in­
terfaces; G.3 (Mathematics of Computing]: Probability 
and Statistics-Markov processes; 1.6.4 [Simulation and 
M od e ling]: Model Validation and Analysis 
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1. INTRODUCTION 
Humanoid robotic tele-operation has been shown to be of 
interest for space-related applications [1, 3) . NASA's Robe­
naut is clearly an excellent platform for performing human­
robot collaboration research, and serves as a testbed for de­
veloping practical capabilities and interfaces. Potentially, a 
myriad of space-based construction and maintenance tasks 
can be performed remotely by Robonaut. Manual teleop­
eration allows for full control over the robot's trajectory 
throughout execution of a task. This is very important from 
the standpoint of safety in order for errant execution to be 
terminated as soon as possible to prevent damage to ex­
pensive equipment, or injury to personnel. However, tele­
operation often incurs much more dedicated time and effort 
on t he part of the human operator, with the task taking 3 to 
4 times longer on average than if performed at normal hu­
man speeds. One reason for the extended task time is due 
to the fact the robot is being operated over a time delay, 
and it takes time to verify that the co=ands sent to the 
robot are the ones actually being executed. This "bump and 
w"ait" approach is tedious, and adds to the time to perform 
a task. Furthermore, for safety considerations, Robonaut 's 
movement is rate limited, so that any movements made by 
the operator must match these rate limitations, naturally 
causing a slower execution. 

In contrast, we may consider fully automating the opera­
tion of the robot, obviating the need for tele-operation, po­
tentially decreasing the task burden and time. However, 
this would require building up a dictionary of commands 
based hierarchically upon waypoints to complete a simple 
task. The scalability of building such an interface is likely 
to present a natural practical limitation, not to mention that 



operating in a fully autonomous mode prevents human in­
tervention that is required for safety considerations. As a 
trade-off to operating in fully manual or fully autonomous 
mode, we take advantage of the sliding scale of adjustable 
autonomy. By allowing for both a manual tele-operation 
phase and an autonomous phase of operation, we can free 
the operator to perform other tasks, and mitigate their task 
burden, while at the same time retaining the ability to ad­
here to inherent safety constraints. 

As part of the precursor to the work presented here, we 
previously developed predictive techniques and implemented 
them algorithmically for use during the manual tele-operation 
phase [9]. The prediction algorithm is run through a simu­
lation as shown in Fig. I, prior to the commands being sent 
to the actual robot as shown in Fig. 2. 

Figure 1 : R obona ut E x p e rime ntal Task Setup in 
S imulation 

These prediction algorithms have previously been designed 
in a heuristic manner, without explicit optimization of the 
desired objectives. Those objectives are as follows: 

• Probability of False Alarm - 0 % 

• Probability of Missed Detection - ALARA (As low as 
reasonably achievable) 

Figure 2: Robona ut A ctual E x p e rime n tal Task 
Setup 

• Average time to prediction for correctly classified trials 
- ALARA 

Other approaches will be examined as alternatives to predic­
tion algorithms used in prior work [9]. Each of these tech­
niques have their own nuances and pose unique challenges, 
yet they all share a common feature. In each method, there 
are sufficient available free parameters that can be optimized 
to achieve the listed objectives. As such, our goal is to im­
prove upon previously generated results in order to meet the 
performance specifications listed above that define how well 
we are able to utilize the sliding scale of adjustable auton­
omy. In order to make the best use of the tele-operator's 
time, we would like to be able to accurately predict the task 
being performed as early as possible into its execution, prior 
to initiation of an autonomous action. 

The main requirements are based upon error statistics t hat 
are normally used in decision theory, the probability of false 
alarm and missed detection. Normally there is an optimal 
tradeoff between false alarms and missed detections that 
can be achieved, where improvement in one metric can be 
achieved at the expense of impeding the other. There has 
been much work in the statistical literature on this topic , 
and several references are available [8]. However, for prag­
matic purposes, we are also as interested in achieving the 
best tradeoff between false alarms and missed detections as 
we are of minimizing the average time to prediction for cor­
rect ly classified trials. 

For our experiment, an example of a false alarm is when 
the prediction algorithm indicates that t he tele-operator is 
reaching for the vertical handrail, yet the "ground t ruth" is 
that the tele-operator is reaching for t he horizontal one. A 
missed detection is the case in which the prediction algo­
rithm fails to recognize that any handrail is being reached 
for at all . Minimizing the average time to prediction for 
correctly classified trials is important for t he purposes of 
maximizing tele-operator "free time." That is, when the 
tele-operator grasps the object, this indicates the natural 
end of the window of useful time for prediction. For our 
application, false alarms are much more critical than missed 
detections, due to safety considerations. An autonomous 
grasp executed erroneously may potentially place the robot 
or astronauts working alongside the robot in a hazardous 
situation. 

In previous work [9]. we have trained and implemented Hid­
den Markov Models (HMMs) for prediction of operator in­
tent using available data. The experimental setup used in 
this work will be the same as used in t he previous work. 
The essence of the task is that the operator is reaching for 
a vertically or horizontally oriented handrail mounted on a 
vertical wall, prior to p lacing it in a box. Results have been 
shown to be very good in practice, using learning techniques 
more sophisticated than originally proposed fo r Robonaut 
[3]. Reports of using the same HMM methodology for ges­
ture recognition are available in other studies as well [5]. 
However, it is possible to improve upon the results in [9] in 
order to more closely achieve the performance requirements 
stated above. 

