
., ,
Source of Acquisition
NASA Ames Research Center

Optimized Algorithms for Prediction within Robotic
Tele-Operative Interfaces*

Authors :
. t

Rodney A. Martin
. :}

KeVin R. Wheeler
. §

Vytas SunSplral ,
Mark B. Allan

ABSTRACT
Robonaut, the humanoid robot developed at the Dexter­
ous Robotics Laboratory at NASA Johnson Space Center
serves as a testbed for human-robot collaboration research
and development efforts. One of the primary efforts inves­
tigates how adjustable autonomy can provide for a safe and
more effective completion of manipulation-based tasks. A
predictive algorithm developed in previous work [9] was de­
ployed as part of a software interface that can be used for
long-distance tele-operation. In this paper we provide the
details of this algorithm, how to improve upon the meth­
ods via optimization, and also present viable a lternatives to
the original algorithmic approach. We show that a ll of the
algorithms presented can be optimized to meet the specifi­
cations of the metrics shown as being useful for measuring
the performa nce of t he predictive methods. Judicious fea­
ture selection also plays a significant role in the conclusions
drawn.

Categories and Subject Descriptors
I. 2.6 [A r t ificial I ntelligence]: Learning- parameter learn-

*(Produces the permission block, copyright information and
page numbering) . For use with ACMJ'ROC-ARTICLE­
SP.CLS V2.6SP. Supported by ACM.

tNASA Ames Research Center, M/S:269-1 Moffett Field,
CA 94035-1000 email:rmartin(\lemail. arc. nasa. gov

:} ASA Ames Research Center, M/ S:269-1 Moffett Field,
CA 94035-1000 email:kyheeler(\lemail . arc . nasa . gov

§Formerly published as Thomas Willeke, QSS Group, Inc.
NASA Ames Research Center, M/ S:269-2 Moffett Field, CA
94035-1000 email: vytas(\lemail. arc .nasa . gov

ilQSS Group, Inc. NASA Ames Research Center , M/ S:269-
2 Moffett Field, CA 94035-1000
email: mallan(\lemai1. arc . nasa. gov

HUl1Illfl Robot Interaction '06 Salt Lake City, Utah USA

ing; I. 2.9 [Artific ia l Intellige nce] : Robotics-operator in­
terfaces; G.3 (Mathematics of Computing]: Probability
and Statistics-Markov processes; 1.6.4 [Simulation and
M od e ling]: Model Validation and Analysis

General Terms
Algorithms, Performance

Keywords
optimization, prediction, practical implementation

1. INTRODUCTION
Humanoid robotic tele-operation has been shown to be of
interest for space-related applications [1, 3) . NASA's Robe­
naut is clearly an excellent platform for performing human­
robot collaboration research, and serves as a testbed for de­
veloping practical capabilities and interfaces. Potentially, a
myriad of space-based construction and maintenance tasks
can be performed remotely by Robonaut. Manual teleop­
eration allows for full control over the robot's trajectory
throughout execution of a task. This is very important from
the standpoint of safety in order for errant execution to be
terminated as soon as possible to prevent damage to ex­
pensive equipment, or injury to personnel. However, tele­
operation often incurs much more dedicated time and effort
on t he part of the human operator, with the task taking 3 to
4 times longer on average than if performed at normal hu­
man speeds. One reason for the extended task time is due
to the fact the robot is being operated over a time delay,
and it takes time to verify that the co=ands sent to the
robot are the ones actually being executed. This "bump and
w"ait" approach is tedious, and adds to the time to perform
a task. Furthermore, for safety considerations, Robonaut 's
movement is rate limited, so that any movements made by
the operator must match these rate limitations, naturally
causing a slower execution.

In contrast, we may consider fully automating the opera­
tion of the robot, obviating the need for tele-operation, po­
tentially decreasing the task burden and time. However,
this would require building up a dictionary of commands
based hierarchically upon waypoints to complete a simple
task. The scalability of building such an interface is likely
to present a natural practical limitation, not to mention that

operating in a fully autonomous mode prevents human in­
tervention that is required for safety considerations. As a
trade-off to operating in fully manual or fully autonomous
mode, we take advantage of the sliding scale of adjustable
autonomy. By allowing for both a manual tele-operation
phase and an autonomous phase of operation, we can free
the operator to perform other tasks, and mitigate their task
burden, while at the same time retaining the ability to ad­
here to inherent safety constraints.

As part of the precursor to the work presented here, we
previously developed predictive techniques and implemented
them algorithmically for use during the manual tele-operation
phase [9]. The prediction algorithm is run through a simu­
lation as shown in Fig. I, prior to the commands being sent
to the actual robot as shown in Fig. 2.

Figure 1 : R obona ut E x p e rime ntal Task Setup in
S imulation

These prediction algorithms have previously been designed
in a heuristic manner, without explicit optimization of the
desired objectives. Those objectives are as follows:

• Probability of False Alarm - 0 %

• Probability of Missed Detection - ALARA (As low as
reasonably achievable)

Figure 2: Robona ut A ctual E x p e rime n tal Task
Setup

• Average time to prediction for correctly classified trials
- ALARA

Other approaches will be examined as alternatives to predic­
tion algorithms used in prior work [9]. Each of these tech­
niques have their own nuances and pose unique challenges,
yet they all share a common feature. In each method, there
are sufficient available free parameters that can be optimized
to achieve the listed objectives. As such, our goal is to im­
prove upon previously generated results in order to meet the
performance specifications listed above that define how well
we are able to utilize the sliding scale of adjustable auton­
omy. In order to make the best use of the tele-operator's
time, we would like to be able to accurately predict the task
being performed as early as possible into its execution, prior
to initiation of an autonomous action.

The main requirements are based upon error statistics t hat
are normally used in decision theory, the probability of false
alarm and missed detection. Normally there is an optimal
tradeoff between false alarms and missed detections that
can be achieved, where improvement in one metric can be
achieved at the expense of impeding the other. There has
been much work in the statistical literature on this topic ,
and several references are available [8]. However, for prag­
matic purposes, we are also as interested in achieving the
best tradeoff between false alarms and missed detections as
we are of minimizing the average time to prediction for cor­
rect ly classified trials.

