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Abstract 

Solar electric propulsion (SEP) technology is truly at the “intersection of commercial 
and military space” as well as the intersection of NASA robotic and human space 
missions. Building on the use of SEP for geosynchronous spacecraft station keeping, 
there are numerous potential commercial and military mission applications for SEP 
stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic 
SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to 
near Earth objects (NEOs) and SEP spacecraft technology demonstrations.  Beyond 
these nearer term robotic missions, potential future human space flight missions to 
NEOs with high-power SEP stages are being considered. To enhance or enable this 
broad class of commercial, military and NASA missions, advancements in the power 
level and performance of SEP technologies are needed. This presentation will focus on 
design considerations for the solar photovoltaic array (PVA) and electric power system 
(EPS) vital to the design and operation of an SEP stage. The engineering and 
programmatic pros and cons of various PVA and EPS technologies and architectures 
will be discussed in the context of operating voltage and power levels. The impacts of 
PVA and EPS design options on the remaining SEP stage subsystem designs, as well 
as spacecraft operations, will also be discussed. 

                                                 
1Michigan State University, USRP, summer intern. 
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Outline

What is SEP and why use it?
SEP missions/spacecraft
SEP tug subsystem impacts on power system design
Solar array design considerations
PMAD design considerations
Cost challenge
Closing Comments

What is SEP and Why Use It?
SEP spacecraft have a solar electric power 
system (EPS) that provides power to electric 
thrusters

Save mission mass and/or costs
Achieved via high Isp electric propulsion
(~10X higher Isp than chemical)

Enhance/enable mission capabilities
Delta-V
Operating life

NASA/TM—2011-217197 2



1’s kW
station keeping

orbit topping

10’s kW

SEP Tech
Demo (SFD)

SEP Missions, Spacecraft, and Tugs

Space Science
Earth and 
Space Science

Earth Orbit 
Transfers, GEO 
Servicing

High delta V100’s kW High delta-V
Maneuvering

100 s kW

Lunar/Mars
Human Missions

(HEFT)

Solar ArraySolar Array

EPS and SEP Tug Subsystem Designs
Are Highly Interdependent
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SEP Flightmode and Pointing – EPS Impacts
From LEO to HEO, must point solar arrays and EP thrusters

With presence of large disturbance torques

1-, 2-DOF gimbal options, roll steering or solar inertial flight mode
Implications for solar array, ACS and EP thruster articulation 

Outboard Mastthruster Outboard Mastthruster 
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Inboard 
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Truss
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Orbital Mechanics – EPS Impacts
SEP mission solar array / avionics radiation dose dominated 
(~98%) by trapped protons

Spiraling orbit inclination reduces dose by ~4x (0° to 51.6°)
GTO->GEO mission starting arg. of perigee can reduce rad dose by ~6.5X

Place perigee near nodes

Rad dose nearly independent of solar activity
EP steering Modes (minimize proton belt transit time) 
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Space Operations – EPS Impacts
Solar array and PMAD current/voltage sizing will be 
driven by EP subsystem design and ops

Conventional PPU-based EP subsystem
Direct drive DDU-based EP subsystem

Constant voltage (Isp) ops
Constant current (flow rate) ops
Variable voltage/current (such as Pmax, Max. Thrust, other)

SEP tug operations will drive solar array/gimbal design
Fast, uniform, robust, reliable solar array deployment
Tolerance of large docking/plume loads during RPOD
High deployed strength and stiffness

> ~0.1-g thrust-to-weight for chemical stage burns
Avoid SEP tug and chemical stage controls-structures interactions
Limit solar array deflections

Solar Array Design Considerations
Configuration:  number of wings and articulation

Qual and recurring costs (modularity, optics), ground/flight 
testability 
Wing stowage, deployment, gimballing complexity, performance
EP plume avoidance (manage sputtering erosion)EP plume avoidance (manage sputtering erosion)

RASC-OASIS Human Mars DRM3.0

ISSISS

Low ELow E

Main BeamMain Beam

ScatteredScattered
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Solar Array Design Considerations
Ambient and EP induced plasma interactions