Both off-line (static) and on-line/real-time (dynamic) vali-
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dation is performed by recalling on the trained models. "Re­
call" is a term that often refers to the use of the Viterbi 
algor ithm [2], and we have used similar techniques for other 
applications in the past [lOJ. The Viterbi algorithm relies 
upon having a finite sequence buffer of data to be tested on. 
Off-line, or static validation refers to performing recall on a 
validation set, using the same sequence buffer segmentation 
that was used during training, to gain intuitioh about real­
time performance. During real-time recall of the models, 
HMMs trained on both types of tasks (reaching for horizon­
tal or reaching for vertical handrails) are arbitrated based 
upon an algorithm to determine t he "winning model ," or 
which model best describes t he streaming data. Further­
more, a completely different set of data is validated during 
both types ofrecall than is used during training. This is per­
formed by taking all of the data spanning multiple training 
sessions and t raining days , randomizing and partitioning the 
complete data set into mutually exclusive training and val­
idation sets. Both the nature of how the Viterbi algorithm 
is implemented and t he algori thmic details wi ll be provided 
in the subsequent section. 

The new methods which may allow us to achieve the per­
formance specifications stated above are by modifying how 
we perform recall, using judicious feature selection, a nd op­
timizing both static model training a nd dynamic real-time 
recall parameters. In previous work, we used subsets of posi­
tion (x-y-z) and orientation (roll-pitch-yaw) feature vectors 
to train and recall on the models. The feature vector acts 
as a template to form observation data sequences used both 
to train and recall the models. Here, we propose to either 
replace or a ugment these feature vectors with distance data, 
which provides the Euclidean distance to t he object of in­
terest being reached for. This will potentially add to the 
discriminatory ability of recall on the models. 

Additional recall algorit hms will also be examined, as al­
ternatives to the Viterbi algorithm. One such algorithm 
is similarly based on a finite sequence buffer , however, its 
classification is based upon posterior probabilities. Regard­
less of the a lgorithmic method being implemented, there is a 
unique method to parameterize this sequence buffer and how 
to find an optimal design point for static model training. Fi­
nally, we will use the recall method of posterior probabilities 
without a sequence buffer, which has unique advantages and 
disadvantages. Because there is no buffer , optimization of 
this algorithm over the performance specifications of interest 
can only be performed over real-time recall parameters (not 
the model training parameters) . We will perform dynamic 
optimization of t he other competing methods as well, where 
applicable. 

2. METHODOLOGY 
2.1 Hidden Markov Model Implementation 
Practical implementation of Hidden Markov Models has been 
covered at depth in t he literature [7] . Here we aim to de­
tail the most relevant facts pertaining to the nua nces that 
we will exploit and have been presented in previous w'ork 
[9J. Mathematical notation will be borrowed from Jordan 
[4J. We have chosen to implement a t ied-mixture Hidden 
Markov Model with M = 3 states and N = 6 mixtures. Fig. 
3 shows the graphical model topology and relevant parame­
ters for t his variant. 

'irQ 

Figure 3: Tied Mixture Hidde n Markov Model 

where t E {a, . .. ,T} references the discrete-time steps within 
t he sequence buffer, q. : the state value at time t , W. : the 
mixture value at t ime t, y. E Rn 

: the observation vector 
at t ime t, and n : number of elements in the featw'e vector. 
The HMM parameters which are learned by Baum-Welch 
iteration, are grouped together as e, and are defined as fol­
lows: 

Prior (initial) probability 

distribution 

Transition probability matrix 

'* aij 

Mixture weights 

'* bij 
'* 'lro(i) 

Mean of Gaussian distribution 

for mixture j 

Covariance matrix of Gaussian 

'lro 

A 

p(qt+1 = jlqt = i) 

B 

pew. = j lqt = i) 
p(qO = i) 

J.Lj 

distribution for mixture j 2: j 

Some other important probabilities with regards to the tied 
mixture HMM shown in Fig. 3 are as follows: 

Emission (output) probability 

p(Ytlw. = j) 

Gaussian mixture probability 

2.1.1 Viterbi-based recall 

N 

2: bijJV (Yt ; J.Lj , 2:j) 
j=l 

The Viterbi algorithm uses the idea of dynamic program­
ming in a discrete-state context, and estimates the best state 
sequence described by the available data via the following 
mathematical formulation: 

8T (i) = max P(qO, ... , qT = i , Yo,··· , YTIO) 
qo ... ·.qr 

Therefore, 8T( i) is the probability that the state sequence 



ends up in state i at final time T. The algorithm to solve this 
optimization problem is recursive in nature, and the termi­
nation step provides us with aT = maxi OT(i), the maximum 
probability over the possible state values, i, at the final time 
in the sequence buffer, T. The quantity log 8T is what we 
shall use as our primary indicator of the likelihood that the 
data being testing obeys the model being recalled on. 

There are two models of interest, one trained on obser­
vation sequences recorded when reaching for the vertical 
handrail, and another trained when reaching for the hori­
zontal handrail. We are interested in arbitrating between 
the likelihood of both models for a particular trial, whether 
it is horizontal or vertical. As such, a "confusion matrix" can 
be developed on static training data in order to gain intu­
ition about the robustness of real-time recall. Errors in the 
confusion matrix are incremented when false alarms occur 
and placed on the off-diagonals of the matrix. An exam­
ple of this is when we are reaching for the vertical handrail, 
but the recall arbitration indicates that it is the horizontal 
handrail. 

