
mu uuuu ui iiui imi uui uiu imi uui mii uui iuui uu uii mi

(12) United States Patent
Crowley et al.

(54) NETWORKACCELERATION TECHNIQUES

(75) Inventors: Patricia Crowley, Spokane, WA (US);
James Michael Awrach, Peabody, MA
(US); Arthur Barney Maccabe,
Knoxville, TN (US)

(73) Assignee: SeaFire Micros, Inc., Beverly, MA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 259 days.

(21) Appl. No.: 12/327,438

(22) Filed:	 Dec. 3, 2008

(65)	 Prior Publication Data

US 2009/0168799 Al 	 7u1. 2, 2009

Related U.S. Application Data

(60) Provisional application No. 61/004,955, filed on Dec.
3, 2007, provisional application No. 61/063,843, filed
on Feb. 7, 2008.

(51) Int. Cl.
G06F 15116	 (2006.01)
G06F 151167	 (2006.01)

(52) U.S. Cl 709/230; 709/213; 709/250
(58) Field of Classification Search 709/213,

709/227, 228, 230, 200, 250; 370/252, 469
See application file for complete search history.

(56)	 References Cited

U.S. PATENT DOCUMENTS
6,795,534 B2 * 9/2004 Noguchi	 379/88.17
6,996,070 B2 * 2/2006 Starr et al 370/252
7,299,266 B2 * 11/2007 Boyd et al 709/213
7,519,650 B2 * 4/2009 Boyd et al 709/200
7,586,936 B2 * 9/2009 Arimilli et al 370/463
7,596,634 B2 * 9/2009 Mittal et al 709/250
7,613,813 B2 * 11/2009 Hussain et al 709/227
7,668,165 B2 * 2/2010 Hoskote et al 370/392

(lo) Patent No.:	 US 8,103,785 B2
(45) Date of Patent: 	 Jan. 24, 2012

7,783,769 B2 * 8/2010	 Vasudevan et al. 	 709/230
7,818,362 B2 * 10/2010	 Boyd et al 709/200
7,912,988 B2 * 3/2011	 Boyd et al 709/250

2002/0161907 Al * 10/2002	 Moon	 709/230
20 04/00 10 674 Al * 1/2004	 Boyd et al 711/170
2004/0042487 A1 3/2004 Ossman

2005/0015502 Al * 1/2005	 Kang et al 709/228
2005/0060414 Al * 3/2005	 Phillips et al 709/227
2005/0122986 Al * 6/2005	 Starr et al 370/412
2006/0168281 Al * 7/2006	 Starr et al 709/230
20 0 6/02 5 1 1 20 Al * 11/2006	 Arimilli et al 370/469
2007/0162639 Al * 7/2007	 Chu et al 710/22
2008/0159295 Al * 7/2008	 Lee et al 370/394

OTHER PUBLICATIONS

M. Welsh, et al., "Incorporating Memory Managment into User-
Level Netowrk Interfaces," 1997, Cornell University.*

* cited by examiner

Primary Examiner Saleh Najjar
AssistantExaminer Tae Kim
(74) Attorney, Agent, or Firm 	 McDermott Will & Emery
LLP

(57)	 ABSTRACT

Splintered offloading techniques with receive batch process-
ing are described for network acceleration. Such techniques
offload specific functionality to a NIC while maintaining the
bulk of the protocol processing in the host operating system
("OS"). The resulting protocol implementation allows the
application to bypass the protocol processing of the received
data. Such can be accomplished this by moving data from the
NIC directly to the application through direct memory access
("DMA") and batch processing thereceive headers in the host
OS when the host OS is interrupted to perform other work.
Batch processing receive headers allows the data path to be
separated from the control path. Unlike operating system
bypass, however, the operating system still fully manages the
network resource and has relevant feedback about traffic and
flows. Embodiments of the present disclosure can therefore
address the challenges of networks with extreme bandwidth
delay products (BWDP).

38 Claims, 10 Drawing Sheets

300^
--- --- -^-------

i	 DESCRIPTORTABLE	 128BITSA(EY
37bz4=12881T	 i	 ^

---- - - - ------^
i
i

ENCODEKEY
i

t
o 3121	 N

o
o	 370 0

o	
v	 MD5 i

'•
32hIFIEID 6	 LOOK /	 ENCODING

@ 4GHz
96kBY7E

z9 FIELDS	 i FOR 318	 PROGAAM	 i
i MATCH 314	 MEMORY	 i

! 161	 176
FPGA	 CONTROL	 j

64Gbp516	 10G tps	
i BUFFER CONTROL	 PATH	 i

! DMAZ	 308 LOGIC	 CPU	 i

i
ENG	 CONTROL 316	 DATA	 ^

, BUFFER	 '— 33p	 MEMORY	 i	 622MHzz16=10Gbps

^

0

64kBYTE	 i— — — _	 _ ,

ATLANTIC
li Iff	 SPI4.2

tfi	 tOGbps	 ,
320— 16I

304	 li
6.	 I MUX,DEMUX, I! tOGgE

PCle-zi6p
TLANTICIIF;	 I BUFFERING PACKET	 I!16 16	 MAC,SERDES,

Genll	
TOUSER	 '	 I

!
FIFO	 i OPTICSSIDE

BPACEIIF	 I
I.

622 MHz PIPELIN E 	 I;
,^^^

N FIG.4	
!

----------------'—'—'—'-------'—'—'------

306
-----------------Ji

li

^ 312

MEMORY

—7—
122

124

PIN PAGE

110

PACKET

120

NON-BLOCKING

SOCKET READ

130—)

APPLICATION

RECEIVE

BUFFER

HOST

PROCESSOR

CIRCUIT

U.S. Patent
	

Jan. 24,2012
	

Sheet I of 10
	

US 8,103,785 B2

100 __)k

132

FIG. 1

204 1.,,N^	 206 1 .. . N 208 1 .. .N— 	 2101...N

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
200—,,4,

f	 i

PHY MAC SPLINTER BACKPLANE

C)
OR FRAMERF OFFLOADIP INTERFACE

nGbps

FULL-COMPLEX

NETWORK

212

U.S. Patent	 Jan. 24,2012	 Sheet 2 of 10
	

US 8,103,785 B2

CY)

LLC6
L_Lj LUa

C"i

EL
C/D

co U

CM

Ct^ CO

CZ>
Cl>

--
----Lu -:c C) -,- >-- O= Lu

CA- CD rr,	 =, t^^
C>

:

Q 15:

Ow
:=-

C:l LU

C171 C,-:,
0- C-> !!5z co Lu

C^D Lu
'T C^l C- -) 1 2-- 1

CD ry-	 -,- C. C3
CD

CD c-,l- Of

CID co CV
 c 'i

CD
CDLU

cn

"0 0 0 0,,C=> C^l 00	 C) >< CD© OOH co	 F—
C) I Lu Lu I	 iLL-L-T--

O
LLJ

(D

ry-

Lu
m

0 0 0 -o*—Dm- u- ^
C-3 LLJ 7D
CIO
Lu

--------------------------- --------------- ---------------
CIO C/3	 cl= LizCM-

-C=l
CD

m t

00

LU U-
m

C13 ><
p

CQco LIJ C9 rl- CD

O
cli
C".3

c1-0̂t-
mW
LL-
LL-

r—
	 —, Lu

Lu

^ Q
W

W

C._7

W
d 1_E_

W u'

C!^ m	 D

m

LL

x
GL1

C t^

_1 _U

~ J I
^ O

X

W
p

0
cV
W

G^
Q

F—
co

it

W
Z

U
Q

F—
C/7

U.S. Patent	 Jan. 24, 2012	 Sheet 3 of 10	 US 8,103,785 B2

cv
d-

w
W

^

Q p

J
Wt2

N

N
N
C.s=1

F---N W

^' Q

^ LL
U

D
^

^ W

X

00d-

^	 ^ Quj
DLWL Q a^7	

u—

a0 p W	
DD	 od'

PCIe-x 16

USER-SIDE

INTERFACE

60

Gbps

U.S. Patent	 Jan. 24,2012	 Sheet 4 of 10	 US 8,103,785 B2

500

FIG. 5

600A 6006 -^

-FPGA(§l

20 Gbps PHYS•	 6x10GigE SPLINTERED

20 Gbps	
60

Gbps
XCUR SLAYE R 	 MAC'S OFFLOAD FCTNS

F•D FPGA(S)

SLOT 1 t	 -
XCUR

i	 BACKPLANEINTERFACE

SLOT 2	 PC I EXPRESS xl6
Pcle-x1 6 Genll, 64 Gbps F-D TO HOST

FIG. 6

U.S. Patent	 Jan. 24, 2012	 Sheet 5 of 10	 US 8,103,785 B2

goo -^

APPLICATION

LATENCY = L_ha
OVERHEAD + 0_h 	 PROTOCOL OVERHEAD= C_a

HOST OS

CPU RATE = R h
	

LATENCY = L na

PROTOCOL OVERHEAD = C h
	

OVERHEAD + 0 na

LATENCY = L w

LATENCY = L nh
OVERHEAD + 0 nh	

NIC

CPU RATE= R n
PROTOCOL OVERHEAD = C n

FIG. 7

U.S. Patent	 Jan. 24, 2012	 Sheet 6 of 10	 US 8,103,785 B2

1

800

802

PACKET PROCESSED IN THE SPLINTERING LOGIC

804	 806

TOFFSETRI
DATA

 ICAT
BUFFER

 ON LAYERS	
TRANSFER HEADER TO OPERATING SYSTEM

UPDATE DESCRIPTOR TABLE

808

END

FIG.
900

2

NORMAL
PROCESS

PACKET TRANSFERRED TO INTERNET PROTOCOL LAYER 902

PACKET PROCESSED IN INTERNET PROTOCOL LAYER 904

PACKET TRANSFERRED TO TRANSPORT LAYER 906

PACKET PROCESSED IN TRANSPORT LAYER 908

DATA TRANSFERRED TO APPLICATION LAYER 910

DATA PROCESSSED IN APPLICATION LAYER 912

END

FIG.