For our experiment, an example of a false alarm is when
the prediction algorithm indicates that t he tele-operator is
reaching for the vertical handrail, yet the "ground t ruth" is
that the tele-operator is reaching for t he horizontal one. A
missed detection is the case in which the prediction algo­
rithm fails to recognize that any handrail is being reached
for at all . Minimizing the average time to prediction for
correctly classified trials is important for t he purposes of
maximizing tele-operator "free time." That is, when the
tele-operator grasps the object, this indicates the natural
end of the window of useful time for prediction. For our
application, false alarms are much more critical than missed
detections, due to safety considerations. An autonomous
grasp executed erroneously may potentially place the robot
or astronauts working alongside the robot in a hazardous
situation.

In previous work [9]. we have trained and implemented Hid­
den Markov Models (HMMs) for prediction of operator in­
tent using available data. The experimental setup used in
this work will be the same as used in t he previous work.
The essence of the task is that the operator is reaching for
a vertically or horizontally oriented handrail mounted on a
vertical wall, prior to p lacing it in a box. Results have been
shown to be very good in practice, using learning techniques
more sophisticated than originally proposed fo r Robonaut
[3]. Reports of using the same HMM methodology for ges­
ture recognition are available in other studies as well [5].
However, it is possible to improve upon the results in [9] in
order to more closely achieve the performance requirements
stated above.

Both off-line (static) and on-line/real-time (dynamic) vali-

, ,.

.. .

dation is performed by recalling on the trained models. "Re­
call" is a term that often refers to the use of the Viterbi
algor ithm [2], and we have used similar techniques for other
applications in the past [lOJ. The Viterbi algorithm relies
upon having a finite sequence buffer of data to be tested on.
Off-line, or static validation refers to performing recall on a
validation set, using the same sequence buffer segmentation
that was used during training, to gain intuitioh about real­
time performance. During real-time recall of the models,
HMMs trained on both types of tasks (reaching for horizon­
tal or reaching for vertical handrails) are arbitrated based
upon an algorithm to determine t he "winning model ," or
which model best describes t he streaming data. Further­
more, a completely different set of data is validated during
both types ofrecall than is used during training. This is per­
formed by taking all of the data spanning multiple training
sessions and t raining days , randomizing and partitioning the
complete data set into mutually exclusive training and val­
idation sets. Both the nature of how the Viterbi algorithm
is implemented and t he algori thmic details wi ll be provided
in the subsequent section.

The new methods which may allow us to achieve the per­
formance specifications stated above are by modifying how
we perform recall, using judicious feature selection, a nd op­
timizing both static model training a nd dynamic real-time
recall parameters. In previous work, we used subsets of posi­
tion (x-y-z) and orientation (roll-pitch-yaw) feature vectors
to train and recall on the models. The feature vector acts
as a template to form observation data sequences used both
to train and recall the models. Here, we propose to either
replace or a ugment these feature vectors with distance data,
which provides the Euclidean distance to t he object of in­
terest being reached for. This will potentially add to the
discriminatory ability of recall on the models.

Additional recall algorit hms will also be examined, as al­
ternatives to the Viterbi algorithm. One such algorithm
is similarly based on a finite sequence buffer , however, its
classification is based upon posterior probabilities. Regard­
less of the a lgorithmic method being implemented, there is a
unique method to parameterize this sequence buffer and how
to find an optimal design point for static model training. Fi­
nally, we will use the recall method of posterior probabilities
without a sequence buffer, which has unique advantages and
disadvantages. Because there is no buffer , optimization of
this algorithm over the performance specifications of interest
can only be performed over real-time recall parameters (not
the model training parameters) . We will perform dynamic
optimization of t he other competing methods as well, where
applicable.

2. METHODOLOGY
2.1 Hidden Markov Model Implementation
Practical implementation of Hidden Markov Models has been
covered at depth in t he literature [7] . Here we aim to de­
tail the most relevant facts pertaining to the nua nces that
we will exploit and have been presented in previous w'ork
[9J. Mathematical notation will be borrowed from Jordan
[4J. We have chosen to implement a t ied-mixture Hidden
Markov Model with M = 3 states and N = 6 mixtures. Fig.
3 shows the graphical model topology and relevant parame­
ters for t his variant.

'irQ

Figure 3: Tied Mixture Hidde n Markov Model

where t E {a, . .. ,T} references the discrete-time steps within
t he sequence buffer, q. : the state value at time t , W. : the
mixture value at t ime t, y. E Rn

: the observation vector
at t ime t, and n : number of elements in the featw'e vector.
The HMM parameters which are learned by Baum-Welch
iteration, are grouped together as e, and are defined as fol­
lows:

Prior (initial) probability

distribution

Transition probability matrix

'* aij

Mixture weights

'* bij
'* 'lro(i)

Mean of Gaussian distribution

for mixture j

Covariance matrix of Gaussian

'lro

A

p(qt+1 = jlqt = i)

B

pew. = j lqt = i)
p(qO = i)

J.Lj

distribution for mixture j 2: j

Some other important probabilities with regards to the tied
mixture HMM shown in Fig. 3 are as follows:

Emission (output) probability

p(Ytlw. = j)

Gaussian mixture probability

2.1.1 Viterbi-based recall

N

2: bijJV (Yt ; J.Lj , 2:j)
j=l

The Viterbi algorithm uses the idea of dynamic program­
ming in a discrete-state context, and estimates the best state
sequence described by the available data via the following
mathematical formulation:

8T (i) = max P(qO, ... , qT = i , Yo,··· , YTIO)
qo ... ·.qr

Therefore, 8T(i) is the probability that the state sequence

ends up in state i at final time T. The algorithm to solve this
optimization problem is recursive in nature, and the termi­
nation step provides us with aT = maxi OT(i), the maximum
probability over the possible state values, i, at the final time
in the sequence buffer, T. The quantity log 8T is what we
shall use as our primary indicator of the likelihood that the
data being testing obeys the model being recalled on.