To gain more clarity about the difference between static re­
call and dynamic real-time recall, refer to Fig. 4, which 
shows an example of the y-yaw feature vector on the bot­
tom 2 plots. Here, multiple validation trials are superim­
posed from a fixed time prior to the time that the handrail 
is grasped, or in some cases from the beginning of the trial 
until the time that the handrail is grasped. The most clar­
ifying feature of this figure is that the "training" segments 
are demarcated as starting with circles (0), and ending with 
crosses (x). The sequences to be recalled in real-time are 
shown as solid lines for the y variable, and dotted lines for 
the yaw variable. Because the data displayed in these plots 
are validation trials, the training demarcation is for illus­
trative purposes only. The demarcated portions of the tri­
als indicate the length of the sequence buffer. When we 
are performing real-time recall, this buffer acts as a "sliding 
window" across the entire length of the trial. We can think 
about the demarcated "training" section shown as a snap­
shot of the sliding window at some time beyond the start 
of the trial. Notice that this is also the section that most 
clearly represents a divergence between the different types 
of trials. 

Also shown in Fig. 4 is the dynamic counterpart to the con­
fusion matrix, which illustrates the log8T values for all the 
trials as they are recalled on different models. Trials of type 
1 indicate the operator reached for the horizontal handrai l, 
and trials of type 2 indicate that the operator reached for 
the vertical handrail. The variables g(k, 1) and g(k, 2) will 
be defined shortly. Because of the "sliding window" used 
during real-time recall, there should actually be a second 
time index to bookkeep the sequence length (T) as well as 
the time step (k). Therefore, hereafter we shall refer to the 
metric log 8T as log 8k:k +T . The analogy of the confusion 
matrix to the results shown in Fig. 4 comes about due to 
the top half of the graphs shown. These 4 graphs represent a 
matrix of recalls on model types vs. triai types. The graphs 
along the diagonal represent the model recalling on trials of 
similar types, and the graphs on the off-diagonals represent 
models recalling on t rials of opposite types. 
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Figure 4 : Y and Yaw valida t ion t rials shown wit h 
corresponding log 8k:k +T and confide n ce 

As with the confusion matr ix, we desire to have "0 on the 
off-diagonals." The interpretation of this is that we elicit 
as few false alarms as possible based upon the real-time 
log8k:k +T results shown in each graph. In order to com­
pute false alarms as well as missed detections and average 
time to prediction for correctly classified tria ls, we must per­
form real-time arbitration with the aid of many thresholds. 
As shown in the top 4 graphs of Fig. 4, there is a dashed line 
indicating an important threshold. This threshold plays a 
major part in the heuristically-driven prediction algorithm, 
which is outlined as follows: 

For each time step k in the streaming real-time data set, 
perform the following: 

1. Compute log 8k:k +T based upon the finite sequence 
length T by using the Viterbi algorithm (recall). 

2. Subtract off model bias from trial: 
g(k, m) ~ log 8k:k+T(m) - 8m, 
where m E M == {Horizontal, Vertical} indexes the 
model being recalled on. 

3. For the current trial, determine and store the model 
yielding the maximum value between the quantities 
computed in the previous step, i.e. find 
m = argmaxmg(k,m). 

. , 



4. Compute and store the confidence value, c, that indeed 
m = argmaxm g(k , m) . 

5. If g(k, m) > Td, check if m = arg maxm g (k , m) from 
Step 3 references the same model as it did in the pre­
vious time step k. If so, increment a counter for model 
m, otherwise, reset the counter to 1, for the first count 
of a newly arbitrated m. If g(k, m) ::; Td, reset the 
counter to o. Note that Td is not a model-specific 
threshold (shown as a dashed line in Fig. 4). 

6. If the counter for model m exceeds a predetermined 
number (denoted as maximum hysteresis count), then 
use the confidence value computed in Step 4 for final 
arbitration. 

7. If the confidence value, c, exceeds a predetermined 
threshold, Te , then sound prediction alarm for model 
m. 

Step 4 in the algorithm is computed as follows, to yield a 
number c E [0,1]: 

!g(k , Horizontal) - g(k , Vertical)! 
c= C

s 

In the formula above, Cs is the confidence scale parameter. 
The idea of the confidence value, c, is to arbitrate between 
the models by computing the difference between the horizon­
tal and vertical likelihoods, scaled by a judiciously selected 
factor , Cs, that will yield values c E [O, lJ. If c > 1, then 
we set c = 1. The confidence values are shown on the third 
row of graphs in Fig. 4, with the corresponding confidence 
thresholds shown as dashed lines. All of the thresholds, bi­
ases , and scaling constants mentioned thus far for Viterbi 
recall are excellent candidates (i.e. "free parameters") for 
dynamic threshold optimization, and will be discussed in 
depth later. 

Notice that the "off-diagonals" of the top 4 graphs in Fig. 4 
have features that distinguish them from the graphs on the 
diagonals. The "off-diagonal" g(k , m) values appear to rise, 
then fall with k, whereas the diagonal g(k , m) values rise, 
then settle out above the thresholds for the most part. This 
distinguishing characteristic, in addition to the confidence 
values, provide the basis for the a lgorithmic construction 
outlined above. The reason for the initial pseudo-linear rise 
in all 4 graphs is due to the use of buffering required by 
the Viterbi algorithm. The buffer, {k ; k + T}, is initialized 
with all zeros at first, and then the computat ion of the biased 
likelihood g(k, m) grows exponentially until the buffer is full. 
At this point, the buffer slides forward with no leading zeros, 
allowing for the a lgorithmic construct to produce a robust 
model arbitration. Due to the delay in waiting for the buffer 
to fill, using buffer-based algorithms are potentially slow in 
meeting one of main performance specifications related to 
minimizing average t ime to prediction for correctly classified 
trials. Therefore, we will present an alternative to buffering 
methods short ly. 

The bottom row of plots in Fig. 4 illustrate scaled feature 
vectors ranging between 0 and 1 (using min and max ob­
served values for scaling), for y and yaw, in lieu of their 

original raw values. The scaled values are used as observa­
tion sequences for training the HMMs. This is done so that 
POR-based data can be comparable with each other (i.e. 
position is measured in cm, and orientation is measures in 
radians). This also becomes important when augmenting 
a POR-based feature vector with Euclidean distance data 
(to the handrails). In either case, it is still important to 
maintain a solid basis for comparison of the results. 