U.S. Patent	 ,Tan. 24, 2012	 Sheet 7 of 10	 US 8,103,785 B2

1000--,

C_ 	 START

APPLICATION SENDS DESCRIPTOR CONTENTS 	
1002

TO OPERATING SYSTEM`

OPERATING SYSTEM PERFORMS A	 1004
NON-BLOCKING SOCKET READ FROM APPLICATION

OPERATING SYSTEM PINS PAGES 	 1006
IN HOST MEMORY

PINNING
N	 PAGE	 1008

PASSES?

PINNING	 Y_
FAILS	 DESCRIPTOR PROCESSED IN OPERATING SYSTEM

3	 AND PUT INTO DESCRIPTOR TABLE 1010

OPERATING SYSTEM DMA'S DESCRIPTOR
TO NIC DESCRIPTOR TABLE

1012

INPUTTING AX PACKET TONIC PHYSICAL LAYER 1014

PROCESSING PACKET IN PHYSICAL LAYER 1016

TRANSFER THE PACKET FROM PHYSICAL
LAYER TO NIC DATA LINK LAYER 1018

PACKET PROCESSED IN NIC DATA LINK LAYER 1020

IS PACKET LISTED IN 	
1022

N	 DESCRIPTOR TABLE?

NORMAL	 Y
PROCESS	 L TRANSFER PACKET TO SPLINTERING LOGIC	 1024

2

	

*CAN BE ACCOMPLISHED BY THE APPLICATION U	 FIG.
PERFORMING A PRE-POSTED RECEIVE SYSTEM CALL.

FIG. 11

1102

1104

1106

1108

1110

1112

U.S. Patent	 Jan. 24, 2012	 Sheet 8 of 10	 US 8,103,785 B2

U.S. Patent
	

Jan. 24, 2012
	

Sheet 9 of 10
	

US 8,103,785 B2

izoo—,,^

START

[QUANTUM EXPIRY OR
N
	

OTHER INTERRUPT]

Y ,/-``-1202

OS BATCH PROCESSES ALL HEADERS IN
THE HEADERS-TO•BE•PROCESSED RING

TCP1206N PACKET?

Y
ACKNOWLEDGEMENTS ARE CREATED AND ^ 128

DMA'D TO TRANSMIT RING ON THE NIC

THE OS UPDATES ITS DESCRIPTOR TABLE [--1210

END

FIG. 12

	

U.S. Patent
	

Jan. 24, 2012	 Sheet 10 of 10
	

US 8,103,785 B2

	

1 goo -^	
START

INPUTTING TX DATA INTO APPLICATION LAYER 1302

^a PROCESSING DATA IN THE APPLICATION LAYER 1304

TRANSFERRING DATA TO THE TRANSPORT LAYER	 J, 1306

PROCESSING DATA IN THE TRANSPORT LAYER 	 J, 1308

TRANSFERRING DATA TO THE INTERNET PROTOCOL LAYERJ--1310

PROCESSING DATA IN THE INTERNET PROTOCOL LAYER 1312

TRANSFERRING DATA TO THE DATA LINK LAYER 1314

PROCESSING DATA IN THE DATA LINK LAYER 1316

TRANSFERRING DATA TO THE PHYSICAL LAYER -1318

PROCESSING DATA IN THE PHYSICAL LAYER	 ^--`-1320

TRANSFERRING DATATO THE NETWORK 1322

END

FIG. 13

US 8,103,785 B2
1

NETWORK ACCELERATION TECHNIQUES

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/004,955, entitled "10-100
Gbps offload NIC for WAN, NLR, Grid computing" filed 3
Dec. 2007, and also claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/063,843, entitled "Splintered
TCP offload engine for grid computing and BDWP" filed 7
Feb. 2008; the entire contents of both of which applications
are incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

This invention was made with government support by (i)
the National Aeronautics and Space Administration (NASA),
under contract No. SBIR 06-1-S8.05-8900, and (ii) the
National Science Foundation, under contract No. STTR
Grant IIP-0637280. The Government has certain rights in the
invention.

BACKGROUND

The rapid growth of computer networks in the past decade
has brought, in addition to well known advantages, disloca-
tions and bottlenecks in utilizing conventional network
devices. For example, a CPU of a computer connected to a
network may spend an increasing proportion of its time pro-
cessing network communications, leaving less time available
for other work. In particular, file data exchanges between the
network and a storage unit of the computer, such as a disk
drive, are performed by dividing the data into packets for
transportation over the network. Each packet is encapsulated
in layers of control information that are processed one layer at
a time by the receiving computer CPU.

Although the speed of CPUs has constantly increased, this
type of protocol processing can consume most of the avail-
able processing power of the fastest commercially available
CPU. A rough estimation indicates that in a Transmission
Control Protocol (TCP)/Internet Protocol (IP) network, one
currently needs one hertz of CPU processing speed to process
one bit per second of network data. Furthermore, evolving
technologies such as IP storage, streaming video and audio,
online content, virtual private networks (VPN) and e-com-
merce, require data security and privacy like IP Security
(IPSec), Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) that increase even more the computing
demands from the CPU. Thus, the network traffic bottleneck
has shifted from the physical network to the host CPU.

Most network computer communication is accomplished
with the aid of layered software architecture for moving infor-
mation between host computers connected to the network.
The general functions of each layer are normally based on an
international standard defined by the International Standards
Organization (ISO), named the Open Systems Interconnec-
tion (OSI) network model. The OSI model sets forth seven
processing layers through which information received by a
host passes and made presentable to an end user. Similarly,
those seven processing layers may be passed in reverse order
during transmission of information from a host to the net-
work.

It is well known that networks may include, for instance, a
high-speed bus such as an Ethernet connection or an internet
connection between disparate local area networks (LANs),
each of which includes multiple hosts or any of a variety of

2
other known means for data transfer between hosts. Accord-
ing to the OSI standard, Physical layers are connected to the
network at respective hosts, providing transmission and
receipt of raw data bits via the network. A Data Link layer is

5 serviced by the Physical layer of each host, the Data Link
layers providing frame division and error correction to the
data received from the Physical layers, as well as processing
acknowledgment frames sent by the receiving host. A Net-
work layer of each host, used primarily for controlling size

io and coordination of subnets of packets of data, is serviced by
respective Data Link layers. A Transport layer is serviced by
each Network layer, and a Session layer is serviced by each
Transport layer within each host. Transport layers accept data
from their respective Session layers, and split the data into

15 smaller units for transmission to Transport layers of other
hosts, each such Transport layer concatenating the data for
presentation to respective Presentation layers. Session layers
allow for enhanced communication control between the
hosts. Presentation layers are serviced by their respective

20 Session layers, the Presentation layers translating between
data semantics and syntax which may be peculiar to each host
and standardized structures of data representation. Compres-
sion and/or encryption of data may also be accomplished at
the Presentation level. Application layers are serviced by

25 respective Presentation layers, the Application layers trans-
lating between programs particular to individual hosts and
standardized programs for presentation to either an applica-
tion or an end user.

The rules and conventions for each layer are called the
30 protocol of that layer, and since the protocols and general

functions of each layer are roughly equivalent in various
hosts, it is useful to think of communication occurring
directly between identical layers of different hosts, even
though these peer layers do not directly communicate without

35 information transferring sequentially through each layer
below. Each lower layer performs a service for the layer
immediately above it to help with processing the communi-
cated information. Each layer saves the information for pro-
cessing and service to the next layer. Due to the multiplicity of

4o hardware and software architectures, devices, and programs
commonly employed, each layer is necessary to insure that
the data can make it to the intended destination in the appro-
priate form, regardless of variations in hardware and software
that may intervene.

45 In preparing data for transmission from a first to a second
host, some control data is added at each layer of the first host
regarding the protocol of that layer, the control data being
indistinguishable from the original (payload) data for all
lower layers of that host. Thus an Application layer attaches

5o an application header to the payload data, and sends the
combined data to the Presentation layer of the sending host,
which receives the combined data, operates on it, and adds a
presentation header to the data, resulting in another combined
data packet. The data resulting from combination of payload

55 data, application header and presentation header is then
passed to the Session layer, which performs required opera-
tions including attaching a session header to the data, and
presenting the resulting combination of data to the transport
layer. This process continues as the information moves to

60 lower layers, with a transport header, network header and data
link header and trailer attached to the data at each of those
layers, with each step typically including data moving and
copying, before sending the data as bit packets, over the
network, to the second host.

