(2) Space Environments Testbed

Goddard Space Flight Center, Greenbelt, Maryland

The Space Environments Testbed (SET) is a flight controller data system for the Common Carrier Assembly. The SET-1 flight software provides the command, telemetry, and experiment control to ground operators for the SET-1 mission.

Modes of operation (see diagram) include:

- Boot Mode that is initiated at application of power to the processor card, and runs memory diagnostics. It may be en-
tered via ground command or autonomously based upon fault detection.
- Maintenance Mode that allows for limited carrier health monitoring, including power telemetry monitoring on a non-interference basis.
- Safe Mode is a predefined, minimum power safehold configuration with power to experiments removed and carrier functionality minimized. It is used to troubleshoot problems that occur during flight.
- Operations Mode is used for normal experiment carrier operations. It may be entered only via ground command from Safe Mode.
This work was done by David K. Leucht and Anne Marie J. Koslosky of Goddard Space Flight Center; David L. Kobe and JyaChang C. Wu of The Hammers Co.; and David A. Vaura of STG, Inc. Further information is contained in a TSP (see page 1). GSC-15821-1

Mode State Diagram.

* High-Performance 3D Articulated Robot Display

NASA's Jet Propulsion Laboratory, Pasadena, California

In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configu-
ration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as
wheeled, tracked, or legged mobility over surfaces.

Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used
for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions.

The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control sur-
faces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation.
The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring un-
reasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.

This work was done by Mark W. Powell, Recaredo J. Torres, David S. Mittman, James A. Kurien, and Lucy Abramyan of Caltech for NASA's Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1).

The software used in this innovation is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@caltech.edu. Refer to NPO-47945.

(2) Athena

NASA's Jet Propulsion Laboratory, Pasadena, California

The Athena simulation software supports an analyst from DoD or other federal agency in making stability and reconstruction projections for operational analyses in areas like Iraq or Afghanistan. It encompasses the use of all elements of national power: diplomatic, information, military, and economic (DIME), and anticipates their effects on political, military, economic, social, information, and infrastructure (PMESII) variables in realworld battle space environments. Athena is a stand-alone model that provides analysts with insights into the ef-
fectiveness of complex operations by anticipating second-, third-, and higher-order effects. For example, the first-order effect of executing a curfew may be to reduce insurgent activity, but it may also reduce consumer spending and keep workers home as secondorder effects. Reduced spending and reduced labor may reduce the gross domestic product (GDP) as a thirdorder effect. Damage to the economy will have further consequences.

The Athena approach has also been considered for application in studies related to climate change and the smart
grid. It can be applied to any project where the impacts on the population and their perceptions are important, and where population perception is important to the success of the project.

This work was done by Robert G. Chamberlain, William H. Duquette, Joseph P. Provenzano, and Theodore J. Brunzie of Caltech, and Benjamin Jordan of the U.S. Army for NASA's Jet Propulsion Laboratory. For more information, contact iaoffice@jpl.nasa.gov.

This software is available for commercial licensing. Please contact Daniel Broderick of the California Institute of Technology at danielb@caltech.edu. Refer to NPO-47857.

(2In Situ Surface Characterization

NASA's Jet Propulsion Laboratory, Pasadena, California

Operation of in situ space assets, such as rovers and landers, requires operators to acquire a thorough understanding of the environment surrounding the spacecraft. The following programs help with that understanding by providing higherlevel information characterizing the surface, which is not immediately obvious by just looking at the XYZ terrain data.

This software suite covers three primary programs: marsuvw, marsrough, and marsslope, and two secondary programs, which together use XYZ data derived from in situ stereo imagery to
characterize the surface by determining surface normal, surface roughness, and various aspects of local slope, respectively.

These programs all use the Planetary Image Geometry (PIG) library to read mission-specific data files. The programs themselves are completely multimission; all mission dependencies are handled by PIG. The input data consists of images containing XYZ locations as derived by, e.g., marsxyz.

The marsuvw program determines surface normals from XYZ data by gathering

XYZ points from an area around each pixel and fitting a plane to those points. Outliers are rejected, and various consistency checks are applied. The result shows the orientation of the local surface at each point as a unit vector. The program can be run in two modes: standard, which is typically used for in situ arm work, and slope, which is typically used for rover mobility. The difference is primarily due to optimizations necessary for the larger patch sizes in the slope case.
The marsrough program determines surface roughness in a small area