2.1.2 Posterior probability-based recall 
As an alternative to the Viterbi-based algorithm, we may 
use part of an algorithm that is traditionally used for infer­
ence during the Baum-Welch re-estimation procedure. Also 
referred to as the EM algorithm for Estimate (E-step) and 
Maximize (M-step), we borrow results from the E-step, in 
which inference amounts to computing the posterior proba­
bility: 

Notice that the formula is based upon some new quantities, 

specifically, a(qt) ~ p(YO, . . . , Yt , q,). A forwards recursive 
formula updates a(qt) (a recurSion), working only with data 
up to time t, and as such is real-time in nature. However, 
when used for the EM algorithm, this forwards algorithm 
complements a backwards recursive algorithm also run as 
part of the procedure, starting at final time T, and working 
backwards to time t + 1. This is called f3 recursion, where 

f3(q,) ~ p(Yt+l, ... , YT!q,). Clearly this is performed off­
line in the context of the training that occurs with the EM 
algorithm. The details of these recursive formulae and the 
EM algorithm can be found in the literature [4, 7J. 

Due to the nature of a recursion, we can apply the algorithm 
across the same buffer of data operated on by the Viterbi 
algorithm outlined earlier. The buffer of data will still slide 
forwards in the same manner, accumulating new stream­
ing observations with time. However, a major difference 
between implementation of the posterior-probability based 
recall is that the log <l';:,k+T metric will be replaced with one 
that is based upon the state value. Specifically, at each time 
instant k the recursive a formula will be run over the buffer 
of data {k ; k + T} . Throughout the execution of the al­
gorithm, the state corresponding to the maximum posterior 
probability value encountered over the current contents of 
the buffer will be stored . Mathematically, this can be repre­
sented as a two-step optimization problem as follows (where 
t; time in the buffer); 

iit arg maxp(qt!yO, . .. ,Yt) 
q, 

fit maxp(qt!Yo, 
Q, 

... , Yt) 

tbu/ arg m;u ii, 

iitbu/ maxiit 
t 

T he result iitbu/ is then compared with canonical state values 



to determine the progression of the data through a Markov 
chain . Because the tied mixture HMMs are trained as left­
right models, the Markov chain should naturally proceed 
from the initial state, 1, to the final state, M. These are the 
"canonical" state values referred to previously. Clearly, they 
represent a causal link to progression of the Markov chain, 
and will aid us in determining the status and classification 
of the task at hand. Therefore, we will use the canonical 
state values to help with arbitration between models being 
recalled on differing trial types. The remainder of the algo­
rithm pertaining to this arbitration can be summarized as 
follows: 

1. Check to see if qtbu/ is equal to 1 or M, for both mod­
els. 

2. If, for a particular model, m, the following conditions 
hold true, then sound prediction alarm for model m: 

(a) q'bu/ = M for model m. 

(b) qtbu/ = 1 for all models other than m. 

(c) Ptbu/ > 0.95. 

Notice that there is a condition, Ptbu/ > 0.95, correspond­
ing to the maximum posterior probability value encountered 
over the contents of the buffer. In order to elicit an alarm, we 
require that this value be above 0.95. This is analogous to 
the confidence value used with Viterbi recall, and could pos­
sibly be used for dynamic threshold optimization. However, 
due to the nature of the algorithm's implicit "max" bias, 
performing such an optimization may not be necessary. 

Finally, we can also implement real-time recall using pos­
terior probability computations without the use of a buffer. 
There are computational advantages to using this method, 
in contrast to the previously discussed disadvantages of us­
ing algorithms based upon buffers. As such, we can use a 
slight modification of the buffered version of the algorithm. 
We can now reduce the mathematical representation of the 
two-step optimization problem to a single step optimization 
problem, as follows (where t: now refers to real-time): 

arg maxp(qtlyo, . . . ,yt} 
q, 

p, maxp(q,lyo, ... , Yt) 
q, 

The remainder of the algorithm pertaining to arbitration is 
very similar, with only very slight changes summarized as 
follows: 

1. Check to see if qt is equal to 1 or M, for both models. 

2. If, for a particular model, m, the following conditions 
hold true, then sound prediction alarm for model m: 

(a) qt = M for model m. 

(b) Pt > 0.95. 

Because this algorithm requires no buffering, there is hence 
no need for static optimization, and dynamic optimization is 
very computationally efficient. The optimization parameter 
is the confidence threshold, shown in the algorithmic sum­
mary above as 0.95. Previously, we hypothesized that the 
buffered version of the algorithm may exhibit very little sen­
sitivity to this threshold. Although this is still the case when 
using the non-buffered method, marginal improvements in 
average t ime to prediction for correctly classified trials can 
be claimed by performing the dynamic optimization. Fig. 
5 illustrates the striking transition of posterior probabili­
ties for the final state only, i.e. p(qt!yO, ... , Yt) shown for 
i = M, fo r models recalling on trials of the same type. For 
correctly classified trials on the "diagonals," the state tran­
sition occurs very rapidly, in contrast to the rather slow, 
linear transition of the log Okok+T metric shown in Fig. 4. 

For certain trials on the lower diagonal, the posterior prob­
ability reverts back to a very small value just prior to grasp. 
This aberration would give us pause if the nature of the al­
gorithm were to alarm based upon continuous observation. 
However, because our goal is to classify correctly as soon as 
possible, once the classification is performed and the alarm 
is triggered due to arbit ration, there is no further need for 
monitoring the posterior values. This is especially true due 
to the fact that an optimal alarm triggered to initiate au­
tonomous action moves us further along the sliding scale of 
autonomy than continuous monitoring of confidence values 
within the predictive interface as in [9]. 