65 The receiving host generally performs the reverse of the
above-described process, beginning with receiving the bits
from the network, as headers are removed and data processed

US 8,103,785 B2
3

in order from the lowest (Physical) layer to the highest (Ap-
plication) layer before transmission to a destination of the
receiving host. Each layer of the receiving host recognizes
and manipulates only the headers associated with that layer,
since, for that layer, the higher layer control data is included
with and indistinguishable from the payload data. Multiple
interrupts, valuable CPU processing time and repeated data
copies may also be necessary for the receiving host to place
the data in an appropriate form at its intended destination.

As networks grow increasingly popular and the informa-
tion communicated thereby becomes increasingly complex
and copious, the need for such protocol processing has
increased. It is estimated that a large fraction of the processing
power of a host CPU may be devoted to controlling protocol
processes, diminishing the ability of that CPU to perform
other tasks. Network interface cards (NICs) have been devel-
oped to help with the lowest layers, such as the Physical and
Data Link layers. It is also possible to increase protocol
processing speed by simply adding more processing power or
CPUs according to conventional arrangements. This solution,
however, is both awkward and expensive. The complexities
presented by various networks, protocols, architectures, oper-
ating devices and applications generally require extensive
processing to afford communication capability between vari-
ous network hosts.

The TCP/IP model is a specification for computer network
protocols created in the 1970s by DARPA, an agency of the
United States Department of Defense. It laid the foundations
forARPANET, which was the world's first wide area network
and a predecessor of the Internet. The TCP/IP Model is some-
times called the Internet Reference Model, the DoD Model or
the ARPANET Reference Model.

TCP/IP is generally described as having four abstraction
layers (RFC 1122), e.g., as shown in the box below:

Application
Transport (TCP or UDP)
Internet (IP)
Link

This layer view is often compared with the seven-layer OSI
Reference Model formalized after the TCP/IP specifications.

Regarding the layers in the TCP/IP model, the layers near
the top are logically closer to the user application, while those
near the bottom are logically closer to the physical transmis-
sion of the data. Viewing layers as providing or consuming a
service is a method of abstraction to isolate upper layer pro-
tocols from the nitty-gritty detail of transmitting bits over, for
example, Ethernet and collision detection, while the lower
layers avoid having to know the details of each and every
application and its protocol. This abstraction also allows
upper layers to provide services that the lower layers cannot,
or choose not to, provide. Again, the original OSI Reference
Model was extended to include connectionless services
(OSIRM CL). For example, IP is not designed to be reliable
and is a best effort delivery protocol. This means that all
transport layer implementations must choose whether or not
to provide reliability and to what degree. UDP provides data
integrity (via a checksum) but does not guarantee delivery;
TCP provides both data integrity and delivery guarantee (by
retransmitting until the receiver acknowledges the reception
of the packet).

The following is a description of each layer in the TCP/IP
networking model starting from the lowest level. The Link
Layer is the networking scope of the local network connec-

4
tion to which a host is attached. This regime is called the link
in Internet literature. This is the lowest component layer of the
Internet protocols, as TCP/IP is designed to be hardware
independent. As a result TCP/IP has been implemented on top

5 of virtually any hardware networking technology in exist-
ence. The Link Layer is used to move packets between the
Internet Layer interfaces of two different hosts on the same
link. The processes of transmitting packets on a given link and
receiving packets from a link can be controlled both in the

I software device driver for the network card, as well as on
firmware or specialist chipsets. These will perform data link
functions such as adding a packet header to prepare it for
transmission, then actually transmit the frame over a physical
medium. The TCP/IP model includes specifications of trans-

I5 lating the network addressing methods used in the Internet
Protocol to data link addressing, such as Media Access Con-
trol (MAC), however all other aspects below that level are
implicitly assumed to exist in the Link Layer, but are not
explicitly defined. The Link Layer can also be the layer where

20 packets are intercepted to be sent over a virtual private net-
work or other networking tunnel. When this is done, the Link
Layer data is considered as application data and proceeds
back down the IP stack for actual transmission. On the receiv-
ing end, the data goes up through the IP stack twice (once for

25 routing and the second time for the tunneling function). In
these cases a transport protocol or even an application scope
protocol constitutes a virtual link placing the tunneling pro-
tocol in the Link Layer of the protocol stack. Thus, the TCP/IP
model does not dictate a strict hierarchical encapsulation

30 sequence and the description is dependent upon actual use
and implementation.

Internet Layer: As originally defined, the Internet layer (or
Network Layer) solves the problem of getting packets across
a single network. Examples of such protocols are X.25, and

35 the ARPANET's Host/IMP Protocol. With the advent of the
concept of internetworking, additional functionality was
added to this layer, namely getting data from the source
network to the destination network. This generally involves
routing the packet across a network of networks, known as an

40 internetwork or internet (lower case). In the Internet Protocol
Suite, IP performs the basic task of getting packets of data
from source to destination. IP can carry data for a number of
different upper layer protocols. These protocols are each
identified by a unique protocol number: ICMP and IGMP are

45 protocols 1 and 2, respectively. Some of the protocols carried
by IP, such as ICMP (used to transmit diagnostic information
about IP transmission) and IGMP (used to manage IP Multi-
cast data) are layered on top of IP but perform internetwork
layer functions. This illustrates an incompatibility between

50 the Internet and the IP stack and OSI model. Some routing
protocols, such as OSPF, are also part of the network layer.

Transport Layer: The Transport Layer's responsibilities
include end-to-end message transfer capabilities independent
of the underlying network, along with error control, fragmen-

55 tation and flow control. End to end message transmission or
connecting applications at the transport layer can be catego-
rized as either: connection-oriented e.g. TCP, or connection-
less e.g. UDP. The Transport Layer can be thought of literally
as a transport mechanism e.g. a vehicle whose responsibility

60 is to make sure that its contents (passengers/goods) reach its
destination safely and soundly, unless a higher or lower layer
is responsible for safe delivery. The Transport Layer provides
this service of connecting applications together through the
use of ports. Since IP provides only a best effort delivery, the

65 Transport Layer is the first layer of the TCP/IP stack to offer
reliability. Note that IP can run over a reliable data link
protocol such as the High-Level Data Link Control (HDLC).

US 8,103,785 B2
5
	

6
Protocols above transport, such as RPC, also can provide

	
kind of application protocol it represents, rather they just

reliability. For example, TCP is a connection-oriented proto-	 provide a conduit for it. However, some firewall and band-
col that addresses numerous reliability issues to provide a 	 width throttling applications do try to determine what's
reliable byte stream: data arrives in-order; data has minimal

	
inside, as with the Resource Reservation Protocol (RSVP).

error (i.e., correctness); duplicate data is discarded; lost/dis- 5 It's also sometimes necessary for Network Address Transla-
carded packets are re-sent; and, includes traffic congestion 	 tion (NAT) facilities to take account of the needs of particular
control. The newer SCTP is also a "reliable", connection- 	 application layer protocols. (NAT allows hosts on private
oriented, transport mechanism. It is Message-stream-ori- 	 networks to communicate with the outside world via a single
ented, not byte-stream-oriented like TCP, and provides mul- 	 visible IP address using port forwarding, and is an almost
tiple streams multiplexed over a single connection. It also 10 ubiquitous feature of modern domestic broadband routers).
provides multi-homing support, in which a connection end

	
Hardware and software implementation: Normally, appli-

can be represented by multiple IP addresses (representing 	 cation programmers are concerned only with interfaces in the
multiple physical interfaces), such that if one fails, the con-	 Application Layer and often also in the Transport Layer,
nection is not interrupted. It was developed initially for tele- 	 while the layers below are services provided by the TCP/IP
phony applications (to transport SS7 over IP), but can also be 15 stack in the operating system. Microcontroller firmware in the
used for other applications. UDP is a connectionless data- 	 network adapter typically handles link issues, supported by
gram protocol. Like IP, it is a best effort or "unreliable"

	
driver software in the operational system. Non-program-

protocol. Reliability is addressed through error detection 	 mable analog and digital electronics are normally in charge of
using a weak checksum algorithm. UDP is typically used for 	 the physical components in the Link Layer, typically using an
applications such as streaming media (audio, video, Voice 20 application-specific integrated circuit (ASIC) chipset for
over IP etc) where on-time arrival is more important than 	 each network interface or other physical standard. Hardware
reliability, or for simple query/response applications like 	 or software implementation is, however, not stated in the
DNS lookups, where the overhead of setting up a reliable 	 protocols or the layered reference model. High-performance
connection is disproportionately large. RTP is a datagram	 routers are to a large extent based on fast non-programmable
protocol that is designed for real-time data such as streaming 25 digital electronics, carrying out link level switching.
audio and video. TCP and UDP are used to carry an assort- 	 Network bandwidth is increasingly faster than host proces-
ment of higher-level applications. The appropriate transport 	 sors can process traditional protocols. Interrupt pressure has
protocol is chosen based on the higher-layer protocol appli-	 been the bottleneck for TCP/IP over increasing network
cation. For example, the File Transfer Protocol expects a 	 bandwidths. The solutions that have generally been proposed
reliable connection, but the Network File System assumes 30 to alleviate this bottleneck are interrupt coalescing and net-
that the subordinate Remote Procedure Call protocol, not 	 polling, jumbo frames, and TCP offload. Interrupt coalescing
transport, will guarantee reliable transfer. Other applications, 	 and jumbo frames are becoming standards in high-perfor-
such as Vole can tolerate some loss of packets, but not the	 mance networking. However, neither of them delivers a large
reordering or delay that could be caused by retransmission. 	 enough impact at 10 Gbps network speeds and beyond. Sev-
The applications at any given network address are distin- 35 eral factors have made full TCP offload a less attractive alter-
guished by their TCP or UDP port. By convention certain well	 native. Full TCP offload requires that all protocol processing
known ports are associated with specific applications. (See	 behandledby the NIC. This requires a very sophisticated NIC
List of TCP and UDP port numbers.) 	 with a great deal of memory for buffering purposes. They are,