There are two models of interest, one trained on obser­
vation sequences recorded when reaching for the vertical
handrail, and another trained when reaching for the hori­
zontal handrail. We are interested in arbitrating between
the likelihood of both models for a particular trial, whether
it is horizontal or vertical. As such, a "confusion matrix" can
be developed on static training data in order to gain intu­
ition about the robustness of real-time recall. Errors in the
confusion matrix are incremented when false alarms occur
and placed on the off-diagonals of the matrix. An exam­
ple of this is when we are reaching for the vertical handrail,
but the recall arbitration indicates that it is the horizontal
handrail.

To gain more clarity about the difference between static re­
call and dynamic real-time recall, refer to Fig. 4, which
shows an example of the y-yaw feature vector on the bot­
tom 2 plots. Here, multiple validation trials are superim­
posed from a fixed time prior to the time that the handrail
is grasped, or in some cases from the beginning of the trial
until the time that the handrail is grasped. The most clar­
ifying feature of this figure is that the "training" segments
are demarcated as starting with circles (0), and ending with
crosses (x). The sequences to be recalled in real-time are
shown as solid lines for the y variable, and dotted lines for
the yaw variable. Because the data displayed in these plots
are validation trials, the training demarcation is for illus­
trative purposes only. The demarcated portions of the tri­
als indicate the length of the sequence buffer. When we
are performing real-time recall, this buffer acts as a "sliding
window" across the entire length of the trial. We can think
about the demarcated "training" section shown as a snap­
shot of the sliding window at some time beyond the start
of the trial. Notice that this is also the section that most
clearly represents a divergence between the different types
of trials.

Also shown in Fig. 4 is the dynamic counterpart to the con­
fusion matrix, which illustrates the log8T values for all the
trials as they are recalled on different models. Trials of type
1 indicate the operator reached for the horizontal handrai l,
and trials of type 2 indicate that the operator reached for
the vertical handrail. The variables g(k, 1) and g(k, 2) will
be defined shortly. Because of the "sliding window" used
during real-time recall, there should actually be a second
time index to bookkeep the sequence length (T) as well as
the time step (k). Therefore, hereafter we shall refer to the
metric log 8T as log 8k:k +T . The analogy of the confusion
matrix to the results shown in Fig. 4 comes about due to
the top half of the graphs shown. These 4 graphs represent a
matrix of recalls on model types vs. triai types. The graphs
along the diagonal represent the model recalling on trials of
similar types, and the graphs on the off-diagonals represent
models recalling on t rials of opposite types.

1000

g(k, I) for model I
recalling on trials of type I

-100:7
"'-

o

2000

o

10 15

g(k, 2) for model 2
recalling on trials of type I

2000

g(k, I) for model I
recalling on trials of type 2

g(k,2) for model 2
recalling on trials of type 2

0-;7 ---- -------

-2o000'-----~10----...J20 -20000~----:1""'0----.-J20·

·f:ili
Confidence for trials of type 2

I ~----

o 5 10 15

Trials of type I
0.8r--- --c?=--:--,

5 10 15 o 5 10 15
Time [sec] Time [sec]

Figure 4 : Y and Yaw valida t ion t rials shown wit h
corresponding log 8k:k +T and confide n ce

As with the confusion matr ix, we desire to have "0 on the
off-diagonals." The interpretation of this is that we elicit
as few false alarms as possible based upon the real-time
log8k:k +T results shown in each graph. In order to com­
pute false alarms as well as missed detections and average
time to prediction for correctly classified tria ls, we must per­
form real-time arbitration with the aid of many thresholds.
As shown in the top 4 graphs of Fig. 4, there is a dashed line
indicating an important threshold. This threshold plays a
major part in the heuristically-driven prediction algorithm,
which is outlined as follows:

For each time step k in the streaming real-time data set,
perform the following:

1. Compute log 8k:k +T based upon the finite sequence
length T by using the Viterbi algorithm (recall).

2. Subtract off model bias from trial:
g(k, m) ~ log 8k:k+T(m) - 8m,
where m E M == {Horizontal, Vertical} indexes the
model being recalled on.

3. For the current trial, determine and store the model
yielding the maximum value between the quantities
computed in the previous step, i.e. find
m = argmaxmg(k,m).

. ,

4. Compute and store the confidence value, c, that indeed
m = argmaxm g(k , m) .

5. If g(k, m) > Td, check if m = arg maxm g (k , m) from
Step 3 references the same model as it did in the pre­
vious time step k. If so, increment a counter for model
m, otherwise, reset the counter to 1, for the first count
of a newly arbitrated m. If g(k, m) ::; Td, reset the
counter to o. Note that Td is not a model-specific
threshold (shown as a dashed line in Fig. 4).

6. If the counter for model m exceeds a predetermined
number (denoted as maximum hysteresis count), then
use the confidence value computed in Step 4 for final
arbitration.

7. If the confidence value, c, exceeds a predetermined
threshold, Te , then sound prediction alarm for model
m.

Step 4 in the algorithm is computed as follows, to yield a
number c E [0,1]:

!g(k , Horizontal) - g(k , Vertical)!
c= C

s

In the formula above, Cs is the confidence scale parameter.
The idea of the confidence value, c, is to arbitrate between
the models by computing the difference between the horizon­
tal and vertical likelihoods, scaled by a judiciously selected
factor , Cs, that will yield values c E [O, lJ. If c > 1, then
we set c = 1. The confidence values are shown on the third
row of graphs in Fig. 4, with the corresponding confidence
thresholds shown as dashed lines. All of the thresholds, bi­
ases , and scaling constants mentioned thus far for Viterbi
recall are excellent candidates (i.e. "free parameters") for
dynamic threshold optimization, and will be discussed in
depth later.