Model 1 recalling on trial type I 

0.5 

Model 2 recalling on trial type I 
I.-----------~"' 

0.5 

Trials of type 1 

Model I recalling on trial type 2 
1,--------------. 

0.5 

Model 2 recalling on trial type 2 
1r_--~~mTr_~r-_. 

0.5 

5 10 15 

Trials of type 2 

o 5 10 15 
Time [sec] 

Figure 5: Y and Yaw validation trials shown wit h 
corresponding p osterior proba bilitie s , p(qt/yO, . .. , Yt) 

As mentioned before, only marginal improvements may be 
achieved by performing dynamic optimization over the confi­
dence threshold for real-time non-buffered posterior probability­
based recall. As seems clear by examining Fig. 5, using the 



transition to the final state as a fundamental part of the al­
gorithm, and optimizing to obtain marginal improvements 
may not be the optimal solution to our problem. Further 
improvements may be made by making use of some weighted 
combination of the posterior probability over all states as it 
exceeds some predetermined threshold. This intuitive con­
cept can be formalized in the roots of decision theory, and is 
the subject of future work to be presented in a sequel paper 
by the lead author. 

2.2 Optimization Methods 
In order to find the optimal model training parameters when 
using a sequence buffer, the buffer can be parameterized to 
incur the fewest number of errors. As shown in Fig. 4, we 
have a fixed sequence buffer, which can be parameterized by 
the time prior to grasp and the sequence buffer length. Be­
cause we are interested in the fewest errors and maximizing 
the time before grasp, we propose this parametrization as an 
anecdote. In essence, this can be thought of as a "static op­
timization," where the cost function being optimized is the 
sum of the off-diagonals of the confusion matrix, M , which 
quantify the errors (false alarms) . 'In our case, since we only 
have two models over which to arbitrate, the confusion ma­
trix is 2 x 2, and we can formaLly pose the optimization 
problem as follows: 

Solve arg min tr(PM(A.)) 
As 

where P [0 ~] 

P is a permutation matrix, and As is a vector containing 
the optimization parameters defined previously. The cost 

function, h(A.) ~ tr(PM(A.)) , is simply the sum of the off­
diagonals of the confusion matrix, or the errors accumulated 
during static recaLl validation. As such, h(A.) can be plot­
ted as a function of the two optimization parameters via a 
simple two-dimensional grid search to see if there are any 
global or local minima. We will provide these illustrations 
in the results section. Clearly, there is no closed-form s0-

lution for this optimization problem since M (As) is based 
upon empirical evidence. Therefore, from the plots men­
tioned above, we can determine the optimal design points. 
Our goal is to find the region of the parameter space that 
incurs no errors, but is constrained to having a maximum 
time before grasp (related to one of our performance specifi­
cations), and smaLlest possible sequence buffer length. The 
latter constraint is imposed because smaller sequence buffers 
allow for more "sliding window" time during real-time recall 
so that there is more time for correct arbitration between 
models. 

The real-time recall thresholds can also be optimized in a 
formal manner, based upon the metrics previously intro­
duced as performance specifications. Therefore, we may 
pose a "dynamic" optimization problem. In this case, there 
are three competing objectives, and the goal is to deter­
mine the optimization parameters that provide an optimal 
tradeoff among them. Whether using the V iterbi or the 
posterior-based recall method, we shall denote the vector 
of thresholds being optimized as Ad. In the case of the 

Viterbi recaLl method, Ad contains the follOwing thresholds 
and other recaLl parameters: am, '1m E M (model biases), 
Td, the detection threshold against which we compare the 
log likelihood ';alues g(k , m) of both models, the maximum 
hysteresis count (M HC), the confidence threshold , Te, and 
the confidence scale parameter, Cs . 

Therefore, Ad T = [01 02 Td M H C Te Cs J. For 
the posterior-based recall methods, Ad = Te , whether buffered 
or non-buffered techniques are being used. 

ow that the details of the optimization parameters have 
been highlighted, we still have yet to capture the essence of 
how to deal with optimizing competing objectives over these 
parameters. There are several methods to choose from, but 
as first step, we focus on a simple one which will solve the 
optimization posed as foLlows: 

Solve arg min w T X(Ad) 
Ad 

where w T 1 1 1 ] 

and xT (>..d) Pmd(Ad) P/a(>'d) tp(Ad) ] 

tp(Ad) 
te (Ad) 

tc(Ad) + tg(Ad) 

Pmd(Ad) and Pja(Ad), are the probability of missed detec­
tion and false alarm, respectively. tp(Ad) is the scaled aver­
age time to prediction for correctly classified trials, com­
puted as shown above, where te(Ad) is the average time 
to prediction for correct trials, and tg(Ad) is the average 
"free time," or time before the grasp for correct trials. In 
this way, tp(Ad) E [0,1]' and can be directly compared to 
Pmd(Ad) and P/a(Ad), which are also E [0,1]. It should be 
evident at this point that our cost function is essentially 
an equally weighted sum of all of the competing objectives. 
This method of solving a multi-objective optimization prob­
lelll is a common approach, but suffers from having to make 
judicious selection of the weights, w. These weights are not 
necessarily a measure of the relative magnitude of the met­
rics, and furthermore, certain solutions may be inaccessible 
if a nonconvex Pareto frontier exists. However, it can easily 
be posed as an Uflconstrained nonlinear optimization prob­
lem, where a simplex method [6] can be implemented. Al­
though we cannot visualize the results for the Viterbi recall 
method due to optimization over a high dimensional space, 
it will be shown that the optimization routine converges to 
a local minimum for a particular set of initial conditions in 
the subsequent section. 