Application Layer: The Application Layer refers to the 	 therefore, cost-prohibitive. Additionally, the memory and
higher-level protocols used by most applications for network 40 processing required make Full TCP Offload scale poorly. Full
communication. Examples of application layer protocols	 TCP processing on the NIC also moves control of the network
include the File Transfer Protocol (FTP) and the Simple Mail	 resource away from the operating system. This fundamen-
Transfer Protocol (SMTP). Data coded according to applica- 	 tally erodes the security of the host since the OS does not have
tion layer protocols are then encapsulated into one or (occa-	 full control of what is entering the memory space or the
sionally) more transport layer protocols (such as the Trans- 45 protocol stack space. Also, the OS has difficulty making
mission Control Protocol (TCP) or User Datagram Protocol

	
dynamic policy decisions based on potential attacks or

(UDP)), which in turn use lower layer protocols to effect 	 changes in network traffic. TCP Data Path Offload, in which
actual data transfer. Since the IP stack defines no layers 	 the flows are created by the OS, but the protocol processing
between the application and transport layers, the application	 associated with data movement is offloaded, addresses the
layer must include any protocols that act like the OSI's pre- 50 first issue, but cannot address the second issue since informa-
sentation and session layer protocols. This is usually done 	 tion about the status of the network is not routinely shared
through libraries. Application Layer protocols generally treat 	 with the OS during the flow of data. What is desired, there-
the transport layer (and lower) protocols as "black boxes" that

	
fore, are improved techniques that can allow for quicker data

provide a stable network connection across which to commu-	 transfer and can address the needs of networks having rela-
nicate, although the applications are usually aware of key 55 tively high bandwidth delay products.
qualities of the transport layer connection such as the end
point IP addresses and port numbers. As noted above, layers

	
SUMMARY

are not necessarily clearly defined in the Internet protocol
suite. Application layer protocols are most often associated

	
The present disclosure is directed to techniques, including

with client-server applications, and the commoner servers 60 methods and architectures, for the acceleration of file trans-
have specific ports assigned to them by the IANA: HTTP has

	
fers over networks. Such techniques can provide for the split-

port 80; Telnet has port 23; etc. Clients, on the other hand, 	 ting or "splintering" of packet headers and related files/data
tend to use ephemeral ports, i.e. port numbers assigned at

	
during offloading processes.

random from a range set aside for the purpose. Transport and
	

An aspect of the present disclosure provides engine sys-
lower level layers are largely unconcerned with the specifics 65 tems utilizing splintered offload logic. Such engines can
of application layer protocols. Routers and switches do not

	
include or be implemented with one or more physical inter-

typically "look inside" the encapsulated traffic to see what
	

faces, media access controllers ("MAC"s), and backplane

US 8,103,785 B2
7
	

8
interfaces. Such engines (or portions of such) can be incor- 	 well as other embodiments described herein, may be envi-
porated into NIC circuits including single or multiple com-	 sioned and practiced within the scope of the present disclo-
ponents, e.g., field programmable gate arrays ("FPGA"s), 	 sure.
application specific integrated circuits (` ASIC"s), and the
like.	 5	 DETAILED DESCRIPTION

Another aspect of the present disclosure provides systems
that are based upon unique coding and architecture derived

	
Aspects of the present disclosure generally relate to tech-

from splintered UDP offload technology, resulting in unique 	 niques utilizing novel offload engines based on the architec-
FPGA core architectures and firmware (e.g., offload engines). 	 tures implementing splinter offload (or "splintering") logic.

Embodiments of novel offload engine according to the io Such techniques split off packet data from associated packet
present disclosure includes NIC architecture with network

	
header (or descriptor) information. Some variations of splin-

connections at 10 Gbps, scaling by nx10 Gbps increments. 	 tered offload include/address IP headers where others include
One skilled in the art will appreciate that embodiments of

	
TCP headers, and other could include both. Each header has

the present disclosure can be implemented in hardware, soft- 	 many parameters. Common vocabulary or terminology in
ware, firmware, or any combinations of such, and over one or 15 both types of headers (IP and TCP) include: source, destina-
more networks.	 tion, and/or checksum priority or urgency. Such architec-

Other features and advantages of the present disclosure
	 tures can be based on low-cost, high-performance FPGA

will be understood upon reading and understanding the 	 subsystems. Using network simulations and modeling,
detailed description of exemplary embodiments, described

	 embodiments have been verified, e.g., as system feasibility
herein, in conjunction with reference to the drawings. 	 20 for bandwidths from 10-100+ Gbps. The offload engine sys-

tem can allow access to distributed and shared data over 10
BRIEF DESCRIPTION OF THE DRAWINGS

	
Gbps and beyond, for various networks. Such techniques can
run/implement splintered UDP or TCP on our system up to

Aspects of the disclosure may be more fully understood
	

100 Gbps. System can accordingly be compatible 10 GigE
from the following description when read together with the 25 networking infrastructure, allow for bandwidth scalability.
accompanying drawings, which are to be regarded as illustra- 	 As faster versions of the busses become available, e.g., PCI
tive in nature, and not as limiting. The drawings are not 	 express bus, embodiments of the present disclosure can pro-
necessarily to scale, emphasis instead being placed on the 	 vide splintered TCP and UDP operation at higher rates, e.g.,
principles of the disclosure. In the drawings:

	
128 Gbps to 1,000+ Gbps f-d for Terabit Ethernet applica-

FIG.1 depicts a diagrammatic view of a path of a splintered 30 tions.
packet (e.g., TCP) through a splintered stack architecture, in

	
Splintered offloading techniques (TCP or UDP) with

accordance with exemplary embodiments of the present dis- 	 receive batchprocessing address most of the issues associated
closure;	 with TCP offload, but at a significantly reduced manufactur-

FIG. 2 depicts a diagrammatic view of a NIC circuit archi-	 ing price to offload specific functionality to the NIC while
tecture in accordance with an exemplary embodiment of the 35 maintaining the bulk of the protocol processing in the host
present disclosure;
	

OS. This is the core of Splintered offloading according to the
FIG. 3 depicts a diagrammatic view of a splintered offload

	
present disclosure. The resulting protocol implementation

engine in accordance with an exemplary embodiment of the 	 allows the application to bypass the protocol processing of the
present disclosure;	 received data. Such can be accomplished this by moving data

FIG. 4 depicts an enlarged view of a portion of FIG. 3 40 from the NIC directly to the application through DMA and
showing a packet receive process and architecture in accor- 	 batch processing the receive headers in the host OS when the
dance with an exemplary embodiment of the present disclo- 	 host OS is interrupted to perform other work. Batch process-
sure;
	

ing receive headers allows the data path to be separated from
FIG. 5 depicts a diagrammatic view of an alternate packet

	
the control path. Unlike operating system bypass, however,

transmit process and architecture in accordance with a further 45 the operating system still fully manages the network resource
embodiment of the present disclosure; 	 and has relevant feedback about traffic and flows. Embodi-

FIG. 6 depicts diagrammatic representation of 40 Gbps	 ments of the present disclosure can therefore address the
bandwidth and 60 Gbps bandwidth embodiments of the 	 challenges of networks with extreme bandwidth delay prod-
present disclosure;	 ucts (BWDP). Example facilities include 10-100 Gbps intra-

FIG. 7 depicts a diagrammatic view of an extensible mes- 50 continental and intercontinental links at national labs and
sage oriented offload model ("EMO") for a receive process, in 	 aerospace firms. Bulk Data Transfer in the networks need to
accordance with an embodiment of the present disclosure;

	
be provided the endpoint resources required to ensure high

FIG. 8 depicts a method of packet splintering in accordance 	 performance in a cost effective manner.
with exemplary embodiments;

	
The present inventors have conducted research proving

FIG. 9 depicts a packet processing method in accordance 55 multiples of 10 Gigabits per second (Gbps) through 100 Gbps
with an embodiment of the present disclosure; 	 and higher speeds (e.g., indicated by "nx10 Gbps" in some of