Parasitic electron collection (Dominated by EP plasma)
Plasma/Vacuum/Sustained Arcing Avoidance/Management

Radiation degradation optimizationg p
Goal:  Minimum SEP tug cost (or mass) by choice of:

Subsystem designs affecting EPS/EP performance, mission design 
and solar array design/sizing

Solar Array Design Considerations
Voltage selection

Large SEP tug missions optimize w/Hall Thruster Isp ~2000 sec (300-V)
300-V class solar array designs consistent with de-rated performance of 
SOA EEE parts, insulators and gimbal roll-rings/slip rings
300-V EPS saves 30-40% mass over 100-V to 160-V EPS SOA
Above considerations make 300-V class direct-drive option attractive
300-V solar array technical challenges include higher electron collection 
current and availability of PMAD electronic parts

Large solar array ground deployment testing
Key for risk mitigation/qualification without costly flight test
Designed for 1-g off-loaded, phased, thermal vacuum deployment
Designed to minimize qualification costs
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SEP Tug Primary PMAD
Distribution Architecture Options (Centralized or Channelized)

Centralized/Channelized Hybrid Option Is Attractive - Good cabling 
mass/efficiency, modularity, good fault tolerance with cross ties 

VoltageVoltage
LimitingLimiting

PMAD Design Considerations
Voltage level has large impact on PMAD design

Compared to SOA PMAD, 300+ V PMAD
Higher efficiency systemHigher efficiency system
Significantly less thermal load (direct-drive)
Significant cable mass savings (>60%) due to relatively 
lower currents
Down conversion needed to feed housekeeping loads
Limited electronic parts selection, especially for high 
radiation mission: may require wide bandgap electronicsradiation mission:  may require wide bandgap electronics
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PMAD Design Considerations (con’t)
EP operating mode has large impact on PMAD design
Non-direct drive

Bus power to thruster PPU power conditioning and boost converter
Galvanic isolation decouples source (solar array) and thruster
Good bus power quality and prevents multi-thruster interactions
on the bus
PMAD must deliver predetermined I/V range to PPU

Direct drive offers
Bus power directly to thrusters via DDUs
Good:  W/kg, power efficiency, reliability, recurring cost
Bus voltage control primarily tied to EP thruster operation
More work desired in the areas of:

Stability/ops during EP start-up/shut-down transitions
Cathode current sharing for multi-thruster ops
Effective grounding schemes 

PMAD Design Considerations (con’t)
Solar array regulator/limiter (Protects from bus high voltage excursions)

Fault tolerance a significant driver for human missions
Design for thruster-out capability (# failures tolerated?)
Cold-spare thrusters or nominally de-rated thrusters

Grounding (negative solar array grounding desired)Grounding (negative solar array grounding desired)
Positive solar array ground unacceptable due to arcing/sputtering introduced

600-V rated EEE parts w/derating just sufficient for 300-V class bus
Limited parts may lead to undesirable board and PMAD box designs
May need to increase to 1200-V rated parts (more limited selection)

EEE parts radiation tolerance (high flux, high energy protons)
Leads to high TID and enhanced SEE (MOSFET latch-up, gate rupture)

SEP mission unique combination, high voltage/power/rad dose 
further limits choice of available parts

May need custom parts development/screening (including SiC parts) and 
more rad testing (TID and SEE) – all increasing costs
May require more box-level radiation shielding adding significant mass
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SEP Cost Challenge
Cost estimates show high power SEP stage affordability 
challenge – need major cost reductions (~2X)

Major component cost challenge is the solar array
Recurring costs (particularly cell costs), qualification costs
Large-scale cell production availability

(excludes systems integration costs)(excludes systems integration costs)

Closing Comments

High power SEP tug missions offer attractive benefits

Many {solvable} technical challenges remain and must be met

Yet programmatically, to progress beyond just SEP mission 
studies, major cost reductions are needed
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Thank You
Questions?