Notice that the "off-diagonals" of the top 4 graphs in Fig. 4
have features that distinguish them from the graphs on the
diagonals. The "off-diagonal" g(k , m) values appear to rise,
then fall with k, whereas the diagonal g(k , m) values rise,
then settle out above the thresholds for the most part. This
distinguishing characteristic, in addition to the confidence
values, provide the basis for the a lgorithmic construction
outlined above. The reason for the initial pseudo-linear rise
in all 4 graphs is due to the use of buffering required by
the Viterbi algorithm. The buffer, {k ; k + T}, is initialized
with all zeros at first, and then the computat ion of the biased
likelihood g(k, m) grows exponentially until the buffer is full.
At this point, the buffer slides forward with no leading zeros,
allowing for the a lgorithmic construct to produce a robust
model arbitration. Due to the delay in waiting for the buffer
to fill, using buffer-based algorithms are potentially slow in
meeting one of main performance specifications related to
minimizing average t ime to prediction for correctly classified
trials. Therefore, we will present an alternative to buffering
methods short ly.

The bottom row of plots in Fig. 4 illustrate scaled feature
vectors ranging between 0 and 1 (using min and max ob­
served values for scaling), for y and yaw, in lieu of their

original raw values. The scaled values are used as observa­
tion sequences for training the HMMs. This is done so that
POR-based data can be comparable with each other (i.e.
position is measured in cm, and orientation is measures in
radians). This also becomes important when augmenting
a POR-based feature vector with Euclidean distance data
(to the handrails). In either case, it is still important to
maintain a solid basis for comparison of the results.

2.1.2 Posterior probability-based recall
As an alternative to the Viterbi-based algorithm, we may
use part of an algorithm that is traditionally used for infer­
ence during the Baum-Welch re-estimation procedure. Also
referred to as the EM algorithm for Estimate (E-step) and
Maximize (M-step), we borrow results from the E-step, in
which inference amounts to computing the posterior proba­
bility:

Notice that the formula is based upon some new quantities,

specifically, a(qt) ~ p(YO, . . . , Yt , q,). A forwards recursive
formula updates a(qt) (a recurSion), working only with data
up to time t, and as such is real-time in nature. However,
when used for the EM algorithm, this forwards algorithm
complements a backwards recursive algorithm also run as
part of the procedure, starting at final time T, and working
backwards to time t + 1. This is called f3 recursion, where

f3(q,) ~ p(Yt+l, ... , YT!q,). Clearly this is performed off­
line in the context of the training that occurs with the EM
algorithm. The details of these recursive formulae and the
EM algorithm can be found in the literature [4, 7J.

Due to the nature of a recursion, we can apply the algorithm
across the same buffer of data operated on by the Viterbi
algorithm outlined earlier. The buffer of data will still slide
forwards in the same manner, accumulating new stream­
ing observations with time. However, a major difference
between implementation of the posterior-probability based
recall is that the log <l';:,k+T metric will be replaced with one
that is based upon the state value. Specifically, at each time
instant k the recursive a formula will be run over the buffer
of data {k ; k + T} . Throughout the execution of the al­
gorithm, the state corresponding to the maximum posterior
probability value encountered over the current contents of
the buffer will be stored . Mathematically, this can be repre­
sented as a two-step optimization problem as follows (where
t; time in the buffer);

iit arg maxp(qt!yO, . .. ,Yt)
q,

fit maxp(qt!Yo,
Q,

... , Yt)

tbu/ arg m;u ii,

iitbu/ maxiit
t

T he result iitbu/ is then compared with canonical state values

to determine the progression of the data through a Markov
chain . Because the tied mixture HMMs are trained as left­
right models, the Markov chain should naturally proceed
from the initial state, 1, to the final state, M. These are the
"canonical" state values referred to previously. Clearly, they
represent a causal link to progression of the Markov chain,
and will aid us in determining the status and classification
of the task at hand. Therefore, we will use the canonical
state values to help with arbitration between models being
recalled on differing trial types. The remainder of the algo­
rithm pertaining to this arbitration can be summarized as
follows:

1. Check to see if qtbu/ is equal to 1 or M, for both mod­
els.

2. If, for a particular model, m, the following conditions
hold true, then sound prediction alarm for model m:

(a) q'bu/ = M for model m.

(b) qtbu/ = 1 for all models other than m.

(c) Ptbu/ > 0.95.

Notice that there is a condition, Ptbu/ > 0.95, correspond­
ing to the maximum posterior probability value encountered
over the contents of the buffer. In order to elicit an alarm, we
require that this value be above 0.95. This is analogous to
the confidence value used with Viterbi recall, and could pos­
sibly be used for dynamic threshold optimization. However,
due to the nature of the algorithm's implicit "max" bias,
performing such an optimization may not be necessary.

Finally, we can also implement real-time recall using pos­
terior probability computations without the use of a buffer.
There are computational advantages to using this method,
in contrast to the previously discussed disadvantages of us­
ing algorithms based upon buffers. As such, we can use a
slight modification of the buffered version of the algorithm.
We can now reduce the mathematical representation of the
two-step optimization problem to a single step optimization
problem, as follows (where t: now refers to real-time):

arg maxp(qtlyo, . . . ,yt}
q,

p, maxp(q,lyo, ... , Yt)
q,

The remainder of the algorithm pertaining to arbitration is
very similar, with only very slight changes summarized as
follows:

1. Check to see if qt is equal to 1 or M, for both models.

2. If, for a particular model, m, the following conditions
hold true, then sound prediction alarm for model m:

(a) qt = M for model m.

(b) Pt > 0.95.

Because this algorithm requires no buffering, there is hence
no need for static optimization, and dynamic optimization is
very computationally efficient. The optimization parameter
is the confidence threshold, shown in the algorithmic sum­
mary above as 0.95. Previously, we hypothesized that the
buffered version of the algorithm may exhibit very little sen­
sitivity to this threshold. Although this is still the case when
using the non-buffered method, marginal improvements in
average t ime to prediction for correctly classified trials can
be claimed by performing the dynamic optimization. Fig.
5 illustrates the striking transition of posterior probabili­
ties for the final state only, i.e. p(qt!yO, ... , Yt) shown for
i = M, fo r models recalling on trials of the same type. For
correctly classified trials on the "diagonals," the state tran­
sition occurs very rapidly, in contrast to the rather slow,
linear transition of the log Okok+T metric shown in Fig. 4.