FIG. 10 depicts a further embodiment of a packet process- 	 the figures). In some implementations it can be possible to fit
ing method, in accordance with the present disclosure;

	
into one chip or one piece of code. In other implementations,

FIG. 11 depicts a further embodiment of a packet process- 	 it would be multiples. Embodiments of the present disclosure
ing method, in accordance with the present disclosure; 	 60 can be implemented or extend to 1000 Gigabits per second,

FIG. 12 depicts a processing method, in accordance with
	

Aspects of the present disclosure can provide and/or incor-
the present disclosure; and

	
porate algorithms for the following: (i) IP (or TCP) offload

FIG. 13 depicts a further embodiment of a method in accor- 	 transmit, and receive; (ii) TCP (or IP) checksum on a FPGA;
dance with the present disclosure. 	 (iii) separation of packet headers from data; (iv) packet de-

While certain embodiments are depicted in the drawings, 65 multiplexing for pre-posted read; (v) support for out of order
one skilled in the art will appreciate that the embodiments 	 packet reception; (vi) supporting memory, accompanied
depicted are illustrative and that variations of those shown, as

	
(e.g., Verilog) subsystems as needed; and/or, (vii) supporting

US 8,103,785 B2
9
	

10
DMA engines. The algorithms can each be translated into

	
full-duplex (f-d). Systems incorporating architecture 200 can

block diagrams to be used for writing, e.g., Verilog code. 	 accordingly provide splintered packet (UDP, TCP, IP) offload
As a preliminary matter, the following definitions are used

	
technology, resulting in unique FPGA core and firmware

herein: quantum: amount of time assigned to a job. Quantum 	 architecture.
expiry: the time can expire in which case the priority of the job 5	 The offload engine system 200 allows access to distributed
may be changed. Job: a program, file, or a unit of work. 	 and shared data over 10 Gbps and beyond, for networks. Such
Header processing: the "utilization of or "calculation using"

	
systems can run splintered UDP or TCP up to 100+ Gbps for

header parameters. Moreover, the term "storage location" can 	 various application. Systems can be compatible 10 GigE net-
include reference to one or more buffers and/or permanent 	 working infrastructure, allow for bandwidth scalability.
memory, e.g., in a local device/system or a distributed system 10	 Because of the inherent limitations inthe TCP protocol and
such as over the Internet. 	 to facilitate scaling to 100+ Gbps f-d, the UDT variant of UDP
Splintered TCP with Protocol Bypass 	 can be used. Commercial applications of embodiments of the

FIG.1 depicts a diagrammatic view of a path of a splintered
	

present disclosure can include core IP to be marketed to
packet (e.g., TCP) through a splintered stack architecture of

	
FPGA manufacturers, core IP distributors, offload engine

an offload engine 100, in accordance with exemplary embodi- 15 manufacturers, and motherboard and systems manufacturers
ments of the present disclosure. As shown, the engine can	 who require offload engine system-on-chips for their moth-
include a physical device 110, e.g., a NIC or network interface 	 erboards. Such can also provide an entire offload engine NIC:
circuit, interfacing with an operating system 120 and a soft- 	 hardware and firmware to the motherboard and systems
ware application 130. The NIC 110 can include a descriptor	 manufacturers of cluster and Grid computing products.
(or header) table 112. The operating system 120 can be asso- 20 Embodiments can differ from market solutions because of
ciated or linked with (or connected to) host memory 122 and

	
10-100 Gbps splintered TCP/IP/UDP acceleration engine,

configured and arranged to perform a page pinning 124 to the 	 compatible with present networking infrastructure for Grid
memory 122. The application can include a receive buffer 	 computing, while providing for future bandwidth scalability.
132. As used herein, "linked," "connected" and "coupled" can

	
FPGA Core

have the same meaning; also, while a physical device is 25	 FIG. 3 depicts a diagrammatic view of a splintered offload
referenced as interfacing with a network, suitably functioning 	 engine 300 in accordance with an exemplary embodiment of
software or firmware can also or in substitution be used. 	 the present disclosure. As shown, architecture 300 can utilize

FIG. 1 shows the path of a splintered packet (e.g., a TCP
	

a PCIe-X16 GenII bus in a 64 Gbps offload configuration.
packet) through the architecture 100, which may be referred

	
Referring to FIG. 3, the following offload system-on-chip

to as a "Splintered TCP" stack. The management/production 30 architecture, we now discuss the receive side of the offload
of a Splintered TCP is designed to keep TCP flow manage- 	 engine composition which makes-up the FPGA I.P. One MD5
ment and network resource management with the operating 	 encoder output is matched against one descriptor. There are
system (OS) while moving data quickly and directly from the 	 six descriptors, hence 6 encoders. This is for one 10 Gbps
network interface card (NIC) to the application. Splintered

	
path. There are six such paths, but the descriptor table is the

TCP preferably includes that the application that is to receive 35 same for all. This allows for six packets to simultaneously be
data pre-post a receive to the operating system. The operating 	 checked against the descriptor table. There are six packet
system can lock the page of memory associated with the 	 paths for 60 Gbps total. Instead of MD5, other types of hash,
storage location (e.g., buffer, permanent memory, or the like)

	
for example but not limited to SHA-1, have been proven to be

in application-space that will receive the data. Then the oper-	 feasible; others may be used as well.
ating system creates a very small receive descriptor and 40	 When the incoming packet reaches the next to last stages of
informs the physical device (e.g., NIC) that a receive is being	 the packet FIFO, the encoding checks for a match within the
pre-posted. As policy, the operating system can choose to

	
buffer pool (descriptor table). If there is a match, the packet

create a timeout value for the pre-posted receive so that if no 	 then exits the FIFO, and at the same rate, the packet is trans-
data is received in the buffer within a certain amount of time, 	 ferred to the listed packet buffer. When the complete packet is
the receive is invalidated and the memory is unlocked. When 45 transferred, the DMA engine transfers the packet from the
the OS informs the physical device (e.g., NIC) of the pre- 	 listed Packet Buffer to the Altera Atlantic I/F, for output to
posted receive, a copy of the receive descriptor is added to the

	
host over the PCIe-x16 Gen II bus (64 Gbps f-d). The Atlantic

NICs pre-posted receive table. When a message arrives, the
	

interface is Altera's standard, generic bus when connecting to
physical device simply checks against the table by using a

	
high-speed data interfaces. The Atlantic interface is one

standard hash (e.g., MD-5) of the source IP, source port, 50 example, and examples of other suitable interfaces can
destination IP and destination port. If the data is part of a

	
include, but are not limited to SPI-4.2 or later versions, FIFO

pre-posted receive, the data is sent (or DMA'd) to the appro- 	 interfaces, or generic User Space to PCI express interfaces.
priate offset in the application memory space. The headers are

	
For both listed and unlisted packet buffers, the data is

DMA'd to the host OS in a circular queue. When the host OS
	

written in at 622 MHz. Either the listed packet buffer or
is interrupted for other work or on quantum expiry, the OS 55 unlisted packet buffer is write enabled and written at 622
processes the headers in the receive queue. 	 MHz. Since the pipeline and buffers are 16 bits wide, this

It is important to note that normal traffic is sent to the	 corresponds to 10 Gbps for either path. The DMA engine
operating system in the traditional manner. This allows Splin- 	 output is at the same rate, transferring either listed or unlisted
tered TCP to use the normal TCP/IP stack in the operating	 packets to the PCIe-x16 Gen II bus. The design is scalable to
system on the host to do, as it should, all error-detection and 60 later or subsequent versions of the PCI express bus or other
error-correction.	 host interfaces. TheAltera GX130 FPGA's are equipped with

FIG. 2 depicts a diagrammatic view of a NIC circuit sys-	 programmable equalization to compensate for signal degra-
tem/architecture 200 in accordance with an exemplary

	
dation during transmission. This enables the ultra high-speed

embodiment of the present disclosure. The architecture can
	

interfaces such as the PCIe signals and Altera Atlantic inter-
provide splintered offload of packets, at 64 Gigabits per sec- 65 face. In normal operation, the DMA engine transfers data out
ond ("Gbps"), e.g., the current practical limit of PCI Express

	
in the same order it came in; control logic selects between

X16 Gen II (PCIe-X16 Gen 11), and scalability to 100 Gbps
	

listed and unlisted packet buffer. The order may be overrid-

US 8,103,785 B2
11

den, may be changed to reclaim mode (unlisted packets) or
use tagged command queuing, depending how the host writes
to the control registers.

With continued reference to FIG. 3, the Atlantic interface
(I/F) is Altera's standard, generic bus when connecting to 5

high-speed data interfaces. One Atlantic I/F is write enabled
at a time. After the block is filled with a 32 kByte packet, the
next Atlantic I/F is write enabled. There are a total of 6: 10
Gbps paths for 60 Gbps.