We optimize the static and dynamic parameters separately 
in order to reduce the computational burden of parameteriz­
ing them simultaneously. Performing the static optimization 
as a two-dimensional grid search is equivalent to training a 
hidden Markov model for each A. point within the grid, 
which is computationally burdensome. Moreover, one of the 
optimization parameters in A. is the time prior to grasp. 
This is related to the average time to prediction for correct 
trials that is part of the cost function for dynamic optimiza­
tion. As such, the problem would be ill-posed if both static 
and dynamic optimization problems were combined. Hav-



ing the two optimizations performed separately also allows 
us use the most well-trained model already statically pre­
optimized with respect to a constraint (i.e. a lower bound) 
on the maximum time prior to grasp. Given that, we can im­
prove upon the static validation performance by performing 
the secondary dynamic optimization. This further refines 
the validation performance with respect to the parameters 
in Ad, during real-time recall. 

3. RESULTS 
3.1 Static Optimization 
An optimal design point can be found for static validation 
when using the y and yaw, POR-based feature vector. This 
design point reflects the best parametrization of the train­
ing segmentation for data used to train HMMs, using the 
Viterbi recall method. Shown in Fig. 6 is the sum of the 
off-diagonals of the confusion matrix, h(A. ), as a function 
of the optimization parameters: the time prior to grasp and 
the sequence buffer length. 
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Figure 6: Optimal Design Point for Y and Yaw Fea­
t u re Vector, Viterbi Method 

As seen in Fig. 6, both the 3D and the contour plot view 
are given. It is clear that there is an area corresponding to a 

large accumulation of errors, for large times from grasp and 
small sequence lengths. Recall that our goal for static opti­
mization is to find the region of the parameter space that in­
curs no errors, but is constrained to having a maximum time 
before grasp, and smallest possible sequence buffer length. 
As such, we have a conflict of interest between Our goal 
and the constraints. However there is enough area in the 
parameter space where there is negligible error accrual to 
accommodate our requirements. The optimal design point 
has been marked with an asterisk (*) on the contour plot, 
for an optimal time from grasp of 11.3 sec and a sequence 
buffer length of 4 sec. 

Similar contour plots can be presented for other cases of 
interest, when using other feature vectors, and for the pos­
terior method, when using buffering. Static optimization 
clearly does not apply to the non-buffered posterior method, 
because there is no buffer that can be optimally parameter­
ized. There are two feature vectors other than the POR­
based one (y-yaw) to be studied: a feature vector based 
exclusively on distance data, and a feature vector based 
on y-yaw, and scaled distance data. Because of the scal­
ing that is performed fo r comparability among variables, we 
may obtain varying results when considering the feature vec­
tor based solely on distance. Therefore, both the scaled and 
unsealed versions of the distance-only based feature vectors 
will be investigated. 

It is therefore of interest to look at the contour plots for the 
methods or feature vectors that yield qualitatively signifi­
cant differences. For the Viterbi recall method, the contour 
plots providing the static optimization results for feature 
vectors based on variables other than y-yaw are very similar 
to the one shown in Fig. 6. As such, and in the interest of 
conserving space, we will refrain from showing these plots. 
However, using the posterior (buffered) recall method illus­
trates a significant difference, especially when using the dis­
tance feature vector. The resulting contour plots are shown 
in Fig. 7, for both the scaled (top) and unscaled (bottom) 
distance-based feature vector. 

Notice the difference between Figs. 6 and the top plot of 
7: the results for the Viterbi method with POR-based fea­
ture vector are much cleaner than when using the posterior 
method with the distance-based (scaled) feature vector. One 
reason for this is that the errors are computed in a different 
manner for each method. Errors accumulated when using 
the Viterbi method are based on a log-likelihood metric and 
obtained by adding the off-diagonals of the confusion matrix. 
Errors accumulated with the posterior method are based on 
the respective algorithm described in the previous section, 
and by scaling the fraction of those correctiy classified to 
the total number (not unlike summing off-diagonals of the 
confusion matrix). Another major difference is in the use 
of scaled distance as a feature vector rather than a POR­
based feature vector. We may compare the results shown 
on the top plot of Fig. 7 to other results using the same 
scaled distance feature vector (not shown), using different 
recall methods. The results do vary, but not as significantiy 
as seen between the POR-based results using the Viterbi re­
call method shown in Fig. 6 and the scaled distance results 
using the posterior recall method in Fig. 7. 
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Figure 7: Optimal D esign Point fo r Distance-Based 
Featu re Vector, Posterio r (B u ffe red ) Meth od 

As seen in Fig. 7, there is a "filtering" effect that cleans 
up the contour plot results when using the unscaled version 
of the distance feature vector (on bottom) as opposed to 
the scaled version (on top). This is due to t he fact t hat 
the means of t he unscaled observation sequences have more 
distinguishability when training an HMM than when they 
are scaled to values between 0 and 1. In summary, optimal 
design points for feature vectors a nd methods of all types 
are provided in Table 1. The results provided are for the 
optimal sequence buffer length only. For all feature vectors 
and methods, the optima l time prior to grasp can be set to 
11.3 sec. Results provided for the "distance" only feature 
vector apply for both scaled and unsca led versions. 

3.2 Optimization of TrainingIValidation Seg-
mentation 

Now that we have the optimal design points and best t rained 
HMMs from a trial segmentation standpoint , we can perform 
dynamic threshold optimization. However , notice in Figs. 6 
and 7 shown in the previous subsection, that there was a 
bit of noise present in the contour plots, and best seen in 

~ Vector POR Distance to Combo 
Recall (Y-yaw) handrails (POR & distance) 
Method 

Viterbi Method 4 sec. 5 sec. 6 sec. 