Appendix Charts

More detailed, back-up information
that is not part of the

main presentation
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Solar Electric Propulsion (SEP) Tug
Power System Considerations;

*** Back-up Material ***

2011 Space Power Workshop

Power Systems Architecture

April 20, 2011p

Tom Kerslake, Kristen Bury, Jeff Hojnicki,

Adam Sajdak, Bob Scheidegger

List of Abbreviations
a constant
Arg argument
BOL beginning of life
Comm communications
Conc concentration (optical)
DDT&E design, development, test & engineering
DDU direct drive unit
Delta-V change in velocity (of spacecraft)
DENI d i l ll i id

LEO low earth orbit
LVLH local vertical, local horizontal (flight mode)
Mech mechanisms
MOSFET metal oxide field effect transistor
OASIS orbital aggregation & space infrastructure systems
OPS operations
PDU power distribution unit
PMAD power management and distribution
Pmax maximum powerDENI damage equivalent normally incident

DOF degree of freedom
DRM design reference mission
EEE electrical, electronic, and electromechanical
E-M L1 earth moon Lagrange point 1
EOL end of life
EP electric propulsion
EPS electrical power system
g acceleration due to gravity
GEO geosynchronous earth orbit
GNC guidance, navigation and control
GTO geosynchronous transfer orbit

Pmax maximum power
PPU power processing unit
rad radiation
RASC revolutionary aerospace systems concepts
Rev (orbital) revolution
RPC remote power controller
RPOD rendezvous proximity operations and docking
SEE single event effects
SEP solar electric propulsion
SFD SEP Flight Demonstration
SLA Stretch lens array (Entech Technology)
SOA state of the artGTO geosynchronous transfer orbit

HEFT human exploration framework team
HEO high earth orbit
Imp maximum power current
Isp specific impulse (of EP thruster)
ISS International Space Station
I/V current / voltage

Struct structures
TCS thermal control system
TID total integrated dose
V voltage or volts
Vmp maximum power voltage
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What is SEP and Why Use It?
SEP spacecraft have a solar electric power 
system (EPS) that provides power to electric 
thrusters
S d/ tSave mass and/or costs

Achieved via high Isp electric propulsion
(~10X more than chemical)

Enhance/enable mission capabilities
Delta-V
Operating life

SEP Missions, Spacecraft, and Tugs
Commercial, Defense, NASA

1’s kW
station keeping

orbit topping

10’s kW

SEP Tech
Demo (SFD)

pp g

Space Science
Earth and
Space Science

Earth Orbit 
Transfers, GEO 
Servicing

100’s kW PMADPMAD

High delta-V
Maneuvering

100 s kW

Lunar/Mars
Human Missions

(HEFT)

Solar ArraySolar Array
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SEP Spacecraft  vs. a Stage or “Tug”
SEP Spacecraft

EP system is just one of the spacecraft loads
Spacecraft instruments/payloads are mission focus
Missions tend to start in higher energy orbits
Lower or moderate EP power levelsLower or moderate EP power levels
Evolutionary power system design challenges

SEP Stage or Tug (high Isp for multi-ton earth orbit transfers)
Spacecraft bus dedicated to SEP propulsion function 
No focus on instruments or small attached payloads
Prime purpose is to move mass (spacecraft) from point A to B in space
Missions tend to start in lower energy orbits 
Moderate to very high EP power levels
Many new power system design challenges

This presentation to cover high power SEP tug with focus on:
low-Earth orbit to high-Earth orbit spiraling missions
Solar array and PMAD elements of the EPS (no issues with energy 
storage)

EPS and SEP Tug Subsystem Designs
Are Highly Interdependent

Impact of
On

TCS EPS EP Struc-
Mech

ACS
GNC

Comm Stowed
Config

Flt
Ops

Crew

TCS H

EPS M H H H H L H H M

EP H

Struct-Mech H

ACS-GNC H

Comm M

Stowed Config H

Flight Ops H

Crew n/a

H- High,  M-Medium,  L-Low
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SEP Flightmode and Pointing – EPS Impacts
From LEO to HEO, must fly tug to point solar arrays at the Sun and achieve desired 
EP thrust vector