While being applicable to TCP/IP, system 300 is also appli- to
cable to UDP. Splintered UDP, however, may be more
involved. The only dependency that arises when more cores
are added is contention for the shared resources (the MAC
engine and the DMA engine). An assumption may be made
that the application will poll for completion of a message.	 15

The descriptor can contain one or more of nine fields:
SRC_IP SRC—PORT, DST_IP DST—PORT, BUFFER—AD-
DRESS, BUFFER—LENGTH, TIMEOUT, FLAGS, and
PACKET_LIST. The timeout and flags fields allow for MPI_
MATCH on the NIC and greatly increase the efficiency of 20

MPI. The timeout field is necessary since a mechanism may
be needed for returning pinned pages if memory resources are
constrained.

TABLE 1

EP2SGX130FF1508C4 FPGA Resources

12
basic CPU command functions. The embedded "program
memory" is simply one of the FPGA resources, and is loaded
via the FPGA control logic, during power-up and initializa-
tion. Other examples of a suitable CPU include any embed-
ded FPGA processor, or with external interface logic a micro-
controller or microprocessor can be used.

The offload engine calculates TCP checksum which is then
compared with the original checksum in the TCP header. If
the two values do not agree, then it is assumed that the packet
was transmitted in error and a request is made to have the
packet re-transmitted. The offload engine therefore "drops"
the packet and therefore the NIC does not send the flag for
"transaction complete" to user space. For an exemplary
implementation, a Verilog module was created for perform-
ing the checksum calculations and performed a bottleneck
analysis simulation to determine the precise location for all
checksum components (data word addition, carry add, 1's
complement, and appending checksum to packet stream).

FIG. 4 depicts an enlarged view of a portion of FIG. 3
showing a packet receive process and architecture in accor-
dance with an exemplary embodiment of the present disclo-
sure. More particularly, FIG. 4 shows a detailed view of buffer
304 and mux, demux, buffer 306 in FIG. 3. Architecture 400

512 b	 4 kb
bits ram	 ram FO

LE's	 alut ram block	 block pins

Transmit path

atlantic i/f 0	 900 0 0	 0 96 in
UDP calculate/insert 21,000
control logic 0	 180 0 0	 6 50 1/o
spi-4.2 900	 0 0 0	 14 96 out
Receive Path

atlantic 1/f 0 900 0 0 0 96 in
96 out

spi-4.21/f 1014 0 0 0 15 96 in
descriptor table 0 0 16k 0 n/a
sha-1 encoder 15,048 0 0 0 0 n/a
DMA eng 0 360 432k 0 12 n/a
UDP cksum&compare 21,000
control logic 0 180 0 0 6 50 i/o
listed packet buffer 0 0 864k 0 0 n/a
unlisted packet buffer 0 0 864k 0 0 n/a
packet fifo 0 0 864k 0 0 n/a

total 16,962 44,520 3040k 0 53 580
specification 132,540 106,032 6747k 699 609 734

Totals for each core within FPGA in FIG. 3

	All of the major cores required for implementing the 	 can include packet FIFO buffer 402 as part of a pipeline, e.g.,

	

SPLINTERED UDP Offload Engine are summarized in the	 a 622 MHz pipeline as shown though other can be imple-

	

FPGA table, along with the FPGA resources they require. 	 mented. Control logic 404, e.g. suitable for a MD5 match, can
This table is a consolidation of both fitted code and consump- 55 pass packet through a demux process to an unlisted packet

	

tion per core specifications, for a total of 6 paths (60 Gbps
	

buffer 406 and a listed packet buffer 407 connected to DMA
f-d):	 engine 408. DMA engine 408 can be connected to interface

	

With continued reference to FIG. 3, some of the control
	

410.
	logic is also given in the system diagram. The control-path

	
As can be discerned in FIG. 4, once a packet is written into

CPU is accessed during PCIe-X16 cycles where the host is 60 either buffer, that specific buffer increments its write pointer

	

coding-up the FPGA. The control-path CPU writes registers 	 to the next available packet space. Once a buffer has a com-

	

and performs "code-up" within each of the FPGA's devices in 	 plete packet, its ready flag signals the logic for the DMAI

	

conjunction with the DMA2 engine. The control-path CPU
	

engine. The DMAI engine clocks data out from the buffer at

	

performs reads and sends back the results via the DMAI
	

4 GHz. This can be accomplished by using the same buffering
engine's buffer, back to the host. For exemplary embodi- 65 and clocking logic taken from the MD5 core.

	

ments, the control path CPU can be an Altera Nios II embed- 	 FIG. 5 depicts a diagrammatic view of an alternate packet

	

ded "soft processor" which comes with its own library of
	

transmit process and architecture 500 in accordance with a

US 8,103,785 B2
13
	

14
further embodiment of the present disclosure. Architecture 	 using a Pentium Pro Duo with 1.86 GHz processors, but this
500 includes dual SPI-4.2 fully duplexed interfaces, as	 created an artificial limit in the speed of the PCI-Express bus
shown.	 and the speed of the processor. Subsequently, the present

	

FIG. 6 depicts diagrammatic representation of a 40 Gbps
	

inventors assumed a machine with a 3 GHz processor and a
bandwidth embodiment 600A and a 60 Gbps bandwidth 5 PCIe bus on the order of 100 Gbps f-d (our results have
embodiment 60013, in accordance with of the present disclo- 	 essentially been limited by the PCIe bus bandwidth itself).
sure. As shown, the 40 Gbps bandwidth embodiment 600A

	
For this, the average number of cycles on the receive host

can include two network interface cards, and a Generation 1
	

determined during EMO model verification (200,000) was
PCI Express X16 backplane. The 60 Gbps bandwidth

	
used, with the assumption that there was little or no time spent

embodiment can include a single board offload engine run- io on the traditional NIC. An interrupt latency (the limiting
ning in 1 slot through 60 Gbps f-d.	 factor) of 4 microseconds was assumed (which is the tradi-

	

Using the 10 Gbps data rate, the present inventors deter- 	 tional advertised interrupt latency for Intel Pentiums). The
mined the amount of bits that could be stored in 1 second; the

	
limiting factor for Standard TCP is the interrupt latency (since

memory external to the FPGA can be selected by appropriate 	 we assume multiple interrupts per message). The limiting
scaling, as was done for an exemplary embodiment. For each 15 factor for TCP with Interrupt Coalescing is the context switch
10 Gbps path, the present inventors determined that the off-	 latency of 7.5 microseconds. Splintered TCP has no context
load NIC would need 1.1 GByte Double-Data Rate (DDR2)

	
switch or interrupt so the limiting factor becomes the speed of

RAM to adjust a packet rate from 10 Gbps reduced down to 1
	

the PCI-Express bus.
Gbps. The DDR2 SDRAM specifications for waveform tim- 	 Splintered TCP with protocol bypass was shown to provide
ing and latencies and refresh cycles indicate that the DDR2 20 the performance necessary to provide per-flow bandwidth up
SDRAM can be used on the Altera S2GX PCIe dev kit uti- 	 to 128+ Gbps. Accordingly, embodiments of the present dis-
lized for the present disclosure. Each development board used

	
closure can provide a viable, inexpensive alternative for 100

was	 provided	 with	 four	 x16	 devices:
	

Gbps networks using Ethernet. The number of connections
device#MT47H32M16CC-3. 	 that can be served by a Splintered TCP NIC may depend on

For verification purposes, the present inventors modeled 25 the size (and therefore expense) of the NIC itself as memory
the performance of an embodiment of FIG. 6. Accounting for	 will be the most costly addition to the Splintered TCP NIC.
the need for a refresh cycle, the throughput would be 700 kbit

	
Splintered TCP connections can, for some applications, be

over a time of (70 usec+l cycle delay), directly translating
	

brokered by an application library.
into 9.99 kb/usec (9.99 Gbps). For feasibility purposes, this

	
FIG. 8 depicts a method of packet splintering in accordance

bandwidth is seen as being practically the same data rate (no 30 with exemplary embodiments. As shown in FIG. 8, at an
bottleneck) as 10 Gbps. Thus, for certain applications, the

	
initial start stage 802 a packet can be processed by (in) splin-

buffering internal to the FPGA can be sufficient and no exter- 	 tering logic; starting stage 802 is shown linked to reference
nal memory may be required on the NIC.	 character 1 for the subsequent description of FIG. 10.
Extensible Message Oriented Offload Model

	
With continued reference to FIG. 8, when splintering is

FIG. 7 depicts a diagrammatic view of an extensible mes- 35 appropriate (e.g., the header is listed in a descriptor table), the
sage oriented offload model ("EMO") 700 for a receive pro- 	 packet data can be transferred to an application layer (e.g.,
cess, in accordance with an embodiment of the present dis- 	 into a buffer or memory location/address), as described at
closure. The EMO model was used to verify/model the

	 804. The packet header can be transferred to the operating
Splintered TCP throughput. The EMO model was verified by	 system, as described at 806. A descriptor table in hardware,
comparing the throughput of two machines using the Linux 40 e.g., NIC, can be updated to receipt of the packet data, as
TCP stack and the modeled throughput. 	 described at 808.