Posterior Method 5 sec. 7.53 sec. S sec. 

Table 1: Optimal sequence buffer length 

the 3D plot from F ig. 6. This is due to the fact that the 
training a nd validation sets were randomly partitioned. This 
random partitioning may also account for some variance in 
the results obtained. Therefore , before proceeding further to 
the dynamic threshold optimization, we want to ensure that 
we study a nd understand the consequences of this behavior. 

It is has been demonstrated that the results (average time to 
prediction for correctly classified trials, false alarms, missed 
detections) may vary considerably based upon using a par­
ticular method. As such, we can determine the best t rain­
ing/validation set segmentation for a particular recall method 
by continuously randomizing the training/validation seg­
mentation based upon the statically optimized parameters 
from the previous subsection. This randomization continues 
until the performance specifications fall within a required 
preset to lerance. At this point, we may use the resulting 
training/validation segmentation as a basis for comparison 
when generating results using a different recall method. If 
the results vary greatly between the two recall methods, then 
we know there is a statistical bias for the feature vector un­
der consideration. 

Performing this test for all feature vectors studied will al­
low us to make a judicious feature selection. Furthermore, 
in performing this experiment, we can develop an intuitive 
sense of a "canonical" representation for a training/ validation 
segmentation that works well for each method by examining 
t he respective superimposed trials in a plot. This qualitative 
informat ion is also very useful for building intuition on how 
to design future experiments. Of course, when randomizing 
t he segmentation based upon a particular recall method, 
there is an inherent bias towards using that recall method. 
However, our aim is to find the recall method and feature 
selection that will yield the most desirable results. As such 
we will run randomization tests which are recall-biased for 
both posterior (non-buffered) and Viterbi methods. This 
will be followed by performing dynamic optimization based 
upon the feature vector that yields the most robust results 
across recall methods. 

The main findings of our tests indicate that t he combina­
tion POR/ scaled distance feature vector exhibits the most 
robust behavior. In fact, when validating with the Viterbi 
recall-biased training/ validation segmentation, both meth­
ods meet t he required performance specifications. As such, 
we will use the combination POR/scaled distance feature 
vector as the candidate for study in t he next subsection. 
There we will perform dynamic threshold optimization for 
all available recall methods, using hidden Markov models 
trained with biases towards both recall methods. 



3.3 Dynamic Threshold Optimization 
The results for dynamic threshold optimization provided in 
this subsection pertain only to the combination POR-based 
(y-yaw) / distance feature vector. We will first randomize 
the training/ validation segmentation with a posterior recall 
method bias to achieve a zero probability of false alarm and 
missed detection, and a average time to prediction for cor­
rectly classified trials below 8 sec. The initial results and 
optimization parameters, as well as the optimized results 
and parameters for both the buffered and non-buffered pos­
terior methods are shown in Table 2. 

Table 2 : Optimization Results for Posterior 
Method, training/ validation segmentation with pos­
terior recall bias 

Buffering Buffered Non-Buffered" 
Initial Tc 0.95 0.95 

" Optimized Tc 0.95 0.7125 

Initial PIa 0% 0% 
Optimized PIa 0% 0% 

Initial Pmd 0% 0% 
Optimized Pmd 0% 0% 

Initial tc 9.46 sec 7.89 sec 
Optimized t c 9.46 sec 7.82 sec 

We can verify a hypotheses stated in the previous section 
using the information in Table 2. Recall that for the buffered 
posterior recall method, in order to elicit an alarm we require 
that the confidence threshold be above 0.95. Our hypothesis 
was that due to the nature of the algorithm's implicit "max" 
bias, performing this optimization may not be necessary. As 
seen in the first column of Table 2, the optimized values 
don't change at all from the initial values, substantiating 
our hypothesis. 

Note that a double line separates the table. The parameters 
above the double line are for optimization, and the para­
meters below the double line are the objectives. For the 
non-buffered posterior recall method, we hypothesized that 
the algorithm would exhibit very little sensitivity to the con­
fidence threshold, and that only marginal improvements in 
average time to prediction for correctly classified trials would 
be claimed by performing the dynamic optimization. Evi­
dence of this is also provided in Table 2, where we only lose 
hundredths of a second in reducing the average time to pre­
diction by using an optimized confidence value of 0.71025 in 
lieu of 0.95. 

Table 3 provides the optimization results when applying the 
Viterbi recall method on models that were based upon a 
training/ validation segmentation with posterior recall bias. 
The table lists initial results a nd optimization parameters, 
as well as optimized results and parameters. 

Here, the probability of false alarm and missed detection, 
and average time to prediction do not differ greatly than 
when we used the posterior recall methods. This ~;va.s our 
expectation, due to the robustness of using the combination 
feature vector. Also evidenced in Table 3, we can improve 
even further upon t hose results, based in part on the initial 
set of optimization parameters selected. The initial set of 
optimization parameters listed in the column labeled "First 

Table 3 : Optimization Results for Viterbi recall 
Method, training/validation segmentation with pos­
terior recal l bias 

Parameters and Metrics First Values Second Values 
Initial 81 0 0 

Optimized 81 0.00035375 2.0833 x 10 0 

Initial 82 0 0 
Optimized 82 0.0001068 2.0833 x' 0 -0 

Initial Td -600 125 
Optimized Td -629.32 125.52 
Initial MHC 5 25 

Optimized MHC 5 26 
Initial Tc 0.81 0.81 

Optimized Tc 0.79836 0.81338 
Initial Cs 600 600 

Optimized Cs 483.54 602.5 

Initial PIa 0% 0% 
Optimized PIa 0% 0% 

Initial Pmd 2% 2% 
Optimized Pmd 2% 0% 

Initial tc 7.6486 sec 7.9347 sec 
. Optimized tc 7.3083 sec 7.985 sec 

Values" was generated by trial , error, and intuition. As seen, 
it is possible to improve upon the average time to prediction 
by fractions of a second. 