Maintain attitude dead-band in presence of large disturbance torques
Options

LVLH w/1-DOF solar array gimbal (large solar array off-pointing)
LVLH w/2 DOF solar array gimbal (potential solar array shadowing)LVLH w/2-DOF solar array gimbal (potential solar array shadowing)
LVLH w/roll steering (ACS impacts, moderate solar array off-pointing)
Solar inertial (must move EP thrusters)

Open truss 
canister

Deployable 
Mast

Root 
Joint

Outboard 
joints

Outboard Mast

Inboard 
Mast

Root 
Truss

Deployed

thruster 
palette

Open truss 
canister

Deployable 
Mast

Root 
Joint

Outboard 
joints

Outboard Mast

Inboard 
Mast

Root 
Truss

Deployed

thruster 
palette

Orbital Mechanics – EPS Impacts
Mission design to reduce solar array/avionics radiation dose

1-year spiral LEO to E-M L1 Radiation Contributions:
Trapped electrons (~1%), Trapped protons (~98%), Solar flare protons (<1%)

Effective:
Increase inclination-reduce dose by factor of ~3.8x moving from 0° to 51.6°
inclination
EP steering Modes (minimize proton belt transit time) 

Ineffective: Launch date tied to min/max solar activity
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Orbital Mechanics – EPS Impacts (con’t)
Mission design to reduce solar array/avionics radiation dose

GTO to GEO Radiation Contributions:
Trapped electrons (~1%), Trapped protons (~98%), Solar flare protons (<1%)

Effective:  selected Argument of Perigee
Can reduce dose by ~6.5X by placing perigee near nodes

Ineffective:  starting perigee altitude, launch date tied to solar activity

EP Operating Mode – EPS Impacts
Conventional EP operating mode

EP PPU Buck/Boost Converter and solar array design EOL 
Vmp done in tandem (trade-off of costs, masses and 
efficiencies)
Individual EP thruster operation is isolated from the EPSIndividual EP thruster operation is isolated from the EPS

Direct-drive EP operating mode
Individual EP thrusters not isolated from the EPS

Ops of each EP thruster affects ops of others and EPS I/V levels

Constant voltage (Isp)
Drives solar array string EOL voltage
Drives solar array/EPS channel current rating and shunt regulator sizeDrives solar array/EPS channel current rating and shunt regulator size

Constant current (flow rate)
Drives number of parallel solar strings to provide EOL current
May drive EPS channel voltage rating 

Variable voltage/current (such as Pmax, Max. Thrust, other)
Drives solar array EOL Vmp and Imp, EPS I/V design ratings 
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OPS/RPOD – EPS Impacts
Initial orbit post-insertion OPS drives solar array deployment

Rapid deployment and power gen (nominally <1 rev, avoid energy 
storage over sizing)
Uniform deployment (minimize attitude disturbance torques)
Robust/reliable deployment (avoid failures altogether or allow forRobust/reliable deployment (avoid failures altogether, or allow for 
contingency mission ops)

Human SEP mission architectures include RPOD (in-space 
chemical stages)

Drives solar array deployed strength (plume and docking loads)
Drives solar array configuration and gimballing (docking vehicle ingress 
corridors, minimizing docking/plume loading, gimbal locking) 

In space operations (high g chemical stage burns >0 1 g)In space operations (high-g chemical stage burns, >0.1-g)
Drives solar array deployed strength (burn cut-off base g-loads)
Drives solar array deployed stiffness (displacements and frequencies 
for stack ACS during the burn)
Drives solar array configuration and gimballing (minimize bending 
moment, attain preferred orientation, gimbal locking) 

Solar Array Design Considerations
Configuration:  dual large wings versus multiple small wings

Ability to stow wings, deployment ops, deployment reliability/robustness, 
gimballing complexity, EP thruster location/plume avoidance, ground 
and/or flight testability, qualification and recurring costs (modularity), 
performance (sun-pointing accuracy provided and self shadowing)

RASC-OASIS

ISS

Human Mars DRM3.0

* Cost and performance will 
factor into conc. optics 
configuration:  planar, 2X 
CellSaver or 8X SLA
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Solar Array Design Considerations
Hall EP plume interactions (sputtering avoidance)