For certain trials on the lower diagonal, the posterior prob­
ability reverts back to a very small value just prior to grasp.
This aberration would give us pause if the nature of the al­
gorithm were to alarm based upon continuous observation.
However, because our goal is to classify correctly as soon as
possible, once the classification is performed and the alarm
is triggered due to arbit ration, there is no further need for
monitoring the posterior values. This is especially true due
to the fact that an optimal alarm triggered to initiate au­
tonomous action moves us further along the sliding scale of
autonomy than continuous monitoring of confidence values
within the predictive interface as in [9].

Model 1 recalling on trial type I

0.5

Model 2 recalling on trial type I
I.-----------~"'

0.5

Trials of type 1

Model I recalling on trial type 2
1,--------------.

0.5

Model 2 recalling on trial type 2
1r_--~~mTr_~r-_.

0.5

5 10 15

Trials of type 2

o 5 10 15
Time [sec]

Figure 5: Y and Yaw validation trials shown wit h
corresponding p osterior proba bilitie s , p(qt/yO, . .. , Yt)

As mentioned before, only marginal improvements may be
achieved by performing dynamic optimization over the confi­
dence threshold for real-time non-buffered posterior probability­
based recall. As seems clear by examining Fig. 5, using the

transition to the final state as a fundamental part of the al­
gorithm, and optimizing to obtain marginal improvements
may not be the optimal solution to our problem. Further
improvements may be made by making use of some weighted
combination of the posterior probability over all states as it
exceeds some predetermined threshold. This intuitive con­
cept can be formalized in the roots of decision theory, and is
the subject of future work to be presented in a sequel paper
by the lead author.

2.2 Optimization Methods
In order to find the optimal model training parameters when
using a sequence buffer, the buffer can be parameterized to
incur the fewest number of errors. As shown in Fig. 4, we
have a fixed sequence buffer, which can be parameterized by
the time prior to grasp and the sequence buffer length. Be­
cause we are interested in the fewest errors and maximizing
the time before grasp, we propose this parametrization as an
anecdote. In essence, this can be thought of as a "static op­
timization," where the cost function being optimized is the
sum of the off-diagonals of the confusion matrix, M , which
quantify the errors (false alarms) . 'In our case, since we only
have two models over which to arbitrate, the confusion ma­
trix is 2 x 2, and we can formaLly pose the optimization
problem as follows:

Solve arg min tr(PM(A.))
As

where P [0 ~]

P is a permutation matrix, and As is a vector containing
the optimization parameters defined previously. The cost

function, h(A.) ~ tr(PM(A.)) , is simply the sum of the off­
diagonals of the confusion matrix, or the errors accumulated
during static recaLl validation. As such, h(A.) can be plot­
ted as a function of the two optimization parameters via a
simple two-dimensional grid search to see if there are any
global or local minima. We will provide these illustrations
in the results section. Clearly, there is no closed-form s0-

lution for this optimization problem since M (As) is based
upon empirical evidence. Therefore, from the plots men­
tioned above, we can determine the optimal design points.
Our goal is to find the region of the parameter space that
incurs no errors, but is constrained to having a maximum
time before grasp (related to one of our performance specifi­
cations), and smaLlest possible sequence buffer length. The
latter constraint is imposed because smaller sequence buffers
allow for more "sliding window" time during real-time recall
so that there is more time for correct arbitration between
models.

The real-time recall thresholds can also be optimized in a
formal manner, based upon the metrics previously intro­
duced as performance specifications. Therefore, we may
pose a "dynamic" optimization problem. In this case, there
are three competing objectives, and the goal is to deter­
mine the optimization parameters that provide an optimal
tradeoff among them. Whether using the V iterbi or the
posterior-based recall method, we shall denote the vector
of thresholds being optimized as Ad. In the case of the

Viterbi recaLl method, Ad contains the follOwing thresholds
and other recaLl parameters: am, '1m E M (model biases),
Td, the detection threshold against which we compare the
log likelihood ';alues g(k , m) of both models, the maximum
hysteresis count (M HC), the confidence threshold , Te, and
the confidence scale parameter, Cs .

Therefore, Ad T = [01 02 Td M H C Te Cs J. For
the posterior-based recall methods, Ad = Te , whether buffered
or non-buffered techniques are being used.

ow that the details of the optimization parameters have
been highlighted, we still have yet to capture the essence of
how to deal with optimizing competing objectives over these
parameters. There are several methods to choose from, but
as first step, we focus on a simple one which will solve the
optimization posed as foLlows:

Solve arg min w T X(Ad)
Ad

where w T 1 1 1]

and xT (>..d) Pmd(Ad) P/a(>'d) tp(Ad)]

tp(Ad)
te (Ad)

tc(Ad) + tg(Ad)

Pmd(Ad) and Pja(Ad), are the probability of missed detec­
tion and false alarm, respectively. tp(Ad) is the scaled aver­
age time to prediction for correctly classified trials, com­
puted as shown above, where te(Ad) is the average time
to prediction for correct trials, and tg(Ad) is the average
"free time," or time before the grasp for correct trials. In
this way, tp(Ad) E [0,1]' and can be directly compared to
Pmd(Ad) and P/a(Ad), which are also E [0,1]. It should be
evident at this point that our cost function is essentially
an equally weighted sum of all of the competing objectives.
This method of solving a multi-objective optimization prob­
lelll is a common approach, but suffers from having to make
judicious selection of the weights, w. These weights are not
necessarily a measure of the relative magnitude of the met­
rics, and furthermore, certain solutions may be inaccessible
if a nonconvex Pareto frontier exists. However, it can easily
be posed as an Uflconstrained nonlinear optimization prob­
lem, where a simplex method [6] can be implemented. Al­
though we cannot visualize the results for the Viterbi recall
method due to optimization over a high dimensional space,
it will be shown that the optimization routine converges to
a local minimum for a particular set of initial conditions in
the subsequent section.