In the column labeled "Second Values," the initial optimiza­
tion parameters are selected in contrast to other parameters 
in order to determine if there any sensitivities of the opti­
mized results to the initial starting points. In essence, we 
would like to be able to determine if there is agreement or 
disagreement between optimum points found by using dif­
fering recall methods. As such, we can speak to the con­
vergence points of the multi-objective optimization problem 
being global or local minima. It appears that the multi­
objective optimization problem posed as an unconstrained 
nonlinear cost function clearly has local minima, and we 
may arrive at solutions that are very sensitive to starting 
location. 

Similar conclusions can be surmised when randomizing the 
training/validation segmentation with a Viterbi recall method 
bias to achieve a zero probability of false alarm and missed 
detection, and a average time to prediction below 10 sec. 
The initial results a nd optimization parameters, as well as 
the optimized results and parameters for all recall methods 
are shown in Table 4 and 5. 

This provides use with further evidence that optimization 
yields improvements, and in this case they appear to be more 
substantial, particularly for the Viterbi recall method. We 
see great reduction in average time to prediction, at the ex­
pense of a slight increase in the probability of missed detec­
tion. For the posterior recall methods, however, we see that 
the improvements are still only marginal. Therefore, for the 
posterior recall method, the truly effective steps in the opti­
mization procedure come from static optimization and opti­
mization o(the training/validation segmentation. However, 
as stated earlier, the arbitration and macilinery behind the 



Table 4: Optimization R esults for pos t e rior r e­
cal l m ethod, training/validation segmentation with 
Viterbi r ecall bias 

Buffering Buffered Non-Buffered 
Initial Tc 0.95 0.95 

Optimized Tc 0.95 0.86094 

Initial Ptc. 0% 0% 
Optimized Ptc. 0% 0% 

Init ial Pmd 0% 0% 
Optimized Pmd 0% 0% 

Initial tc 8.7456 sec 7.9864 sec 
Optimized tc 8.7456 sec 7.9483 sec 

Table 5: Optimization Results for Viterbi r e­
call Method, training/ validation segmen tat io n with 
Viterbi recall bias 

Parameters/ Metrics First Values Second Values 
Initial,h 0 0 

Optimized 'h 9.1681 x 10 -~ 0.0010858 
Initial ch 0 0 

Optimized 02 0.0005762 0.0045668 
Initial Td -600 125 

Optimized Td -714.28 28.419 
Initial MHC 5 25 

Optimized MHC 5 10 
Initial Tc 0.81 0.81 

Optimized Tc 0.81181 0.99835 
Initial Cs 600 600 

Optimized Cs 243.7 268.3 

Initial Ptc. 0% 0% 
Optimized Ptc. 0% 0% 

Initial Pmd 0% 2% 
Optimized Pmd 2% 2% 

Initial tc 7.8354 sec 7.9944 sec 
Optimized tc 6.5083 sec 7.0722 sec 

posterior recall algorithms may not be the optimal solut ion 
to the problem of minimizing average time to prediction, 
as well as adhering to the other performance specifications. 
Further improvements may be made by making use of some 
weighted combination of the posterior probability over all 
states as it exceeds some predetermined threshold, in at­
tempt to improve the performance of the algorithm. 

The multi-objective optimization problem again clearly has 
local minima, with the solutions exhibiting sensitivity to 
starting iocation as shown in Tables 4 and 5. At any rate, 
out of all of the cases investigated, t here is no clear "winner ," 
with regards to the recall method, or recall bias. However, 
we can conclude that the combination feature vector pro­
vides us with the most desirable solut ion. As expressed in 
previous work [9], it is possible to shave more t ime off of 
t he average t ime to prediction by allowing fo r some missed 
detections. We can achieve an average time to prediction 
as low as 6.5 sec if we allow a 2% probability of missed 
detection, for the Viterbi recall method with a Viterbi re­
call bias shown in Table 5. However, if we desire a zero 
missed detection and zero false alarm probability, the best 
we can do on average time to prediction is 7.82 sec, for the 

posterior recall method (non-buffered) with a posterior re­
call bias shown in Table 2. These same tradeoffs can be 
achieved by using alternative dynamic threshold optimiza­
tion weightings (i.e. not equally weighted as is performed 
currently with w T = [1 1 1 l) , or using a completely 
different approach to the multi-objective optimization prob­
lem. 

4. CONCLUSION 
Here we provide a summary of the most important findings: 

• We can meet the requirements set by our performance 
specifications by choosing any of the appropriate recall 
methods or recall biases that provide for it. 

• Depending on how strict the performance requirements 
are set, we can trade off minimizing the probability of 
missed detection for further reduction in the average 
time to prediction for correctly classified trials. 

• Feature selection must take into account the effects of 
any statist ical bias with respect to the randomizing 
the training/validation partitioning. 

• Augmenting the feature vector with additional vari­
ables that provide more discriminatory power such as 
distances to handrails make the resu lting hidden Markov 
models robust with respect to randomizing the train­
ing/ validation segmentation. 

• The optimized results are very sensitive to the initial 
starting points, and convergence to local minima is the 
best we can do with the currently implemented opti­
mization approach. However, we've been able to doc­
ument verifiable improvement over the initial starting 
points, particularly when using the Viterbi recall/arbitration 
method. 

• Future work should include exploration of alternative 
optimizat ion techniques, and ways to enhance the pos­
terior recall method based upon more rigorous decision 
t heoretic concepts. 
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