	The EMO model 700 uses microbenchmarks combined to
	

FIG. 9 depicts a packet processing method 900 in accor-
determine latency and overhead for a protocol. Drawings

	
dance with an embodiment of the present disclosure; starting

FIG. 7 shows the EMO model for a receive. EMO allows us to	 stage 902 is shown linked to reference character 2 for the
use information about the Splintered TCP NIC to estimate the 45 subsequent description of FIG. 10. A packet can be trans-
latency and throughput of Splintered TCP. Using EMO, we

	
ferred to an internet protocol layer, as described at 902. The

can model the latency of a traditional TCP latency as: 	 packet can be processed by the internet protocol layer, as
Latency=L_w+C_n/R_n+L_nh+C_h/R_h+L_ha

	
described at 904. The packet can then be transferred to the

	

The EMO model was verified as being accurate by the use 	 transport layer, as described at 906.
of two Pentium Pro Duo machines with Intel e1000 NICs in a 50 Continued with the description of method 900, the packet
crossover configuration using Linux 2.6.22 operating system. 	 can be processed in the transport layer, as described at 908.
Timings were added to both the kernel and the TCP client and

	
The packet data can be transferred to an application layer, as

TCP server test applications. The present inventors were
	

described at 910. The data can then be processed in the appli-
unable (during the verification process) to (i) directly time the	 cation layer, as described at 912.
DMA from the NIC to the host OS (L_nh), and (ii) directly 55	 FIG. 10 depicts a further embodiment of a packet process-
time the amount of work performed in the NIC (C_n/R_n). 	 ing method 1000, in accordance with the present disclosure.
They did, however, get reasonable timings of the other

	
Method 1000 includes options for implementing procedures/

microbenchmarks necessary to verify EMO. The EMO was 	 methods according to FIGS. 9-10, and 11, as will be
observed to generally underestimate the latency by about

	
described.

23%, however, the gain on the system was seen to be consis- 60	 For method 1000, an application can send descriptor/
tent. The consistency is important as it shows that any caching

	
header contents to an operating system, as described at 1002.

or scheduling randomness does not affect the latency at this
	

The operating system can perform anon-blocking socketread
level.	 from the application, as described at 1004. The operating
Modeling Verification	 system can then attempt to pin a page (or pages) in host

The present inventors modeled embodiments of Splintered 65 memory, as described at 1006. If the pinning fails, the oper-
TCP using the above-described EMO. The latency of stan- 	 ating system can perform a batch process of all headers (indi-
dard TCP and TCP was initially using interrupt coalescing	 cated by "Y), as further shown and described for FIG. 11.

US 8,103,785 B2
15

In response to a successful pinning page pass, the descrip-
tor can be processed in the operating system and put into a
descriptor table in the operating system, as described at 1010.
The operating system can then send (e.g., DMA) the descrip-
tor to an NIC (hardware) descriptor table, as described at 5

1012. The received packet (data) can be input to the NIC
physical layer, as described at 1014. The packet can be pro-
cessed in the physical layer, as described at 1016. The packet
can be transferred from the physical layer to a NIC data link
later, as described at 1018, for processing, as described at 10

1020.
Continuing with the description of method 1000, a query

can be performed to see if the packet is listed in the descriptor
table, as described at 1022. If the packet is not listed in the 15

descriptor table, normal processing of the packet can occur
(indicated by "2"), e.g., as previously described for method
900. If, on the other hand, the packet is listed in the descriptor
table, the packet can then be transferred to splintering logic
(indicated by "V), e.g., as previously described for method 20
800.

FIG. 11 depicts a further embodiment of a packet process-
ing method 1100, in accordance with the present disclosure.
Method 1100 can be useful in the case where a pinning
attempt fails, e.g., for an unsuccessful outcome at 1008 of 25

method 1000.
For method 1000, in response to an unsuccessful pinning

attempt, the operating system can perform a batch process of
all headers, e.g., those in a headers-to-be-processed ring, as
described at 1102. The associated application can negotiate 30

for memory, as described at 1104. The application can per-
form a de-queue-receive system call, as described at 1106.
The operating system can remove the descriptor from the
descriptor table in the operating system, as described at 1108.
The operating system can re-queue the descriptor onto the 35

NIC with a flag being set, as described at 1110. The NIC can
then remove the descriptor from the NIC descriptor table, as
described at 1112.

FIG. 12 depicts a processing method 1200 for an operating
system to process headers, in accordance with an embodi- 40

ment of the present disclosure. A check can be made for the
occurrence of an interrupt, e.g., a quantum expiry or other
interrupts, as described at 1202. Upon the occurrence of such
an interrupt, an operating system can batch process all head-
ers stored, e.g., in a headers-to-be-processed ring/buffer, as 45

described at 1204. A determination canbe made as to whether
a header is associated with a TCP packet, as described at
1206.

Continuing with the description of method 1200, in
response to a determination that the header is associated with 50

a TCP packet, acknowledgment can be created and send (e.g.,
by a DMA process) to a transmit ring on the NIC, as described
at 1208. Then (or after a negative determination at 1206) the
operating system can update its descriptor table, as described
at 1210. It should be understood, that except for 1206, all 55

other instances of "TCP" as used herein are applicable to
UDP.

FIG. 13 depicts a method 1300 of transmitting processed
data after splintered logic processing has occurred, in accor-
dance with embodiments of the present disclosure. In method 60

1300, data that is to be transmitted can be input into an
application layer, e.g., data that has been "splintered" off of a
packet by method 800 of FIG. 8, as described at 1302. The
data can then be processed in the application layer, as
described at 1304. The data can be transferred to a transport 65

layer, as described at 1306, for processing, as described at
1308.

16
Continuing with the description of method 1300, the data

can be transferred to an internet protocol ("IP") layer, as
described at 1310, for processing in the IP layer, as described
at 1312. The data canbe transferred to a data link, as described
at 1314, and processed in the data link, as described at 1316.
The data can then be transferred to a physical layer, as
described at 1318, and processed in the physical layer, as
described at 1320. The data can then be transferred to a
network, as described at 1322.
Testing

The control logic, registers, decoding, and internal selects
for each device have been shown in the previous figure by a
single box "ctrl logic." During the proof of concept testing,
the present inventor(s) used in-house library of control func-
tions and derived an approximate amount of logic (Verilog
equations) for this unit. Off-the-shelf Verilog code was avail-
able for the Atlantic Interface and control logic. Using the
Altera Quartus II FPGA tools, the present inventor(s) synthe-
sized and fit the logic into an Altera GX130 FPGA, consum-
ing only 12-20% of FPGA on-chip resources.

For completed testing. Verilog coding and test bench simu-
lation towards functions with either critical logic or potential
bottlenecks, in order to prove that the data path was feasible to
support rates of nx10 Gbps. Modelsim was used to simulate
the data flow between packet fifo, demux logic, listed packet
buffer, and buffer to DMA. The results of the simulation were
that data flow was functional as given in the previous dia-
grams, and we verified that there were no bandwidth bottle-
necks: our system design was proven to be feasible.

Accordingly, embodiments of the present disclosure can
provide various advantages over the prior art; such advan-
tages can include the ability to increase file transfer rates over
networks and/or provide file transfer functionality with
reduced cost. As faster versions of the busses become avail-
able, e.g., PCI express bus, embodiments of the present dis-
closure can provide splintered TCP and UDP operation at
higher rates, e.g., 128 Gbps to 1,000+ Gbps f-d for Terabit
Ethernet applications.

While certain embodiments have been described herein, it
will be understood by one skilled in the art that the methods,
systems, and apparatus of the present disclosure may be
embodied in other specific forms without departing from the
spirit thereof.

Accordingly, the embodiments described herein, and as
claimed in the attached claims, are to be considered in all
respects as illustrative of the present disclosure and not
restrictive.

What is claimed is:
1. A method of network acceleration comprising:
instructing an application to send descriptor contents to an

operating system;
instructing the operating system to perform a non-blocking

socket read from the application;
instructing the operating system to attempt to pin a page in

host memory;
in response to a successful passing of the page pinning,

instructing the operating system to process the descrip-
tor;

instructing the operating system to put the descriptor into
its descriptor table;

instructing the operating system to send via dynamic
memory access (DMA) the processed descriptor to a
network interface device descriptor table;

instructing that a received (RX) packet is input to a network
interface device physical layer;

instructing that the packet is processed in the network
interface device physical layer;

US 8,103,785 B2
17

instructing that the packet is transferred from the network
interface device physical layer to a network interface
device data link layer;

instructing that the packet is processed in the network
interface device data link layer;

instructing that a query is made to see if the packet is listed
in the descriptor table;

in response to the packet being listed in the descriptor table,
transferring the packet to splintering logic;

in response to an unsuccessful passing of the page pinning,
instructing the operating system to process all headers in
a headers-to-be-processed ring;

instructing the application to negotiate for memory; and
instructing the application to perform de-queuing and

receive a system call.
2. The method of claim 1, further comprising:
instructing the operating system to remove the packet

descriptor from the operating system descriptor table;
instructing the operating system to re-queue the packet

descriptor onto the network interface device with a flag
set; and

updating the network interface device hardware descriptor
table so that the network interface device removes the
descriptor from the network interface device descriptor
table.