We optimize the static and dynamic parameters separately
in order to reduce the computational burden of parameteriz­
ing them simultaneously. Performing the static optimization
as a two-dimensional grid search is equivalent to training a
hidden Markov model for each A. point within the grid,
which is computationally burdensome. Moreover, one of the
optimization parameters in A. is the time prior to grasp.
This is related to the average time to prediction for correct
trials that is part of the cost function for dynamic optimiza­
tion. As such, the problem would be ill-posed if both static
and dynamic optimization problems were combined. Hav-

ing the two optimizations performed separately also allows
us use the most well-trained model already statically pre­
optimized with respect to a constraint (i.e. a lower bound)
on the maximum time prior to grasp. Given that, we can im­
prove upon the static validation performance by performing
the secondary dynamic optimization. This further refines
the validation performance with respect to the parameters
in Ad, during real-time recall.

3. RESULTS
3.1 Static Optimization
An optimal design point can be found for static validation
when using the y and yaw, POR-based feature vector. This
design point reflects the best parametrization of the train­
ing segmentation for data used to train HMMs, using the
Viterbi recall method. Shown in Fig. 6 is the sum of the
off-diagonals of the confusion matrix, h(A.), as a function
of the optimization parameters: the time prior to grasp and
the sequence buffer length.

30

e; 20
g
1Il1O

o
15

Sum of otl~diagonals of confusion matrix
for POR feature vector, 'yiterbi method

.0"-:"

li' 10
~e>:.

<.c0-lQ 5
!P"<tsp r: 0 0

(seC)

Sum of off-diagonals of confusion matrix
for POR feature vector, Viterbi method

2 4 6 8
Sequence Length [sec]

•

Figure 6: Optimal Design Point for Y and Yaw Fea­
t u re Vector, Viterbi Method

As seen in Fig. 6, both the 3D and the contour plot view
are given. It is clear that there is an area corresponding to a

large accumulation of errors, for large times from grasp and
small sequence lengths. Recall that our goal for static opti­
mization is to find the region of the parameter space that in­
curs no errors, but is constrained to having a maximum time
before grasp, and smallest possible sequence buffer length.
As such, we have a conflict of interest between Our goal
and the constraints. However there is enough area in the
parameter space where there is negligible error accrual to
accommodate our requirements. The optimal design point
has been marked with an asterisk (*) on the contour plot,
for an optimal time from grasp of 11.3 sec and a sequence
buffer length of 4 sec.

Similar contour plots can be presented for other cases of
interest, when using other feature vectors, and for the pos­
terior method, when using buffering. Static optimization
clearly does not apply to the non-buffered posterior method,
because there is no buffer that can be optimally parameter­
ized. There are two feature vectors other than the POR­
based one (y-yaw) to be studied: a feature vector based
exclusively on distance data, and a feature vector based
on y-yaw, and scaled distance data. Because of the scal­
ing that is performed fo r comparability among variables, we
may obtain varying results when considering the feature vec­
tor based solely on distance. Therefore, both the scaled and
unsealed versions of the distance-only based feature vectors
will be investigated.

It is therefore of interest to look at the contour plots for the
methods or feature vectors that yield qualitatively signifi­
cant differences. For the Viterbi recall method, the contour
plots providing the static optimization results for feature
vectors based on variables other than y-yaw are very similar
to the one shown in Fig. 6. As such, and in the interest of
conserving space, we will refrain from showing these plots.
However, using the posterior (buffered) recall method illus­
trates a significant difference, especially when using the dis­
tance feature vector. The resulting contour plots are shown
in Fig. 7, for both the scaled (top) and unscaled (bottom)
distance-based feature vector.

Notice the difference between Figs. 6 and the top plot of
7: the results for the Viterbi method with POR-based fea­
ture vector are much cleaner than when using the posterior
method with the distance-based (scaled) feature vector. One
reason for this is that the errors are computed in a different
manner for each method. Errors accumulated when using
the Viterbi method are based on a log-likelihood metric and
obtained by adding the off-diagonals of the confusion matrix.
Errors accumulated with the posterior method are based on
the respective algorithm described in the previous section,
and by scaling the fraction of those correctiy classified to
the total number (not unlike summing off-diagonals of the
confusion matrix). Another major difference is in the use
of scaled distance as a feature vector rather than a POR­
based feature vector. We may compare the results shown
on the top plot of Fig. 7 to other results using the same
scaled distance feature vector (not shown), using different
recall methods. The results do vary, but not as significantiy
as seen between the POR-based results using the Viterbi re­
call method shown in Fig. 6 and the scaled distance results
using the posterior recall method in Fig. 7.

% Error for distance feature vector, Posterior method

2 4 6 8
Sequence Length [sec]

% Error for distance feature vector
(unscaled), Posterior method

10

4 10
Sequence Length [sec]

Figure 7: Optimal D esign Point fo r Distance-Based
Featu re Vector, Posterio r (B u ffe red) Meth od

As seen in Fig. 7, there is a "filtering" effect that cleans
up the contour plot results when using the unscaled version
of the distance feature vector (on bottom) as opposed to
the scaled version (on top). This is due to t he fact t hat
the means of t he unscaled observation sequences have more
distinguishability when training an HMM than when they
are scaled to values between 0 and 1. In summary, optimal
design points for feature vectors a nd methods of all types
are provided in Table 1. The results provided are for the
optimal sequence buffer length only. For all feature vectors
and methods, the optima l time prior to grasp can be set to
11.3 sec. Results provided for the "distance" only feature
vector apply for both scaled and unsca led versions.

3.2 Optimization of TrainingIValidation Seg-
mentation

Now that we have the optimal design points and best t rained
HMMs from a trial segmentation standpoint , we can perform
dynamic threshold optimization. However , notice in Figs. 6
and 7 shown in the previous subsection, that there was a
bit of noise present in the contour plots, and best seen in

~ Vector POR Distance to Combo
Recall (Y-yaw) handrails (POR & distance)
Method

Viterbi Method 4 sec. 5 sec. 6 sec.

Posterior Method 5 sec. 7.53 sec. S sec.

Table 1: Optimal sequence buffer length

the 3D plot from F ig. 6. This is due to the fact that the
training a nd validation sets were randomly partitioned. This
random partitioning may also account for some variance in
the results obtained. Therefore , before proceeding further to
the dynamic threshold optimization, we want to ensure that
we study a nd understand the consequences of this behavior.