Optical/electrical coatings loss, structural material loss, contamination
Trade off complexity/mass of EP boom v notched/displaced solar array

Design configuration must avoid high energy main beam ions
45 cone rule-of-thumb from EP beam centerline45 cone rule of thumb from EP beam centerline
Low energy charge exchange ions are non-sputtering
Moderately high energy, scattered ions demand special design attention
Plume ion uncertainties for high power, multi-thruster, far field, in situ

ScatteredScattered

Low ELow E

Main BeamMain Beam

Solar Array Design Considerations

Ambient and EP induced plasma interactions
Parasitic electron collection

Dominated by EP-induced plasma with high densities/energies
Solar array current loss mechanism, must oversize 
neutralizers/propellant
Design solar array strings with minimal exposed conductors
Plasma chamber coupon test data needed to verify collection levels

Arcing
Plasma/vacuum primary arcs not a concern during EP/neutralizer 
ops (ties spacecraft ground to plasma potential, minimizes voltage 
gradients)
Without EP ops, high orbit vacuum arcing must be managed 
conventionally (electrically bonded surfaces)
Sustained arcing avoided by proper design of solar array panel
Plasma chamber coupon test data needed to verify arc behavior
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Solar Array Design Considerations
Radiation degradation optimization

Goal:  Minimum cost (or mass) of the SEP tug
Parameters affecting radiation dose

Avionics and tug subsystem designs, EP operation, mission design 
and solar array design/sizingand solar array design/sizing

Solar cell type (BOL performance, rad. tolerance, conc. ratio)
Solar cell shielding (coverglass, substrate thicknesses/densities)

Solar Array Design Considerations
Voltage selection

Using lower, state-of-the-art design voltages (100-V, 160-V) 
imposes a mass penalty on a high power SEP tug

30-40% for EPS subsystem alone (harnessing  and power 
electronics)electronics)

Large SEP tug missions tend to optimize with EP Isp
~2000 sec (300-V, Hall Thruster)
Above items lead to 300-V class direct-drive design option
To save mass, solar array Vmp is typically matched to the 
desired operating voltage at demanding point of the mission
300-V class solar array designs consistent with de-rated300 V class solar array designs consistent with de rated 
performance of state-of-the-art cabling/connectors, diodes, 
insulators and gimbal roll-rings/slip rings
Higher string design operating voltages will increase 
parasitic electron collection current ~ (1+aV)^0.7

300-V class solar array will drive PMAD parts selection

NASA/TM—2011-217197 18



Solar Array Design Considerations
Structural design (deployed strength/stiffness)

Very high deployed strength required (>0.1-g’s)
High thrust, chemical stage burns, RPOD plume impingement
Above events are planned, allowing for solar array preferred 
orientationsorientations

Very high deployed first fundamental frequency required
Consistent with SEP tug controller frequency and allowable
dead-band
Consistent with chemical stage/stack ACS control frequency
Minimize controls-structures interactions driven solar array loading
Achieve wing stiffness high enough to limit solar array deflections to 
acceptable levelsacceptable levels

Solar Array Design Considerations
Ground deployment testing of large solar array

Key for risk mitigation/qualification without flight test
Flight testing will be an affordability challenge and offers limited 
range of qualification

Solar array must be designed for g off loaded thermalSolar array must be designed for g off-loaded, thermal 
vacuum deployment

Structures off-loading, optics off-loading (as needed), in situ post-
deployment thermal-electrical performance (as needed)

Solar array must be designed for an acceptable risk level of 
phased deployment of full size or limited size hardware

Deployment phases:  tie-down release, yoke/phasing structure, solar 
array panels/wingsarray panels/wings
World’s largest vacuum facility (100-ft diameter and 122-ft height at 
NASA Plum Brook Space Power Facility) is not sufficient to test large 
SEP tug solar array designs envisioned

Solar array must be designed to minimize qualification costs
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SEP Tug Primary PMAD
Distribution Architecture Options