3. The method of claim 1, wherein the network interface
device comprises a network interface card (NIC) circuit.

4. The method of claim 3, wherein the NIC circuit is con-
figured and arranged to have a bandwidth of about 5 Gbps to
about 1,000 Gbps.

5. The method of claim 4, wherein the NIC circuit is con-
figured and arranged to have a bandwidth of about 10 Gbps.

6. The method of claim 1, further comprising updating a
descriptor table in the network interface device.

7. A method of processing a packet with splintering logic,
the method comprising:

providing a network interface circuit with a packet having
a packet header descriptor and packet data;

transferring packet data to a storage location in an appli-
cation layer linked to the network interface circuit,
wherein the storage location is a receive buffer utilized
by the application layer to receive data;

transferring a packet header to an operating system linked
to the network interface circuit and the application layer,
and wherein use of a transmission control protocol/in-
ternet protocol (TCP/IP) stack or a UDP/IP stack is
avoided for the transferring of the packet header;

providing instructions to an application to send descriptor
contents to the operating system;

providing instructions to the operating system to perform a
non-blocking socket read from the application;

providing instructions to the operating system to attempt to
pin a page in host memory;

in response to a successful passing of the page pinning,
providing instructions to the operating system to process
the descriptor;

providing instructions to the operating system to put the
descriptor into its descriptor table;

providing instructions to the operating system to send via
dynamic memory access (DMA) the processed descrip-
tor to a network interface device descriptor table;

providing instructions that a received (RX) packet is input
to a network interface device physical layer;

providing instructions to the network interface device
physical layer for processing the packet;

18
providing instructions to the network interface device

physical layer for transferring the packet from the net-
work interface device physical layer to a network inter-
face device data link layer;

5	 providing instructions to the network interface device data
link layer to process the packet;

providing instructions to make a query to see if the packet
is listed in the descriptor table;

in response to the packet being listed in the descriptor table,
10	 transferring the packet to splintering logic;

in response to an unsuccessful passing of the page pinning,
providing instructions to the operating system to process
all headers in a headers-to-be-processed ring;

providing instructions to the application to negotiate for
15	 memory; and

providing instructions to the application to perform de-
queuing and receive a system call.

8. The method of claim 7, wherein the packet is a transmis-
sion control protocol (TCP) packet.

20 9. The method of claim 7, wherein the packet is a user
datagram protocol (UDP) packet.

10. The method of claim 7, wherein the packet is an internet
protocol (IP) packet.

11. The method of claim 7, wherein the network interface
25 circuit comprises a network interface card (NIC) circuit.

12. The method of claim 11, wherein the NIC circuit is
configured and arranged to have a bandwidth of about 5 Gbps
to about 1,000 Gbps.

13. The method of claim 12, wherein the NIC circuit is
30 configured and arranged to have a bandwidth of about 10

Gbps.
14. The method of claim 7, further comprising updating a

descriptor table in the network interface circuit.
15. A computer-executable program product comprising a

35 computer-readable non-transitory storage medium with resi-
dent computer-readable instructions, the computer readable
instructions comprising:

instructions for providing a network interface device with
a packet having a packet header and packet data;

40	 instructions for transferring packet data to a buffer in an
application layer linked to the network interface device;

instructions for transferring a packet header to an operating
system (OS) linked to the network interface device and
the application layer, wherein use of a TCP/IP stack or a

45	 UDP/IP stack is avoided for the transferring of the
packet header;

instructions for an application to send descriptor contents
to the operating system;

instructions for the operating system to perform a non-
50	 blocking socket read from the application;

instructions for the operating system to attempt to pin a
page in host memory;

instructions for, in response to a successful passing of the
page pinning, the operating system to process the

55	 descriptor;
instructions for the operating system to put the descriptor

into its descriptor table;
instructions for the operating system to send via dynamic

memory access (DMA) the processed descriptor to a
60	 network interface device descriptor table;

instructions that a received (RX) packet is input to a net-
work interface device physical layer;

instructions that the packet is processed in the network
interface device physical layer;

65 instructions that the packet is transferred from the network
interface device physical layer to a network interface
device data link layer;

US 8,103,785 B2
19

instructions that the packet is processed in the network
interface device data link layer;

instructions that a query is made to see if the packet is listed
in the descriptor table;

instructions for, in response to the packet being listed in the
descriptor table, transferring the packet to splintering
logic;

instruction for, in response to an unsuccessful passing of
the page pinning, the operating system to process all
headers in a headers-to-be-processed ring;

instructions for the application to negotiate for memory;
and

instructions for the application to perform de-queuing and
receive a system call.

16. The program product of claim 15, wherein the packet is
a transmission control protocol (TCP) packet.

17. The program product of claim 15, wherein the packet is
a user datagram protocol (UDP) packet.

18. The program product of claim 15, wherein the packet is
an internet protocol (IP) packet.

19. The program product of claim 15, further comprising
instructions for processing packet headers upon the occur-
rence of an OS interrupt.

20. The program product of claim 15, wherein the network
interface device comprises a network interface card (NIC)
circuit.

21. The program product of claim 20, wherein the NIC
circuit is configured and arranged to have a bandwidth of
about 5 Gbps to about 1,000 Gbps.

22. The program product of claim 21, wherein the NIC
circuit is configured and arranged to have a bandwidth of
about 10 Gbps.

23. The program product of claim 15, further comprising
updating a descriptor table in the network interface device.

24. A splintered packet offload engine system comprising:
a network interface device configured to interface with (i)

a network, (ii) an operating system, and (iii) an applica-
tion, wherein the network interface device includes a
descriptor table, the operating system is linked withhost
memory and configured to perform a page pinning to the
memory, the application includes a receive buffer, and
the network interface device comprises splinter offload
logic, wherein the splinter offload logic is configured to
avoid use of a TCP/IP stack or a UDP/IP stack for pro-
cessing headers;

wherein the splintered packet offload engine system is
configured to:
instruct the application to send descriptor contents to the

operating system;
instruct the operating system to perform a non-blocking

socket read from the application;
instruct the operating system to attempt to pin a page in

host memory;
in response to a successful passing of the page pinning,

instruct the operating system to process the descrip-
tor;

instruct the operating system to put the descriptor into its
descriptor table;

instruct the operating system to send via dynamic
memory access (DMA) the processed descriptor to a
network interface device descriptor table;

20
instruct that a received (RX) packet is input to a network

interface device physical layer;
instruct that the packet is processed in the network inter-

face device physical layer;
5 instruct that the packet is transferred from the network

interface device physical layer to a network interface
device data link layer;

instruct that the packet is processed in the network inter-
face device data link layer;

10	 instruct that a query is made to see if the packet is listed
in the descriptor table;

in response to the packet being listed in the descriptor
table, transfer the packet to splintering logic;

15 in response to an unsuccessful passing of the page pin-
ning, instruct the operating system to process all head-
ers in a headers-to-be-processed ring;

instruct the application to negotiate for memory; and
instruct the application to perform de-queuing and

20	 receive a system call.
25. The system of claim 24, further comprising a software

application.
26. The system of claim 24, further comprising a media

access controller for Ethernet.
25	 27. The system of claim 24, further comprising a backplane

interface.
28. The system of claim 24, wherein the splinter offload

logic is configured and arranged in a field programmable gate
array (FPGA).

30 29. The system of claim 24, wherein the splinter offload
logic is configured and arranged in an application specific
integrated circuit (ASIC).

30. The system of claim 24, wherein the splinter offload
logic is configured and arranged in a hardware description or

35 behavioral language.
31. The system of claim 30, wherein the language is C,

Verilog, or VHSIC hardware description language (VHDL),
wherein VHSIC refers to very-high-speed integrated circuits.

32. The system of claim 24, wherein the splinter offload
40 logic is configured and arranged in a circuit board.

33. The system of claim 24, wherein the network interface
device is configured and arranged to have a bandwidth of
about 5 Gbps to about 1,000 Gbps.

34. The system of claim 33, wherein the network interface
45 device is configured and arranged to have a bandwidth of

about 10 Gbps.
35. The system of claim 24, wherein the network interface

device is configured and arranged to receive a user datagram
protocol (UDP) packet.

50 36. The system of claim 24, wherein the network interface
device is configured and arranged to receive a UDP-based
data transfer protocol (UDT) packet.

37. The system of claim 24, wherein the network interface
device is configured and arranged to receive an internet pro-

55 tocol (IP) packet.
38. The system of claim 24, wherein the network interface

device is configured and arranged to receive a transmission
control protocol (TCP) packet.

60

	8103785-p0001.pdf
	8103785-p0002.pdf
	8103785-p0003.pdf
	8103785-p0004.pdf
	8103785-p0005.pdf
	8103785-p0006.pdf
	8103785-p0007.pdf
	8103785-p0008.pdf
	8103785-p0009.pdf
	8103785-p0010.pdf
	8103785-p0011.pdf
	8103785-p0012.pdf
	8103785-p0013.pdf
	8103785-p0014.pdf
	8103785-p0015.pdf
	8103785-p0016.pdf
	8103785-p0017.pdf
	8103785-p0018.pdf
	8103785-p0019.pdf
	8103785-p0020.pdf
	8103785-p0021.pdf