It is has been demonstrated that the results (average time to
prediction for correctly classified trials, false alarms, missed
detections) may vary considerably based upon using a par­
ticular method. As such, we can determine the best t rain­
ing/validation set segmentation for a particular recall method
by continuously randomizing the training/validation seg­
mentation based upon the statically optimized parameters
from the previous subsection. This randomization continues
until the performance specifications fall within a required
preset to lerance. At this point, we may use the resulting
training/validation segmentation as a basis for comparison
when generating results using a different recall method. If
the results vary greatly between the two recall methods, then
we know there is a statistical bias for the feature vector un­
der consideration.

Performing this test for all feature vectors studied will al­
low us to make a judicious feature selection. Furthermore,
in performing this experiment, we can develop an intuitive
sense of a "canonical" representation for a training/ validation
segmentation that works well for each method by examining
t he respective superimposed trials in a plot. This qualitative
informat ion is also very useful for building intuition on how
to design future experiments. Of course, when randomizing
t he segmentation based upon a particular recall method,
there is an inherent bias towards using that recall method.
However, our aim is to find the recall method and feature
selection that will yield the most desirable results. As such
we will run randomization tests which are recall-biased for
both posterior (non-buffered) and Viterbi methods. This
will be followed by performing dynamic optimization based
upon the feature vector that yields the most robust results
across recall methods.

The main findings of our tests indicate that t he combina­
tion POR/ scaled distance feature vector exhibits the most
robust behavior. In fact, when validating with the Viterbi
recall-biased training/ validation segmentation, both meth­
ods meet t he required performance specifications. As such,
we will use the combination POR/scaled distance feature
vector as the candidate for study in t he next subsection.
There we will perform dynamic threshold optimization for
all available recall methods, using hidden Markov models
trained with biases towards both recall methods.

3.3 Dynamic Threshold Optimization
The results for dynamic threshold optimization provided in
this subsection pertain only to the combination POR-based
(y-yaw) / distance feature vector. We will first randomize
the training/ validation segmentation with a posterior recall
method bias to achieve a zero probability of false alarm and
missed detection, and a average time to prediction for cor­
rectly classified trials below 8 sec. The initial results and
optimization parameters, as well as the optimized results
and parameters for both the buffered and non-buffered pos­
terior methods are shown in Table 2.

Table 2 : Optimization Results for Posterior
Method, training/ validation segmentation with pos­
terior recall bias

Buffering Buffered Non-Buffered"
Initial Tc 0.95 0.95

" Optimized Tc 0.95 0.7125

Initial PIa 0% 0%
Optimized PIa 0% 0%

Initial Pmd 0% 0%
Optimized Pmd 0% 0%

Initial tc 9.46 sec 7.89 sec
Optimized t c 9.46 sec 7.82 sec

We can verify a hypotheses stated in the previous section
using the information in Table 2. Recall that for the buffered
posterior recall method, in order to elicit an alarm we require
that the confidence threshold be above 0.95. Our hypothesis
was that due to the nature of the algorithm's implicit "max"
bias, performing this optimization may not be necessary. As
seen in the first column of Table 2, the optimized values
don't change at all from the initial values, substantiating
our hypothesis.

Note that a double line separates the table. The parameters
above the double line are for optimization, and the para­
meters below the double line are the objectives. For the
non-buffered posterior recall method, we hypothesized that
the algorithm would exhibit very little sensitivity to the con­
fidence threshold, and that only marginal improvements in
average time to prediction for correctly classified trials would
be claimed by performing the dynamic optimization. Evi­
dence of this is also provided in Table 2, where we only lose
hundredths of a second in reducing the average time to pre­
diction by using an optimized confidence value of 0.71025 in
lieu of 0.95.

Table 3 provides the optimization results when applying the
Viterbi recall method on models that were based upon a
training/ validation segmentation with posterior recall bias.
The table lists initial results a nd optimization parameters,
as well as optimized results and parameters.

Here, the probability of false alarm and missed detection,
and average time to prediction do not differ greatly than
when we used the posterior recall methods. This ~;va.s our
expectation, due to the robustness of using the combination
feature vector. Also evidenced in Table 3, we can improve
even further upon t hose results, based in part on the initial
set of optimization parameters selected. The initial set of
optimization parameters listed in the column labeled "First

Table 3 : Optimization Results for Viterbi recall
Method, training/validation segmentation with pos­
terior recal l bias

Parameters and Metrics First Values Second Values
Initial 81 0 0

Optimized 81 0.00035375 2.0833 x 10 0

Initial 82 0 0
Optimized 82 0.0001068 2.0833 x' 0 -0

Initial Td -600 125
Optimized Td -629.32 125.52
Initial MHC 5 25

Optimized MHC 5 26
Initial Tc 0.81 0.81

Optimized Tc 0.79836 0.81338
Initial Cs 600 600

Optimized Cs 483.54 602.5

Initial PIa 0% 0%
Optimized PIa 0% 0%

Initial Pmd 2% 2%
Optimized Pmd 2% 0%

Initial tc 7.6486 sec 7.9347 sec
. Optimized tc 7.3083 sec 7.985 sec

Values" was generated by trial , error, and intuition. As seen,
it is possible to improve upon the average time to prediction
by fractions of a second.

In the column labeled "Second Values," the initial optimiza­
tion parameters are selected in contrast to other parameters
in order to determine if there any sensitivities of the opti­
mized results to the initial starting points. In essence, we
would like to be able to determine if there is agreement or
disagreement between optimum points found by using dif­
fering recall methods. As such, we can speak to the con­
vergence points of the multi-objective optimization problem
being global or local minima. It appears that the multi­
objective optimization problem posed as an unconstrained
nonlinear cost function clearly has local minima, and we
may arrive at solutions that are very sensitive to starting
location.

Similar conclusions can be surmised when randomizing the
training/validation segmentation with a Viterbi recall method
bias to achieve a zero probability of false alarm and missed
detection, and a average time to prediction below 10 sec.
The initial results a nd optimization parameters, as well as
the optimized results and parameters for all recall methods
are shown in Table 4 and 5.