Centralized (All array power routed thru central distribution node, superior 
PMAD component mass/efficiency)
Combined Centralized/Channelized Option is Desired (Dual solar array 
wings feed dual centralized ARU inputs/outputs that feed channelized PDU segments for 
individual thrusters, reconfigurable with cross ties, superior cabling mass/efficiency, more 
mod lar s perior fa lt tolerance ith degraded performance and/or o er si ed solar arramodular, superior fault tolerance with degraded performance and/or over-sized solar array 
and power channels to route power between EP thrusters) 

VoltageVoltage
LimitingLimiting

PMAD Design Considerations

Voltage level has large impact on PMAD design
SOA voltage system (120 - 160 Vdc)

PPU required to raise voltage in order to get desired ISP from thruster –
less efficient, higher thermal load
Large cable mass required to handle high currents (mass inverse withLarge cable mass required to handle high currents (mass inverse with 
square of voltage)
Conventional parts available; still may need radiation screening
Housekeeping loads can be fed from bus power without conversion

High Voltage (300+ Vdc)
Direct drive option available – higher efficiency system and significantly 
less thermal load
Significant cable mass savings (>60%) due to relatively lower currentsg g ( ) y
Down conversion needed to feed housekeeping loads at conventional 
voltages
Very limited solid state parts selection, especially for high radiation spiral 
– may require wide bandgap electronics
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PMAD Design Considerations (con’t)
Non-direct drive:

Delivers predetermined range of I/V to EP thruster PPUs
PPU power conditioning to the thruster
Decoupling, galvanic isolation between the source (array) and thruster

Simplifies ground testing of individual components (solar array, EPS, EP subsystem)
May simplifies design of solar array electrical simulator

Prevents interactions from multi-thrusters through the power bus
Improves overall power quality for the high voltage bus

Direct drive offers:
Highest  kw/kg performance and superior power efficiency
Increased reliability, lower recurring cost
Requires no new high voltage/power electronics tech developmentq g g p p
Bus voltage control is primarily tied to EP thruster operation
Past direct drive system ground tests show stable operation,  but more 
work is needed

Stability/ops during EP start-up/shut-down transitions
Cathode current sharing for multi-thruster ops
Effective grounding schemes 

PMAD Design Considerations (con’t)
Solar array regulator/limiter

Protects from short-lived, high bus voltage post-eclipse with low load
Additional mass/efficiency hit, and adds to thermal load

Fault tolerance a significant driver for human missions
Reduced-power may be challenging at significant distance from EarthReduced power may be challenging at significant distance from Earth
Design for ability to tolerate loss of thrusters and/or power feeds

Thruster out capability – How many failures tolerated?
Carry cold-spare thrusters, or
De-rate thrusters nominally and power up after failure(s)

Grounding
Negative solar array grounding to the tug chassis desired
Positive solar array ground is unacceptablePositive solar array ground is unacceptable 

Introduces solar array plasma arcing
Introduces untenable solar array sputtering from EP plume ions
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PMAD Design Considerations (con’t)
EEE parts voltage level

600-V rated parts with derating, just sufficient for 300-V class bus
Beyond this, may need to jump to 1200-V rated parts (more limited selection)

Use of limited existing acceptable parts may lead to heavier, more 
voluminous, and less reliable / less efficient circuit board and PMAD box 
designsdesigns

EEE parts radiation tolerance (high flux, high energy protons)
Leads to high TID and enhanced SEE (MOSFET latch-up, gate rupture)

Dearth of manufacturer’s SEE data will necessitate dedicated testing
SiC parts could be a solution

SEP mission unique combination of high voltage/power and 
high radiation further limits choice of available parts

May need parts development, custom part builds, increased radiation 
testing, more stringent part screening, etc. which add costs
May require more box-level radiation shielding adding significant mass

SEP Cost Challenge
Cost estimates show high power SEP stage affordability 
challenge – need major cost reductions (~2X)

Major component cost challenge is the solar array
Recurring costs (particularly cell costs), qualification costs
Large-scale cell production availability 

(excludes systems integration costs)(excludes systems integration costs)
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Closing Comments

High power SEP tug missions offer attractive benefits

Many {solvable} technical challenges remain and must 
eventually be meteventually be met

Yet programmatically, to progress beyond just SEP mission 
studies, major cost reductions are needed
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