This provides use with further evidence that optimization
yields improvements, and in this case they appear to be more
substantial, particularly for the Viterbi recall method. We
see great reduction in average time to prediction, at the ex­
pense of a slight increase in the probability of missed detec­
tion. For the posterior recall methods, however, we see that
the improvements are still only marginal. Therefore, for the
posterior recall method, the truly effective steps in the opti­
mization procedure come from static optimization and opti­
mization o(the training/validation segmentation. However,
as stated earlier, the arbitration and macilinery behind the

Table 4: Optimization R esults for pos t e rior r e­
cal l m ethod, training/validation segmentation with
Viterbi r ecall bias

Buffering Buffered Non-Buffered
Initial Tc 0.95 0.95

Optimized Tc 0.95 0.86094

Initial Ptc. 0% 0%
Optimized Ptc. 0% 0%

Init ial Pmd 0% 0%
Optimized Pmd 0% 0%

Initial tc 8.7456 sec 7.9864 sec
Optimized tc 8.7456 sec 7.9483 sec

Table 5: Optimization Results for Viterbi r e­
call Method, training/ validation segmen tat io n with
Viterbi recall bias

Parameters/ Metrics First Values Second Values
Initial,h 0 0

Optimized 'h 9.1681 x 10 -~ 0.0010858
Initial ch 0 0

Optimized 02 0.0005762 0.0045668
Initial Td -600 125

Optimized Td -714.28 28.419
Initial MHC 5 25

Optimized MHC 5 10
Initial Tc 0.81 0.81

Optimized Tc 0.81181 0.99835
Initial Cs 600 600

Optimized Cs 243.7 268.3

Initial Ptc. 0% 0%
Optimized Ptc. 0% 0%

Initial Pmd 0% 2%
Optimized Pmd 2% 2%

Initial tc 7.8354 sec 7.9944 sec
Optimized tc 6.5083 sec 7.0722 sec

posterior recall algorithms may not be the optimal solut ion
to the problem of minimizing average time to prediction,
as well as adhering to the other performance specifications.
Further improvements may be made by making use of some
weighted combination of the posterior probability over all
states as it exceeds some predetermined threshold, in at­
tempt to improve the performance of the algorithm.

The multi-objective optimization problem again clearly has
local minima, with the solutions exhibiting sensitivity to
starting iocation as shown in Tables 4 and 5. At any rate,
out of all of the cases investigated, t here is no clear "winner ,"
with regards to the recall method, or recall bias. However,
we can conclude that the combination feature vector pro­
vides us with the most desirable solut ion. As expressed in
previous work [9], it is possible to shave more t ime off of
t he average t ime to prediction by allowing fo r some missed
detections. We can achieve an average time to prediction
as low as 6.5 sec if we allow a 2% probability of missed
detection, for the Viterbi recall method with a Viterbi re­
call bias shown in Table 5. However, if we desire a zero
missed detection and zero false alarm probability, the best
we can do on average time to prediction is 7.82 sec, for the

posterior recall method (non-buffered) with a posterior re­
call bias shown in Table 2. These same tradeoffs can be
achieved by using alternative dynamic threshold optimiza­
tion weightings (i.e. not equally weighted as is performed
currently with w T = [1 1 1 l) , or using a completely
different approach to the multi-objective optimization prob­
lem.

4. CONCLUSION
Here we provide a summary of the most important findings:

• We can meet the requirements set by our performance
specifications by choosing any of the appropriate recall
methods or recall biases that provide for it.

• Depending on how strict the performance requirements
are set, we can trade off minimizing the probability of
missed detection for further reduction in the average
time to prediction for correctly classified trials.

• Feature selection must take into account the effects of
any statist ical bias with respect to the randomizing
the training/validation partitioning.

• Augmenting the feature vector with additional vari­
ables that provide more discriminatory power such as
distances to handrails make the resu lting hidden Markov
models robust with respect to randomizing the train­
ing/ validation segmentation.

• The optimized results are very sensitive to the initial
starting points, and convergence to local minima is the
best we can do with the currently implemented opti­
mization approach. However, we've been able to doc­
ument verifiable improvement over the initial starting
points, particularly when using the Viterbi recall/arbitration
method.

• Future work should include exploration of alternative
optimizat ion techniques, and ways to enhance the pos­
terior recall method based upon more rigorous decision
t heoretic concepts.

5. ACKt'lOWLEDGMENTS
The authors would like to thank Bill Bluethmann and Kim
Hambuchen for making the training and validation data
available, Mike Goza for providing the tele-operation effort ,
and Rob Ambrose's vision in making this project possible
at NASA JSC.

6. REFERENCES
[1] W. Bluethmann, R. O. Ambrose, M. A. Diftler,

S. Askew, E. Huber, M. Goza, F. Rehnmark,
C. Lovchik, and D. Magruder. Robonaut: A robot
designed to work with humans in space. Autonomous
Robots, 14(2-3):179-198, 2003.

[2] G. D. Forney. The viterbi algorithm. Proceedings oj
The IEEE, 61(3) :268-278, 1973.

[3] R. A. P. II, C. 1. Campbell, W. Bluethmann, and
E. Huber. Robonaut task learning through
teleoperation. In ICRA, pages 2806-2811. IEEE, 2003.

[41 M. I. Jordan. An introduction to probabilistic
graphical models. Manuscript used for Class Notes of
CS281A at UC Berkeley, Fall 2002.

[51 I.-C. Kim and S.-I. Chien. Analysis of 3D hand
trajectory gestures using stroke-based composite
hidden markov models. Applied Intelligence,
15(2) :131-143,200l.

[61 J. NeIder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:308-313, 1965.

[71 L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. pages
267-296, 1990.

[81 H. L. VanTrees. Detection, estimation, and modulation
theory. J. Wiley, 1992.

[9] K. Wheeler, R. A. Martin, V. SunSpiral, and
M. Allan. Predictive interfaces for long-distance
tele-operations. In 8th International Symposium on
A rlificial Intelligence, Robotics and Automation in
Space, Munich, Germany, September 2005.

[10] K. R. Wheeler and C. C. Jorgensen. Gestures as
input: Neuroelectric joysticks and keyboards. IEEE
Pervasive Computing, 2(2) :56-61, 2003.

